Pacific Journal of
Mathematics

FIXED POINT THEOREMS FOR SET-VALUED MAPPINGS OF

CONTRACTIVE TYPE

NADIM A. ASSAD AND WILLIAM A. KIRK




PACIFIC JOURNAL OF MATHEMATICS
Vol. 43, No. 3, 1972

FIXED POINT THEOREMS FOR SET-VALUED MAPPINGS
OF CONTRACTIVE TYPE

NApiM A. AssaAp AND W. A. KIRK

In this paper a new fixed point theorem is proved for
contraction mappings in a complete metric space by observing
that if the space is metrically convex, then significant weak-
enings may be made concerning the domain and range of the
mapping considered. While the main theorem is formulated
for set-valued mappings, its point-to-point analogue is also a
new result. This result, proved in §1, is the following: Sup-
pose M is a complete, metrically convex, metric space, K a
nonempty closed subset of /M, and ¢ a contraction mapping
from K into the family .7 (M) of nonempty closed bounded
subsets of M supplied with the Hausdorff metric. Then if ¢
maps the boundary of K into subsets of K, ¢ has a fixed
point in K, i.e., there is a point x,c K such that x, <€ ¢(x,).

Many applications of the contraction mapping theorem ocecur in
a convex setting, and in particular the results of this paper are
applied to obtain new fixed point theorems in Banach spaces. For
example, if H is a closed convex subset of a Banach space X and T
is a contraction mapping of K into H where K is a nonempty closed
subset of H, then the requirement that 7T maps the boundary of K
relative to H back into K is sufficient to guarantee a fixed point for
T. Hypotheses of this type are not new in analysis; for mappings
which are completely continuous, H is often taken as the positive
cone in X and K the intersection of H with the closed unit ball.

In §2 we use the above theorem to obtain an improved version
of Lami Dozo’s generalization [9] of a theorem of J. Markin [10],
and in §3 a connection between fixed point theory of Lipschitzian
pseudo-contractive mappings and that of nonexpansive mappings yields
a theorem which generalizes results of Kirk [7], [8].

1. Set-valued contraction mappings. Let (3, d) be a metric
space and let .77 (M) denote the family of all nonempty bounded
closed subsets of M. For A, Be .7 (M), let D(A, B) denote the distance
between A and B in the Hausdorff metric induced by d on .7 (M).
In particular, if for » > 0 and Fe 7 (M) we define

V. (E) = {geM:dist (x, E) < r},
then we have
D(A, B) = inf{r: AcV,(B) and BCV,(4)}.
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In the theorem below we shall assume M is a complete metric
space which is (metrically) convex, that is, M has the property that
for each x, ye€ M with 2 = y there exists ze M, « = z # vy, such that

d(xz, 2) + dz,y) =d(=, ¥y) .

K. Menger has shown that in such a space each two points are
the endpoints of at least one metric segment. (A proof of this theorem
due to N. Aronszajn may be found in L. M. Blumenthal’s book [1,
p- 41].) This fact immediately yields the following:

REMARK. If K is a closed subset of the complete and convex
metric space M and if ¢ K, y¢ K, then there exists a point z in the
boundary of K such that

d(@, 2) + d(z, y) = d{=, y) .

We shall also make use of the following lemmas, which are noted
implicitly in Nadler [11]. Here M denotes a metric space and .7~ (M)
the family of nonempty bounded closed subsets of M.

LemMMmA 1. If A, Be 9 (M) and T e A, then for each positive
number « there exists y< B such that

d(z,v) = D(4, B) + .

LEMMA 2. Let {A,} be a sequence of sets in .7 (M), and suppose
lim,_., D(A,, A) = 0 where Aye 7 (M). Thenif x,€¢A,,n=1,2 .-,
and if lim,_. z, = %, @t follows that x,¢€ A,.

In the theorem below we consider a mapping ® on a subset K
of M which takes values in .7 (M). Such a mapping is called a
contraction mapping if there exists a constant £ < 1 such that D(®(x),
?(y) < kd(x, y). Also, we use the symbol 6K to denote the boundary
of K.

THEOREM 1. Let M be a complete and convex metric space, K a
nonempty closed subset of M, and ® a contraction mapping from K
wnto 7 (M). If @(x) C K for each xcdK then there exists x,€ K such
that x,€ @(®,) (i.e., @ has a fived point in K).

