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1. Introduction. Let G be a locally compact abelian group with
Haar measure g, and let X be a complex Banach space and C be the set
of complex numbers. A classic theorem due to Plancherel ([8], [10])
states that the Fourier transform maps L,(G, C) N L,(G, C)' onto a
dense subset of Lz(@, C) (é is the dual group of G and has Haar meas-

ure m) in such a way that a(g)BTg)y(dg):gA a(v)B(vym(dy) for all
a, B in L(G, C)N LG, C) Whgre & is the merier transform of «,
given by a(v) = S {0, Me(g)udg) for all v in G. Here (g, v) denotes
the action of the é}haracter von g in G. In this paper we extend
this result to functions taking values in an inner product subspace
of a Banach algebra.

Another well-known theorem ([8], [10]) states that if « is a
positive definite element of L,(G, C) N L.(G, C) then & is in L,(G, C)
and

(BY alg) = |, 0, WaGm@y

for (almost) all g in G. This inversion theorem is also generalized
to functions assuming values in certain admissible Banach spaces.
Our work relies heavily on an extension of Bochner’s theorem
established in [4]. We show that if p is in L,(G, X) N L.(G, X), if
p is positive definite (positivity is defined with respect to a particular
cone in X), and if p(0) satisfies a certain finiteness condition, then
P, the Fourier transform of p, is in L,(G, X) and the inversion formula
1.1 given for a holds for p. A sharper theorem states that if » is
in L(G, X)n L.(G, X), if p is positive definite, and if there is a
real, finite, regular Borel measure A such that ‘ a(g)p(g)y(dg)“ <
ga[&(v)]x(d"/) for all ¢ in L,(G, C), then $ is in L:E@, X) and 1.1 is

satisfied by p.
Using this theory we extend to infinite dimensions some results
due to Hewitt and Wigner ([7]).

1 For 1= p = o Lp(G, X) is the space of g-measurable functions f mapping G into
1/p
X. For 1=p< o we use the norm ||-||p, where [|fll, = {S HA@ P p(dg)y , and
@
for p = oo we use the norm {|f||-~ which is the (#) essential supremum of |[f(¢g)]| on
G. ||-l| denotes the norm in X.

585
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2. Bochner’s theorem and dominated functions. Let X be a
Banach space, X* the dual of X and X** the dual of X*. For ¢
in X* we denote the action of ® on xe€ X by (x, #). Given a subset
of X* we can define a cone of “positive” elements in X.

DEFINITION 2.1. Let @ be a subset of X*. The subset K, of X
given by

(2.2) K,={zeX: (x,?) = 0 for all pc @}

is called the cone determined by @.

Sometimes we write simply K if @ is fixed by the context. X,
is the set of “positive” elements.

Let G be a o-finite locally compact abelian group with Haar
measure ¢ and let G be its dual group with Haar measure m.

DEFINITION 2.3. Let p be a map of G into X. Then p is @-
positive definite if it is measurable and if

2.4) S0 S n(0(Gs — gu), P) Z 0

n=1 m=1

for any integer N, any ¢, -+-,cy in C, any ¢, --+, g5 in G, and all
@ in @. If p is in L (G, X) the p is integrally @-positive definite if

2.5) (1.1, a@a@inte - rdpap, #) = 0
GJG
for all ¢ in L,(G, C) and all ¢ in 9.
Next we impose a condition which relates @ to the topology of X.

DEFINITION 2.6. The family @ is full if there is a p >0 such
that

(2.7) lle|| < osup{|(z, ?)|/llP|l: e 0}

for all 2 in X.

The following two propositions examine the relationship between
the two notions of positive-definiteness.

PROPOSITION 2.8. If @ is full and p is @-positive definite then
p ts in L,(G, X) and p(0) is in K,.

Proof. It is readily shown that for g in G, ® in @, |(p(9), P)| =
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(p(0), #) so that [|p(g) [l = ol p(0) |l

ProposiTION 2.9. Let p be in L.(G, X) such that one version of
P 1s wX-continuous.t Then p is @-positive definite iff p is integrally
@-positive definite.

Proof. See [4] or [6].

We shall see shortly (Corollary 2.15) that all those elements of
L.(G, X) of interest to us have the continuity required in Proposition
2.9.

Next we recall some results from measure theory. Let S be a
locally compact topological space and let X(S) be the Borel field of S
(i.e. the smallest o-field containing the closed sets of S).

