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Let X be a completely regular Hausdorff space. Char-
acterizations are obtained ovf the c-realcompact spaces lying
between X and its Stone-Cech compactification 58X, and of
those spaces lying between X and its minimal c-realcompact
extension #X. These results are used to derive several neces-
sary and sufficient conditions for the equality EwX) = vE(X)
to hold, where E(X) is the absolute of X and vX is the
Hewitt realcompactifioation of X.

A subset A of a topological space X is called regular closed provided
A = clyintyA. The complement of a regular closed set is said to be
regular open. The symbol R(X) will denote the family of all regular
closed subsets of X. It is well known that R(X) is a complete Boolean
algebra under the algebraic operations which are set out explicitly in
[11, Theorem 1.1}. In particular, we will recall for our needs here
that A A B = clyint,(A N B) defines the meet of 4, B in R(X) and
if (4.). is a family of regular closed sets then cl, |, A, is regular closed;
it is the join of (A4,), in R(X). A filterbase in R(X) is a subfamily
F < R(X) such that ¢ FFand A A Be F for all A, Be F. A filterbase
F is called a filter if Ae F and Be R(X) with A & B implies Be F.
If X is dense in a space T then one may easily show that the map
A —cl A is a Boolean algebra isomorphism of R(X) with R(T).

For a real-valued function f on X the upper limit of f at 2¢€ X
is defined as follows:

f*(@) = inf {sup {f(y) |y € U}|Ue N(z)} ,

where N(x) is the neighborhood system at x. The lower limit of f
at x is defined dually and is denoted by f.(x). Then f* and f, are
extended real-valued functions on X and are respectively upper semi-
continuous (usc) and lower semicontinuous (Isc). A real-valued func-
tion is called normal usc if (f,)* = f at each point of X. Dually, f
is normal lsc if (f*), = f at each point of X.

Dilworth initiated the study of bounded normal use functions and
used them to obtain the Dedekind-MacNeille completion of the lattice
of bounded continuous functions on X. The following result from [1]
which is valid in the present setting will be used below without specific
reference.

THEOREM. An usc function f on X is normal off for each real
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number \, {x|f(x) > N} is a union of regular closed sets.

A corollary of the Theorem is that the characteristic function of
a regular closed (open) set is normal usc (Isc).

Some new properties of normal functions have been given in [7].
We will recall two of these results.

LeMMA. Two normal usc (Isc) functions which agree on a dense
subset of X are equal everywhere on X.

LEMMA. If f is normal usc on X and X is dense in T then f
has a unique (extended real-valued) normal usc extension f to T given
by the expression

F@) = inf {sup {f{®) lye UN X}|Ue N()}, e T .
If f is bounded on X then f is bounded on T.

Unless stated otherwise, the space X will always be completely
regular and Hausdorff. We refer the reader to [6] for general back-
ground, notation and terminology.

The authors would like to thank Professor John Mack for helpful
correspondence on the subject treated herein.

1. The c-realcompact extensions of a space. In [2, p. 576] a
space is called c-realcompact if for every point p € 83X — X there exists
a normal lsc function f on RX with f >0 on X and f(p) =0. By
using the characterization of realcompact spaces in [4, p. 152] it is
clear that every realcompact space is c-realcompact. Also, one can
easily show that if (Y,). is a family of c-realcompact spaces with
X< Y, < BX for each a, then M, Y, is c-realcompact.

LEMMA 1.1. A space X is c-realcompact iff for every point pE
BX — X there exists a decreasing sequence (A,)n.x tn R(BX) with pe
N. 4, while N, (4. N X) = @.

Proof. Suppose that X is c-realcompact. Choose pe 8X — X and
let f be a normal Isc function with f > 0 on X and f(p) = 0. Then
B, = {x|f(x) < 1/n} is a union of regular closed sets. Hence, 4, =
clsy B, is regular closed and A4,,,& A, for each n. Since 4,<S
{z|f(®) < 1/n} we have that M), (4, N X) = @ while f(p) = 0 implies
that pe . 4,. Conversely let pe X — X and let (4,)..x be a
decreasing sequence of regular closed sets with the required properties.
Define f,(x) =1 for e X — A, and f,(x) = 0 forzc A,. Then each
f. is normal Isc and hence f = >, 27"f, is normal lsc with f(p) =0
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and f >0 on X.