Proof. Let a, 0 < a < 1, denote the Lipschitz constant of p. We
select a sequence {p,} in K in the following way: Let p,€ K and
p.eP(py). If ple K, let p, = pi; otherwise select a point p, € 0K such
that d(p,, p,) + d(p,, p;) = d(p,, p;). Thus p,€ K and by Lemma 1 we
may choose ;€ @(p,) so that
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d(pl, ;) = D(®(py), P(p) + « .

Now put p; = p, if p; € K; otherwise let p, be a point of 0K such that
d(p,, p.) + d(p,, P3) = d(p,, p;). By induction we may obtain sequences
{p.}, {p.} such that for n =1,2, ---,

(1) DPheP(®),

(ii)  d(Phss, D7) = D(@P(Dn), P(D0) +
where

(iii) Phyy = Pur if D€ K, o1
(iv)  d(Pny Purs) + ADpsry Dovs) = APy, Phir) if p,., ¢ K.
Now let

P={pe{p:ipi=0,1=1,2 +-+};
Q = {pze{pn}: pzi p:,'l = 1’ 27 “'} M
Observe that if p,€Q for some wm, then p,,, < P.

Now for n = 2 we consider the distance d(p,, »,..). Three cases
must be considered:

Case 1. p,e P and p,,, € P: In this case we have

A Pry Drss) = ADh, Prst) = DP(D,), P(D0y) + "
= ad(p,, Pna) + .

Case 2. p,cP and p,,, €Q: Here we use (iv) to obtain

A(Day Putr) = A(Day Diots)
= d(Pn, Dut1)
= D(P(Pa-s), P(Da) + "
= ad(pa, ) + a”.

Case 3. p,€Q and p,., € P: By the above observation, two con-
secutive terms of {p,} cannot be in @, hence p,_,€ P and p,_, = p,_,.
Using this below, we obtain

A(Dny Dat1) = ADuy D) + AD7, Dats)
= d(Pa, D7) + APh, Dhty)
= d(pa, ) + D(@(D.), P(0,) + @
< d(Da, D) + ad(p,_, p,) + a”
< APy, D2) + "
= d(ph—, D) + @
= D@(0y), P(D0) + @7 +
S ad(Pusy Puoy) + @™+ a™ .
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The only other possibility, p,€@, p,+:€Q, cannot occur. Thus for
n = 2 we have

ad(Pn, Po) + a O

* d ) gf
( ) (pm pn+) = lad(pn_z, pn—l) + a,ﬂ + a”“ .

Now let 0 = a™'/* max {d(p,, p,), d(pi, P,)}

Assertion. For n =1,
(**) APy Dusr) = @0 + m) .

In order to prove this by induction we must establish the cases n =
1,2. Forn=1

d(ps, po) < @0 < a'*(0 + 1) .
For n = 2 we use (*) and take each case separately.

d(py, Ps) = ad(py, p) + &
< al@'® + a)
Sal@+ 2);

d(p,, ps) < ad(p, p) + a® + @
Sa@” + a+ 1)
Sa@+2).

Now assume (**) holds for 1 < n < N, and for N = 2 consider the
two cases:

1. d(@w+i, Py+o) = ad(py, Pys) +
< ala"®@ + N)] + a¥
< @®HIB§ 4 (N + 1)a+ore
< a®™RG 4 (N + 1) .
2. APy, Did) = AWy, D) + & + a¥
< ala® VP06 + (N — 1)) + o + o
< a¥rrg 4 (N — Da® e 4 g+ 4 oV

=a™EG + (N + 1) .
This proves the assertion, and from (**) it follows that
(*%%) d(ps, py) < 0 i (@) + i (), E>N=1.
=N =N

This implies {p,} is a Cauchy sequence and since M is complete and
K closed, {p,} converges to a point x,¢ K. Also observe that there
exists a subsequence {p,,} of {p,} each of whose terms is in the set
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P (i.e., p,, = Do, £=1,2,--+). Thus by (i), p1, € PW0u,-), k =1, 2,
-++, and since p,,, — &, as k— c we have P(p,, ) — P(w;) as k— o
in the Hausdorff metric. It follows from Lemma 2 that z,c®(x),
completing the proof.

REMARK. In the above proof the rate at which the sequence {p,}
converges to a fixed point of ® is obtainable from (***). If @ is a
point-to-point mapping then one can always take p, = @(p,_,) in defining
the sequence {p,} thus obtaining in place of (ii)

d(p:.,+1, p’:b) = d(g)(pn)) ¢(pn~1)) .