DEFINITION 2.10. A vector measure v is a weakly countably addi-
tive set function defined on X'(S) and taking values in X. v is weakly
regular if the scalar measures (v(.), ®) are regular® for all @ in X*.
v is @-positive if W(E), ®) = 0 for all ® in @ and K in 3(S).

DeriniTION 2.11. A set function v** mapping 2(S) into X** is
weak-*-regular if (@, v**(.)) is a regular scalar measure for all ¢ in
X*. v** is O@-positive if (¢, v**(E)) = 0 for all ¢ in @, E in X(S).

If vy is a vector measure we denote its variation on a measurable
set E by |[|v|[(F) and its semi-variation by |v|(E) ([2], [1]). The
following theorem, an extension of Bochner’s theorem, is essential to
our work. The proof is given in [4]. We assume @ is full.

THEOREM 2.12. (A) If v is a weakly regular @-positive wvector
measure defined on 2(G) and if

(2.13) plg) = |, (g, W¥(d)

then p is an integrally @-positive definite element of L.(G, X).

B) If p is an integrally @-positive definite element of L.(G, X),
then there is a set function v** mapping 2(@) wnto X** such that
(i) v** is weak-*-regular, D-positive with finite semi-variation and (ii)

(2.14) (0(0), 9) = |, 9, 7)(@, »**(@n)

for all @ in X* and almost all g in G.

2 The mapping f of G into X is wX-continuous if it is continuous when the weak
topology is imposed on X. G retains its usual topology.

8 A scalar measure 2 is regular if, given ¢ > 0 and E€ 3(S) with || 2| (E) < oo (i.e.
2 has finite variation on E), then there is a compact K <« E and an open O O E such
that || 2]1(0 — K) <.
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COROLLARY 2.15. If p is an integrally @-positive definite element
of L.(G, X) then one version of p is wX-continuous. If p is given
by 2.13, where v is a weakly regular @-positive vector measure defined
on % (@), then p is a continuous map of G into X.

Proof. This follows from the relevant regularity. See also [6].

With the aid of Theorem 2.12 we could prove a useful inversion
theorem. However, a different version of Bochner’s theorem will allow
us to establish a sharper theorem. We require first the following.

DEFINITION 2.16. p in L.(G, X) is dominated if there exists a
finite, regular, positive Borel measure A, such that

.17 |1, a@p)an)|| = |, 1ae an

for all & in L,(G, C), where & is the Fourier transform of «, i.e.
ay) = S (9, Ma(g)p{dg). If BT is the set of nonnegative real numbers,
(e

we have

DErFINITION 2.18. Let @ be a subset of X. Assume there is a
function @, mapping K, into E* U {cc} in a linear manner such that
@, is uniformly positive on K,, i.e. there exists & > 0 such that
k(x, 9 = ||z]] for all © in K,. Furthermore assume there are at
most countable sequences {¢;} in R* and {®;} in @ such that (z, ) =
e ei(x, ;) for all z in K,. Then we say that the pair (@, X) is
admisgsible. We let K, = {v e K,: (z, ;) < =}

LEMmA 2.19. If (@, X) is admaissible, if @ is full, and if pe
LG, X) s integrally @-positive definite with p(0) in K,, then p is
dominated.

In this lemma it is assumed we are talking about the wX-
continuous version of p(+) (Corollary 2.15).

Proof. Let (@) :g al(g)p(g)pu(dg) for all a in LG, C), then
(w(a), P) = gac?(“/)@, v**(da“/)) for some weak-*-regular, @-positive set
function y** given by Theorem 2.12. We can actually define +(-)
mapping C,(6)* into X by (#(f), @) = Séf(“/)@, v**(dy)).5 Then 4 is a

4 Co(é) is the space of continuous functions mapping G into C, which vanish at oo
if G is only locally compact. . .

5 For « in Li(G, C), qf(&) =yP(@eX. As {&4€Cy(G): a€ Li(G, C)} is dense in Cy(G),
and as "5/’; is continuous, it can be extended uniquely, with range in X.
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bounded linear map, |[F(f) [l < [I £ [l |v**|(G)-

If fis in C,(G) then f = f, — f, + if, — if, where f; is in Cy(G),
fi(v) = 0, and each pair of functions (f}, f2), (f;, f.) has disjoint support.
Hence fi(v) < |f() |, and ¥(f) is in K, so that || (f:) || = k(W (f3), o) =
b 5 (), 25) = b 35 ¢; | Fi(0)(@,, v**(@v). Consider now the set
function ) given by ME) = X2, ¢i(p;, v**(R)), E € 3(@. Then ME)=0
for all £ in 2‘(@), and also \ is additive. Moreover ME) < (p(0), @) <
o as p(0) is in K,.