A Hausdorff space is called almost realcompact [5] if for every
ultrafilter . of open sets with .. clz0 = & there exists a sequence
0,), in & such that ), cl0, = @. For each such &, the family
&7 = {cl;0|/0e &} is an ultrafilter in the Boolean algebra R(X) and
conversely, given an ultrafilter . in R(X), the family & ={V: V=
inty V and int, AS V for some Aec .9} is an ultrafilter of open sets
in X. This information is enough to prove the following:

THEOREM 1.2. A space X 1s almost realcompact iff every ultra-
filter in R(X) with the countable intersection property converges.

The following result appears in [2, p. 577] but we have an alternate
proof.

THEOREM 1.3. Every completely regular Hausdorfl almost real-
compact space is c~realcompact.

Proof. Let X be almost realcompact and choose pepX — X.
Then there exists an ultrafilter .o in R(X) with {p} = MNi.. clsx 4.
Thus, N4. A = @ and by Theorem 1.2 there is a countable subfamily
(4.)nex of &7 (which can be chosen to be decreasing) with M, 4., = @.
Then, B, = cl;y 4,¢ R(BX) and (B,),.y is decreasing with p<c ), B..
However, N. (B, N X) = N.4, = @ and by Lemma 1.1 we are done.

An example of an almost realcompact space which is not realcom-
pact is given in [3, p. 350]. The space X constructed in the example
given on page 240 of [9] is c-realcompact but not almost realcompact.

By a c-realcompact extension of X we will mean any c-realcompact
space Y with X& Y < gX. Our immediate aim is to identify all c-
realcompact extensions of X.

A real-valued function f is locally bounded at % provided f is
bounded on some neighbourhood of x. Let LN(X) denote the set of
all normal usc functions which are locally bounded at each point of
X. For feLN(X), let f denote the unique (extended real-valued)
normal extension of f to sX. Write W, = {x ¢ 8X|f is locally bounded
at #}. Now for each » in X there is an open neighbourhood U of «
on which f is bounded. If V is open in gX with U= VN X then
the definition of f shows that f is bounded on V. Hence, X = W, <
BX and BW,; = BX. Further, W, is open in X so that W, is locally
compact.

LEMMA 1.4. For each fe LN(X), W, ts c-realcompact.

Proof. Consider pe X — W,. Casel: If f(p) = c then B, =
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{z|f(x) > n} is a union of regular closed sets and so A, = cl,;B, is
regular closed. Thus, (4,),.~ is a decreasing sequence of regular closed
sets with pe ), A4,. However, f is locally bounded at each point of
W, and this implies that N.(4, N W, = @. By Lemma 1.1 we have
that W, is c-realcompact. Case 2: If f(p) < o then f (being usc)
is locally bounded above at p. Thus, f is not locally bounded below
at p which implies that peecly, {x|f(x) < A}, for all real n. The set
0, = {x|f(x) < n} is an intersection of regular open sets and has non-
void interior so that A,=cl;;int;; O, is nonempty regular closed. Now
(A,),.y is decreasing and pe A, for each n. Finally, N.(4,.N W)=
as before and we apply Lemma 1.1 to obtain the result.

LemMMmA 1.5. If Y is c-realcompact with XS Y S X then for
each point pe BX — Y there is fe LN(X) with YS W, and p¢ W,.

Proof. By Lemma 1.1 there exists a decreasing sequence (A,),.x
in R(gX) with peN.4,. while N.(4.NY)= @. Define g,(x) =1
for x€ A, and ¢g,(x) = 0 for xe X — A,. Then, g, is normal usc on
BX and so is g = >,27"g,. There exists an order-preserving homeo-
morphism A: [0, 1] — [0, ] and it follows that hog = f is normal usc.
Now f is locally bounded at each point in Y and hence f|X = fe
LN(X). However, f(p) = +o so that pg W,.

We now have the following situation: For any family & of
locally bounded normal usc functions on X, the space {);.- W, is e-
realcompact. Conversely, Lemma 1.5 shows that any c-realcompact
spaces Y with X Y S B8X can be written in this form, where & =
{fe LN(X)|YSW,. This proves the following analogue of the de-
scription of the realcompact spaces between X and gX in [6, 8B].

THEOREM 1.6. The c-realcompact extensions of X are precisely
the spaces ;e Wy, for some indexing set # = LN(X).

The following corollary also appears in [2, p. 578].