Using this one obtains, in place of (***), the sharper estimate
Dy, px) S 03, (@, k>Nz1.
=N

For subsets K, H of a Banach space we use the symbol ;K to
denote the boundary of K relative to H. In particular, if K is closed.

0K ={zeK:U(z,v) N H\K = @ for each r > (},

where Uz, r) = {xe X: ||z — || < 7}.
By taking M = H in Theorem 1 we obtain:

COROLLARY 1. Let X be a Banach space, H a closed convex subset
of X, and K a closed subset of H. If ¢: K— 7 (H) is a contraction
mapping such that @(x) = K when xecdyK, then there exists x,€ K
such that x,e @(x,).

COROLLARY 2. Let K and H be as in Corollary 1. If T: K—
H is a contraction mapping, and if Txe K when xcdyK, then T has
a (unique) fized point in K.

Both of these corollaries are used in the subsequent sections.

2. An approach of Lami Dozo. In [12] Opial observed that
every uniformly convex Banach space which possesses a weakly con-
tinuous duality mapping [3] satisfies the condition:

(A) If the sequence {z,} is weakly convergent to 2, and if x =
o, then

lim inf ||z, — || > liminf ||, — «]| .
Following Lami Dozo [9], we say that a Banach space satisfies

Opial’s condition if it has property (A). Such spaces include Hilbert
spaces, and the spaces I*,1 < p < o (see Browder [3]).
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For a Banach space X, let 2#°(X) denote the family of nonempty
compact convex subsets of X supplied with the Hausdorff metrie, and
let B denote the closed unit ball in X. In [10] J. Markin proved
that if X is a (real) Hilbert space, if ¢: X — 227(X) is a nonexpansive
mapping (that is, D(®@{), P(¥)) =< || — y|| for all z, ye X), and if
@(x) B for every x ¢ B, then ® has a fixed point in B. Subsequently,
E. Lami Dozo [9] generalized this result. He proved that if X is a
Banach space which satisfies Opial’s condition and if C is a nonempty,
weakly compact, convex subset of X, then every nonexpansive set-
valued mapping defined on C whose values are nonempty compact
subsets of C possesses a fixed point. Application of Corollary 1 to
Lami Dozo’s approach yields the improvement of his result given
below.

THEOREM 2. Let X be a Banach space which satisfies Opial’s
condition, H a closed convex subset of X, and K a nonempty, weakly
compact, convexr subset of H. Let T be a nonexpansive point-to-set
transformation on K into the momempty compact subsets of H, and
suppose Tx c K whenever x€0;K. Then T has a fized point in K.

Proof. It is readily seen that we may assume, without loss of
generality, that 0 K. Choose a sequence {r,} of real numbers, 0 <
r, < 1, such that r, —1 as #— . For each n,r,T is a point-to-set
contraction mapping from K to the nonempty compact subsets of H.
Furthermore, if ¢ 0d,K then r,Tx C K because 0 € K and K is convex.
By Corollary 1, it follows that for each =, r,T has a fixed point in
K; say z,er,Tx,NK,n =12 -... Hence z,/r,€Tx,, and thus
z,1—1/r))ex, — Tz, = (I — T)x,. Since {x,} C K and K is weakly
compact, it follows that {x,} has a weakly convergent subsequence,
and we may merely assume {x,} itself converges weakly, say to x,.
Furthermore, since {x,} is bounded,

w, = 2,0 — 1/r,) — 0 strongly.

Following the argument of Lami Dozo, we show 0e (I — T)x, and
conclude z, is a fixed point of T.

Since w,e (I — T)x we may write w, =z, — u,, where u,¢€ Tx,.
Thus

D(Tx,, Tr) < ||@, — @l
and u, ¢ Tx, implies existence of %, € Tx, such that
fun — @a || = D(Tw,, Ta) .
Thus,
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[y — Tull = [ @0 — %]
It follows that

lim inf ||®, — ,|] = lim inf ||u, — @,]|
n->c0 Nn—>00

= lim inf ||z, — w, — %,]] .
Now, since {i,} is contained in the compact set Tw, we may suppose
subsequences again have been chosen so that {%,} converges strongly,
say to u,€ Tx,. Therefore,
liminf |2, — w, — @,

n—oo

= lim inf (|2, — W, — %, + %o — ol

n—s00

Z liminf [||e, — wl| — [Jw, || — 1%, — Uoll]
= liminf ||, — %,|] + lim inf (— |jw,[])
+ lim inf (— ||%, — u,|])

= lim inf ||z, — %] .