A is countably additive because MU; E;) = 3. S ¢i(@:, V¥ (E)) =
S O (P, V¥X(EG)) = D ME)), if the E; are disjoint (note that ¢;(@;,
V**(H;)) = 0 for all 4,5). Also A is regular, for given ¢ >0 and E
in 3(G), there is a number N such that 3%, c:(®;, v**(G)) < /2 and
there is a compact KC E and an open O D E such that (@;, v**(0 —
K)) < ¢/2Ne¢;,1=1,2, -+, N. Hence MO — K) < e.

Then || () || < Stos 190 || < * e | Ainar < 4k |, 170 [dn. Tt

follows that if ' = 4k\ then ||4(@) ] < g la(v)|d\. This establishes
G
the lemma.
We can now state the alternate version of Bochner’s theorem.
Assume @ is full and countable

THEOREM 2.20. 7 s a dominated, integrally @-positive definite
element of L.(G, X) 7,12” there ts a weakly regular @-positive vector
measure vy mapping X(G) into X such that v has finite variation, i.e.
21| (G) < oo, and such that for any ® in X*,

@.21) @@, ?) = |, @ N, 2, a.e.g.

For the proof see [4]. Countability of @ is not required for the
only if part.

3. Inversion theorems. If pe L, (G-X) we recall that the
Fourier transform of p is given by

(3.1 p) = | @ Mw(@pdg) -

For convenience we let &= {pe L.(G, X): p is integrally @-positive
definite} and &#, = (pe F: p is dominated}. We recall that if pe F
then p is wX-continuous (Corollary 2.15). If (@, X) is admissible then
7, is the set of functions p mapping G into X such that p is 0wX-
continuous and such that »(0) is in K, where K, is defined in 2.18.

ProPOSITION 38.2. (A) If pespan {L,(G, X)N F} and if P
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span {@} then (P(-), @)eLl(é, C) az@d (B) if the Haar measure of G
18 fized then the Haar measure of G can be so normalized that

(33 (), ?) = |, @, VB, P)m(@)
is valid for all p e span {L,(G, X) N &} and all ¢ € span {D}.

Proof. It is evident the results need only hold for p € L(G, X) N
Fped. But this follows from the scalar inversion theorem ([10],
p. 22).

A Dbetter result is the following.

THEOREM 3.4. Assume @ is fyll and G is o-finite. (A) If pe
span {L(G, X) N &} then pe L(G, X), and (B) with ¢ fived, m can
be so normalized that for each ¢ in X*

(3.5) (0(g), P) = (g (g, V)ﬁ(v)m(dv)gv) a e g.

If @ is countable or if p is continuous (3.5) becomes

(3.6) plg) = SG (g, V) D(v)m(d) a. e. g.

Proof. Again we need only prove the results for p in L,(G, X) N
Gy If pisin L,(G, X) then % is in C (G X), the space of continuous
functions mapping G into X, which vanish at infinity if G is only
Iocally compact but not compact. As p is measurable and G is o-
finite, P is essentially separably valued, and hence is measurable and
a member of L.(G, X).

As p is in &7, then by Theorem 2.20 there is a weakly regular
O-positive vector measure v with finite variation such that for any @
in @

(0(9), P) = g (9, (@), P) , a. e. g.
(3.7) ¢
= |, @, @, Pym@n

by Proposition 3.2. As both integrals are continuous, the equality
hold for all g. It follows, [10], that

O(E), 9) = |6, Pym@n

= (|, oermi@), »)
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if m(E) < oo, as P is bounded. Since @ is full, we have

w(B) = | pym@

if m(E) < . As P is in Co(@, X) given n these exists a compact
set K, such that ||p(7)]| < 1/n if v is in G — K,. Let y,(-) be the
indicator function of K,. Then

tim {11 2.)567) | m(@)

= lim SK 1 5() || m(dv)
= lim || | (K.)
= [ [[(@) < .

Also || %.(MB™) || 111 $() || for each v in G. Then by the monotone
convergence theorem

lim | 11560 [ m(@) = [, 1150 | mi@) < 11» 1@ -

A
G

Hence 9 is in L,(G, X), and for all measurable sets E,

w8 = | seyman .