COROLLARY 1.7. (a) There exists a minimal c-realcompact exten-
ston of X, namely uX = Nservxr Wy (b) uX is the largest subspace
of BX to which every fumnction in LN(X) has a locally bounded normal
usc extension.

The space X will be called the c¢-realcompactification of X. Thus,
X is c-realcompact iff X = uX. The equality LN(X) = LNuX) will
indicate that every function f in LN(X) can be uniquely extended
to a function f* in LNuX).
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Recall that LN(X) is a lattice-ordered ring [8]. The order in
LN(X) is defined pointwise. However LN(X) is not closed under
pointwise ring operations and we will therefore outline the definition
of sum for f and g in LN(X): Let f,§ denote their normal exten-
sions to 8X. There exists a dense G, set W< X on which f and
g are both continuous and real-valued [7]. If U= WNnW,N W, then
(f1U + §|U) = u is continuous on U. Let h = #|X. It follows that
# is locally bounded on W,N W, so that he LN(X) defines the sum
of f and g uniquely. The other operations are defined analogously
and under these LN(X) becomes a ring. It is evident from these
definitions that the following result holds.

THEOREM 1.8. The mapping f — f* is an isomorphism of the
lattice-ordered rings LN(X) and LNuX).

The next theorem gives the analogue of 8.6 in [6].

THEOREM 1.9. Let X& TS BX. The following conditions are
equivalent.

(a) X T<SuX.

(b) Given a decreasing sequence (A,)n.x 1 R(X), then

C]-TnnAn = nn CIT An ]

Proof. (a) implies (b): Assume that there is a decreasing
sequence (A4,),.y in R(X) and a point pe N,cl; 4, — cl; N, A4,. Let
B,=cl;x A, so that A, = B,N X and cl; 4, = B, N T. There is a
regular closed set B in 8X with peint,y B and Bnel;N. 4, = 0.
If K,=B, N B for each n then (K,),.y is a decreasing sequence
in R(BX) with pe N, K, while N.(K,N X) = @. Thus, as in Lemma
1.1, we can find a nonnegative normal Isc function f on gX with
f>0o0n X and f(p) =0. Now XS coz f = {xe 8X|f(x) > 0}, which
is c-realcompact. Hence uX & coz f and p ¢ uX. This contradicts (a).
(b) implies (a): Suppose that pe T and p¢uX. Since uX is c-real-
compact we have a decreasing sequence (B,),.y in R(BX) with pe
N.B, while N.(B,NuX)= @. Then (B,N X),.yr is a decreasing
sequence in R(X) for which (b) is false.

A topological space X is called weak c¢b if each lsc function which
is locally bounded on X is bounded above by a continuous function
Mack and Johnson defined weak c¢b spaces and gave some of their
properties in [9]. In particular, if X is weak ¢b then for each fe
LN(X) there exists ge C(X) with f <g on X.

LemmA 1.10. If X is weak cb and X S Y S uX then Y is weak cb.
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Proof. For any fe LN(Y) we have h = f|X is in LN(X). Thus
there exists ge C(X) with 2 <g¢ and so, if ¢g°e C(vX) denotes the
continuous extension of g to v X we have f < g*| Y.

It is known that X is weak cb implies v.X is weak ¢b [9, p. 239]
but that the converse fails. However, we do have the following:

THEOREM 1.11. X is weak ¢b iff uX s weak cb.

Proof. The proof is a trivial consequence of the Lemma and the
fact that LN(X) = LNuX).

The following result is stated without proof in [2, p. 578].
CorROLLARY 1.12. If X s weak cb then uX = vX.

Proof. uX is c-realcompact and by Theorem 1.11 it is weak c¢b
which implies that it must be realcompact [2, p. 576].

THEOREM 1.13. The following conditions are equivalent:
(a) X 1is pseudocompact
(b) Ewvery function in LN(X) is bounded
() uX=pX.

Proof. (a) implies (b): Each pseudocompact space is weak ¢b [9]
and hence by the corollary we have uX = vX. However, v X = X
[6, 8A] which shows that LN(X) = LN(BX) and we are done, since
every locally bounded function on a compact space is bounded.

(b) implies (c): It is known [8] that every bounded normal usc func-
tion has a bounded extension to 83X which shows that uX = gX.

(c) implies (a): If uX = BX then v X = X and we may apply [6, 8A]
to conclude that X is pseudocompact.

COROLLARY 1.14. A space is compact iff it is both pseudocompact
and c-realcompact.