Thus we have shown:

lim inf ||2, — #,|| = lim inf ||, — ]| .
N—00 n—oo
Since x,— 2, weakly, we have, by Opial’s condition, x, = u,. But
Uy € Ty S0 we have the desired result.

3. Pseudo-contractive mappings. We include an application of
Corollary 2 which generalizes a theorem of Kirk in [7].

In [5], F. Browder introduced the following definition: Let X be
a Banach space and D < X. A mapping U: D — X is said to be pseudo-
contractive if for all w, ve D and all » > 0,

(1) lw =2l = lIQ + N —7) — (U — UW)|l .

Pseudo-contractive mappings are characterized by the property:
U is pseudo-contractive if and only if I — U is accretive (see [5],
Proposition 1). It is easily seen that these mappings include the
nonexpansive mappings.

The approach of [7], showing how fixed point theorems for pseudo-
contractive mappings may be derived from the fixed point theory of
nonexpansive mappings, may be modified to obtain the following:

THEOREM 3. Let X be a reflevive Banach space, H a closed
convex subset of X, and K a nonempty, bounded, closed, convex subset



560 NADIM A. ASSAD AND W. A. KIRK

of H which posseses mormal structure. Let U be a Lipschitzian
pseudo-contractive mapping of K into H such that U(x) € K when x ¢
0yK. Then U has a fixed point in K.

The concept of “normal structure” [2] enters here only so that
the theorem of Kirk [6] may be applied. In particular, if X is uni-
formly convex, or if K is compact, then K always possesses normal
structure.

Proof of Theorem 3. Since U is Lipschitzian there exists a number
A, 0 <A< 1, such that ZU is a contraction mapping. Taking \ =
r/1 -+ 7), (1) implies that the mapping T, = I — AU satisfies

I Tiw — T:) =2 X =M u -], wveK.
Hence (1 — M) 77" is a nonexpansive mapping on its domain. Now let
v el —-MNK={1-NMNy:yek},
and consider the mapping U;: K — X defined by
Ufw) = U@ + y*, zeK.
For x €9, K, then U(x) € K, hence
U,@) = \U@) + 1 — Ny

for some ¥ € K, and this implies U,(x) ¢ K. Thus U, is a contraction
mapping satisfying the assumptions of Corollary 2, so there is a point
#* ¢ K which is fixed under U,. Hence

AU@E*) + y* = o*;
I —AD)a* = y*.
Therefore T,(K) D (1 — MK, which implies
1-MNTm1—-MNK— 1 - NK.

By the theorem of Kirk [6] the mapping (1 — M) T;* has a fixed point
ze(l — MK. Letting z = (1 — M\)z* one quickly sees that U(z*) = z*
(cf. [7]).

The above theorem also extends Theorem 2.1 of [8], which was
proved by a different method, from the class of nonexpansive mappings
to the class of Lipschitzian pseudo-contractive mappings.

The connection between pseudo-contractive and nonexpansive mapp-
ings has recently been further refined. R. E. Bruck has made the
interesting observation that if C is a closed convex set which has
the fixed point property for nonexpansive mappings, and if U: C —C
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is a Lipschitzian local pseudocontraction, then U always has a fixed
point.

4. A theorem in Hilbert space. The assumptions on the mapp-
ing of Theorem 2 may be considerably weakened if X is a Hilbert
space and K a closed ball centered at the origin. Here we give a
theorem which was proved for point-to-point mappings by Browder
[3, Theorem 3].

THEOREM 4. Let 57 be a Hilbert space and B the closed unit ball
wm 7. Suppose P is a nonexpansive mapping from B into the
nonempty compact subsets of S#. If @ satisfies the condition:

(i) Mee¢p@) if x€0B and N > 1,
then @ has a fixed point in B.

Proof. We use the fact that “radial projection” in Hilbert spaces
is nonexpansive. For xe B, let

P(@) = {z:ze (@) and [|z]| =1} U {z/||z]]: z€ P(x) and ||z][ > 1} .

Then @ is also a nonexpansive mapping from B into the nonempty
compact subsets of B. By Theorem 2 (or the result of Lami Dozo)
there exists x,€ B such that x,e @(x,). Since \x, ¢ P(x,) if 2, € 0B and
A > 1, it follows that x, € @(w,).
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