Since @ is full (3.5) now follows from (3.7).

If p is continuous, the set of measure zero where (3.5) does not
hold is empty and (8.6) follows. If @ is countable, the union of these
null sets (one for each @ in @) is still a null set and again (3.6)
holds.

COROLLARY 3.8. Assume @ is full, G is o-finite, and (@, X) s
admissible.

(A) If p is in span {L(G, X) N F N T3} then P is in LG, X).

(B) If pis fized, m can be so normalized that for each ® in X*
(3.5) holds. If @ is countable or if p is continuous then (3.6) holds.

Proof. Apply Lemma 2.19 and Theorem 3.4.

4. The Plancherel theorem. As usual this theorem is set in
a Hilbert space, and so we must first develop the necessary structure.
Assume now that X is a Banach algebra with continuous involution

€ — x*.

DEFINITION 4.1. The triplet (9, X, X,) is strongly admissible if
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(i) (9, X) is admissible, (i), X, is a non-trivial subspace of X such
that za* is in K® for all # in X,, and (iii) there exists %, > 0 such
that if € X, then

(4.2) ky||wa* || = |2 |,
We note that 4.2 is satisfied if X is a C*-algebra. Now we have

ProposiTiON 4.3. If X is a Banach algebra and if (@, X, X,) is
strongly admissible then X, is a Hilbert space under the morm |-},
where || |[; = <z, x), and {(x, y), = (xy*, Py).

Proof. @, is only defined on K and we do not know that if
z,ye X, then zy* e K. However we can extend @, by setting (zy*,
@) = 3.2, ei(ey*, ;) where {c;}, {®;} define @, on K. Then |{z, ¥),| =
[(@y*, )| = | 2 clwy™, ) | £ 207 cwa®, @) *(yy*, ®:)'* where the last
inequality follows because @, is a positive functional. Hence we can
define {z, y), for z, ye X, and [<z, ¥Do| = ||z ||| ¥|lo» It follows from
2.18 and 4.2 that kk,|[{z|}} = ||«]|* and that |||, is a norm.

If {z,} is Cauchy in [|-]|, then it is Cauchy in ||-||, so , — v € X.
As K is closed then zx* ¢ K. Also {z,} is bounded in ||-||, because it
is Cauchy, so 3.2, ¢;(w,.x}, ;) < M, hence Xz, ci(xa*, @) < M or xe€
K,. Choose m(c) such that if n, m > m(e) then ||z, — x, |y < é. Then
Z?’:l Ci([x - zlcm][x - xml*s @i) = limn—m 27{\;1 c-i([xn - {l}m] [xn - wm]*y q)i) =
lim sup, .. > e[, — @u][e. — 2.]%, P:) < € so that for m > m(e),
e — 2./l < & or X, is a Hilbert space.

If X is a Banach algebra and G is o-finite, then L,(G, X) is also
a Banach algebra ([5]). If X has the involution z — z*, then we can
define an involution on L,(G, X) as p — p* where p*(g) = p(—g).*

THEOREM 4.4. If G is o-finite, X is a Banach algebra with con-
tinuous involution, @ is a full subset of X* and (9, X, X,) is strongly
admissible, then (i) if {e.} ts an orthonormal basis for X, and there
exists k, such that |{z, e, < k. ||z|| for xe X, and all a, then the
Fourier transform maps L(G, X) N Ly(G, X,) onto a dense subset of
LG, X)), (i) for q, re L(G, X) N L(G, X))

@.5) |, 2@r@)de) = |, amicrmian ,

(iii) for q, re L\(G, X) N Ly(G, X,)

*.6) @1 =<,

where (g, 7> = | (a(@), (@)e(dg) and <3, 7 = | <a(), F)m(d) -

6 Ky is defined in 2.18.
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Proof. We shall put

el = la@ ixd)  and gl ={] a0 @}

for g € L(G, X) N Ly(G, X,). Let p(9) = (g*¢*)(9). As ge L\(G, X) so
is p with ||pl = ||qlii. It can also be shown that pe C(G, X,) as

qe LG, X). Now p(0) = | a(@)al0)*dg) ¢ K 50

@0, 2 = (|, 4@ n(da), )

| (@@a@*, )pdo)

I
Ms

1

-
]

Il

(9(9)9(9)*, Po)te(dg)

Q

G

|, l120) 1 o)
lall< e

using the monotone convergence theorem. Hence pec L,(G, X) N T
Now C\(G, X,) c Cy(G, X) so pe L.(G, X). Also

I, | aa@inte — 9 uagpa)
= | [, a@ato — 900 |||, atw)a@ — 97)eden |
= | 2@ pdo)
using the Fubini and Tonelli theorems with e L(G, C), where ¢’ =

axq € L,(G, X,) ([5]) so ¢'(g) e X, a.e. or ¢'(9)qd'(g)* € K, a.e. Hence if
@ e ® then

(|, 7@0@rde, ?) = | @@, P)udg) =0

or peE <~
Consequently Corollary 3.8 yields »(g) = SA(g, 7p(v)m(dv). Then
G

> [lglli = <g, ) = 3 e:(p(0), )
= S|, 00, pomian)
= |, 60, pom@n = <3, 8.

We have used the monotone convergence theorem again. Hence the
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Fourier transform maps into LZ(CA}, X). By the usual expansion
{g, ¥y =<4, 7). This establishes (iii).

Moreover | a(9)a()*(dg) = p(0) = |, BOYm(@) = |, a0 a@)*m(@n.
Also if z, y are elements of a Banach algebra with involution then

day* = (@ + Y + ¥)* — @ — »)& — Y*

4.7 . . . : . .
+ i@ + ) (@ + w)* — e — iy — iy)*

so that (ii) is also proved.

We need only show that Q={q € L,(G, X,): ¢ in L(G, X) N L(G, X,)}
is dense in L,(@G, X,). As o is translation invariant so is L,(G, X) N
L,(G, X,) and hence @ is invariant under multiplication by (g, ) for
any geG. If re Lz(é, K) and <{q,r>=0 for all geQ, then
| @7, PG, ym(dn) = 0 for all geQ and geG. As (@(-)r()*,
@) € L(G, C) it follows that (¢(v)r(7)*, ®;) = 0 a.e. for every ge Q, or
{g(), (7)) = 0 a.e. As L,(G, X) N Ly(G, X,) is invariant under multi-
plication by (-, 7), Y€ G, then Q is invariant under translation.” Hence
to every 7, € G there corresponds ¢, € Q such that g,(v,) = 0, 50 ¢,(7) = 0
in a neighborhood of v, as ¢, is continuous. If {e,} is the basis of X,
mentioned in the statement of part (i), then q,(+) = D« ¢.(-)e, so there
exists a, such that g, (v) # 0 in a neighborhood of 7. If g, () = p(-)
then p = >, .. and as pe L,(G, X,), p. € L, (G, C). By hypothesis
1<%, a0 | = Kl @ || 80 Do € Li(G, C) and D7) = qu(7). Hence p,(-)e. €
L(G, X) N LG, X;) for any a and P.(-)e. = ¢a,(-)e. € Q. Since for
each 7 in a neighborhood of 7, {g.,(7)e.}. forms a complete set in X,,
and since 0 = {qu,(Y)ea, 7(7))0, then 7(v) = 0 in a neighborhood of v,
But v, was arbitrary so » = 0, or @ is orthogonal only to 0 in Lz(@—, X0,
a Hilbert space. Hence @ is dense in Lz(@, X,). This completes the
proof.

COROLLARY 4.8. Under the assumptions of the theorem the Fourier

transform can be extended im a unique manner to an isometry of
LG, X,) onto LG, X,).

Proof. We need only show L,(G, X)N L(G, X,} is dense in L,(G,
X,). But C(G, X,)® is dense in L,(G, X,) ([6]). Hence if fe L,(G, X))
then there exists {f.}i° < CAG, X,) N Ly(G, X,) such that ||f, — f]l.— 0.
Then f,eC,(G, X) and f, is measurable so f, € L(G, X).

REMARK. The equality (4.5) holds for all q, r € L,(G, X;). More-
over, all results are correct assuming only that @, is an arbitrary

7 By this we mean that f;, is in @ for any yoin G if fis in @ and f7,(7) = S + 1o)-
8 Co(G, Xo) denotes the set of functions in Co(G, Xo) having compact support.
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linear combination of @,’s, i.e. @, = Diics CaPu-

5., Examples. Here we give some examples of admissible pairs
and strongly admissible triplets.

ExampPLE 5.1. Let X = L(]0,1], C) so X is weakly complete,
and let @ consist of elements ®; such that

(5.2) @ ?) = | L@o®d  aecX

where y,(-) is the indicator function of one of a countable collection
of sets {E;} dense in X([0, 1]) under the usual Hausdorff metric.
Assume E, =[0,1]. Then it can be shown ([4], [6]) that @ is full
and that K is the cone of nonnegative (a.e.) functions. Let (z, @) =

(x, @) = Slx(s)ds = ||z, for xe K. Hence (&, X) is admissible and
0
K, = K.

If p is in &7 then p(0) is in K = K, by Propositions 2.8 and 2.9
and by Corollary 2.15. So p€.7, and the inversiAon theorem states
that if pesp{L(G, L]0, 1], C)) N &} then p e L\(G, L]0, 1], C)) and
p(0) = |, (0, VD)),

The author does not know of any nontrivial subspace X, which
would make (@, X, X,) strongly admissible.

ExaMPLE 5.3. Let X = H, a separable Hilbert space with a fixed
orthonormal basis {e;}. Let H, be the set of elements of H with all
but a finite number of components zero, with nonzero components
being real, rational nonnegative, and with norm less than or equal
to one. Then @ = H, is full ([4], [6]) and countable and K, = {he
H:h,=0).° Let (h,9) =<h,e>,t=1,2,--- and @, = > ®P;. Then
@, maps K into [0, =], and for % in K

(h, P)* = (Xh:)* = Zhi = |[h|F

so that (@, H) is admissible and K, = {he K: 37 h; < o}.

H becomes a Banach algebra if we define hk = X7 hke,.. Let
h* = She;. For h in H hh* is in K and (hh*, @) = 3 hih; = || b
We do not have k||hh*|| = ||| for some k& >0, but we do have
2], = ||k]| which is sufficient to show that X, = H. Hence (9, H, H)
is “strongly admissible,” and the Plancherel theorem applies. Note
that the condition |{k, ¢;>| < ||h|| also holds.

ExaAmpPLE 54. Let X = <~ (H, H), the linear bounded operators
9 hi =<h, e
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mapping the separable Hilbert space H into itself. Let H, be a
countable dense subset of the unit ball in H and let @ = {pe X*:
(T, ) = {Th, hy, Te &~ (H, H), he Hy}. Let {e;} also be in H, for
some orthonormal basis {e;}, Then @ is full and countable and K, is
the cone of positive operators ([4] or [6]). Let (T, ) = 3.7 (Te;, ¢,
So @, = 37 @; is the trace, where (T, ®;) = {Te;, ¢;>. Then @,: K —
[0, o1, (T, ) = tr T = || T|| if T is positive. Hence (9, ¥ (H, H)) is
admissible and K, is the cone of positive operators of finite trace and
so a subset of the trace class.

We can see that in one case the condition pe 7, is necessary
for the inversion theorem to hold. Let G be the circle group so that
G is countable. Label its elements v,, v, -+, and let the set function
v be given by

(5.5) <v({’\/n})eu ej> = pnan’ian.f’m ?:y jy n i 13 2, et

where o« > M = p, = 0. v can be extended to a countably additive
measure of finite semi-variation in the obvious way. Let » be given
by

(5.6) p(t) = 3 () -

Then p is in & (Theorem 2.12 (A)) and p is in L,(G, X) because G
is compact and [[p()|| < M. If p is to be in Ll(@, X) then Hv]](@)
must be finite or > p, = tr p(0) < .

Finally let X, = _#7 the Hilbert-Schmidt operators ([3]). Then
for T in .7, TT* is in the trace class and is positive so that TT*
is in K,. Also <(H, H) is a C*-algebra so (9, < (H, H), .+") is
strongly admissible. A basis for .7~ is given by {T;;} where {T;e,,
ey = 0uli, b, 0 =1,2, -«+. Then [{T, T, = |{Te;, e;>| <||T||, and
the condition in (i) of Theorem 4.4 also holds.

6. Fourier transforms on representations. In this section we
apply the preceding theory to extend the inversion theorem and
Plancherel’s theorem to “Fourier transforms” defined for unitary
representations in a separable Hilbert space. The case where H is
finite dimensional has been treated by Hewitt and Wigner [7]. Let
H be a separable complex Hilbert space, and let U(-) be a continuous
unitary representation of G in ¥ (H, H), i.e. Ulg + ¢') = U(g) U(g"),
U(0) = I, and V is a continuous mapping of G into the unitary operators
on H. It follows [9] that there exists a sequence {v;} of characters,
and a resolution {z;} of the identity in < (H, H), such that

10 §y; is the Kronecker delta.
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(6.1) Ulg) = 3. (g, )7, .

(The summation is at most countable). If p is in L(G, & (H, H))
define the transform

6.2 P(U) = |, o) U(—g)re(dg) -

We shall first consider the question of invertibility of this transform.
As we shall see, it suffices to know H(U) for all U corresponding to
a fixed resolution {r;}.

From now on consider {r,} fixed, and let us denote the set of
subseripts by S. Then S is at most countable, 3i;.s7; = I. Define
B = lies G,, where G, =G for all i, with the product topology.
Then <Z can be considered as the set of all representations corre-
sponding to {r;}, if we put
(6.5) ”"‘*"’i;é (+, v, = U(+)
whenever r = {v;} € S

Let us now introduce a measure on <% Choose a symmetric
neighborhood A4 of 0 in G such that the closure of A4 is compact. Hence
0 < m(A) < oo. Assume m is normalized (relative to g) such that
the inversion theorem holds. Now normalize ¢ such that m(4) = 1.
Note that if G is discrete and A = G, or if G is compact and A = {0},

then the usual normalizations of ¢ and m occur. For @ in G and E
in Z(G) define

m(E) = m[EN (4 + a)] .

Then m.(-) is a probability measure on G, and by the Kolmogorov
extension theorem, there exists a unique probability measure

MG = My X My X +++
on #. We set #° = [[jes-ss G;. For E in 3(<7%) write
mi(B) = | Lot rymz@n)
where it is understood we are integrating out -,.
Now assume G is o-finite and @ is a full, countable subset of
Z(H, H)*. With the previous notation we have
THEOREM 6.4. If p is in span {L,(G, << (H, H)) N %}, then

(6.5 p@) = |, | 5(0) Ulgymz@nym(da) .
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Proof. x; is a projection on the subspace H; of H. Moreover if
we consider the equivalent spectral representation ([9], p. 247), then
the subspaces are mutually orthogonal. Let us write f(a) = p(a)(g, a),
and fi(r) = f(v;) when » = {v)}. Then for n finite, G and % in H,

131
f

-,

<
=

<a>mﬁ<da>]f I

so that

12 remzan| = || femda)|
= |, 1@l zass@m(da) .
As P is in L, and as m(4) = 1, then

I, 1, 1@ 20 @m@aymds)

= D] -
Hence
Z SA g fHrymz(dr)ym{dB)r;
(6.6) fex Jo Jo
=15 remsanzmas .
Moreover
Sﬁ SHryms{dr)m;
= Sﬁ PO)(g, vomz(dr)w;
= Sﬂ Sgp(g’)(g — ¢, v pdgyms(dr)x;
and

’)(g - g,y 7%)7271]1“(’

= l[p(g
< @)



THE INVERSION THEOREM AND PLANCHEREL’S THEOREM 599

as |(g,7)| =1 and the z;’s are orthogonal projections. As pisin L,,
and as my(<Z) = 1, then

5 | fmymz@ns,

N

6.7)
- Sﬁ SG i;s‘ 2')Ng — o', v)mp(dg"ymy(dr) .

On the other hand
POV = | ple) U(—g)pdg) U(o)
6.8) =, 2" Utg - 9)ptde)
= SG plg) > (0 — ¢, rmyudy’) -

Hence we have shown that for each g, g, (U)U(g) is integrable
my(dr), and S P(U) Ul(g)mz(dr) is integrable m(dg), so that 6.5 makes

sense.
Finally

-

|, s v@ms@nmag)

= 3\, | rome@mass.

p A
€8 JG

=511 s, @mi@nmaondsn,

p A
te§ JG

= 51, |, 2@, amidaymasz,

= 3|, |, 2@ — 0@, @midemdar,

= 5, s, @m@ar,
= 5 90,
= p(g) -

We have made use of 6.6, 6.7, 6.8, and the inversion theorem. The
theorem is established.
Now consider the setting of Example 5.4.

THEOREM 6.9. If p and q are in LG, F[H, H)] N L(G, .+"),
then

|, P@a@*edo) = |, | _p()aw) mz@rmda)

23
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Proof. The proof is similar to the previous one except that
Theorem 4.4 is used.

Further applications of this theory can be found in [6].
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