2. The equality E(vX) = vE(X). The following facts and nota-
tion appear in [11] and will be recalled for our future use. For every
space X, there is an extremally disconnected space FE(X) which can
be mapped onto X by a perfect irreducible mapping. The space E(X)
is unique up to homeomorphism and is called the absolute of X. Let
S denote the Stone space of the Boolean algebra R(8X) and let
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A R(BX) — B(S) be the canonical Boolean algebra isomorphism of
R(BX) with the Boolean algebra B(S) of open-and-closed subsets of
S. There exists a perfect irreducible mapping k: S— gX and we
have k[M(4)] = A for all A in R(8X). Finally, we may identify E(8X)
with S and E(X) with the dense subspace £ [X] of S.

It is well-known that the equality FE(8X) = SE(X) holds for
every X. The search for necessary and sufficient conditions under
which the corresponding equality E(@X) = vE(X) holds may be con-
sidered to be one of the main motivations of the present paper. In
fact the equality does hold for a large class of spaces as we now
proceed to show.

A zero set Z in X is a subset of the form Z = f* (0) for some
feC(X). The symbol 2°(X) will denote collection of all zero sets in
X. The following result is easily established.

LeEMmA 2.1. In an extremally disconnected space, every zero set
18 the intersection of a decreasing sequence of open-and-closed sets and
conversely.

LEMMA 2.2. Given a decreasing sequence (U,),.y of open-and-
closed subsets of E(8X) then E(WX) = vE(X) if N.(U.NEX)) =@
implies N (U, N ELX)) = @.

Proof. By the introductory remarks in this section, we may
identify F(uX) with k “[vX] so that EB(X) & F(X) & E(8X). Also by
[6, 8.13], E(vX) is realcompact and hence vE(X) & F(vX). Now E(X)
is C*-embedded in RE(X)(= E(8X)) and hence Ze 2 (E(X)) iff Z =
Z' N E(X) for some Z'e 2 (E(B3X)). Thus, Lemma 2.1 shows that
Ze Z (VE(X)) iff there is a decreasing sequence (U,),.y of open-and-
closed subsets of E(8X) with Z=N.(U, N vE(X)). By [6, 8.8], vE(X)
can be characterized as that realcompact space Y, E(X) & Y & SE(X)
such that Ze 2°(Y), Z nonvoid, implies ZN E(X)+# @. Thus, vE(X)=
E(@X) iff given a decreasing sequence (U,)..y of open-and-closed sub-
sets of E(BX) we have N (U, N EwX)) = @ implies N.(U, N E(X)) ==
@. The contrapositive of the latter statement gives the result.

We are now in a position to prove two main results which together
provide an answer to the problem stated in the introduction to this
section.

THEOREM 2.3. Given a decreasing sequence (A,),.y n R(BX)
then E(wX) = vE(X) iff N.(4,NX) = @ implies N, (4,NvX) = O.
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Proof. For every decreasing sequence (A4,),.y in R(B3X) there
exists a decreasing sequence (U,), . of open-and-closed subsets of F(53X)
with U, = M4,) for each n, where A is the Boolean algebra isomor-
phism defined above. Then, by Lemma 2.2, E@uX) = vEX) iff
N.(4,) Nk [vX]) # @ implies N.(\(4,) Nk [X]) # @. Also, since
k is onto we have E(@wX) = vE(X) iff k[N MA)] NvX #= @ implies
EINMA) N X = @. Thus, the theorem will hold if E[N.MA,)] =
N.A4,.. To show this, notice that k[N MA.)] S N.EMA4)] = N.4,.
Conversely, take p e .4, and consider .+ ={F¢e R(BX)|pecint;xF}U
(A)nen. It is clear that .+~ is a filterbase in R(8X) and as such
may be embedded in an ultrafilter .o in R(8X). Now .o is a point
in E(BX) and v e MF') for every Fe._#. By the definition of %
[11] we have k(.&7) = p, since .& converges to p. Thus, N, 4. S
k[N .MA4.)] and the proof is complete.

THEOREM 2.4. The following statements are equivalent.
(a) E@wX) = vEX).
(b) Given a decreasing sequence (A,)ney in R(X) then

CIUX n'nA'n = n'nCIUX An

© uX=0vX
@) LN(X)= LNQ@X).

Proof. (b) iff (c): This follows from Theorem 1.9. (c) iff (d):
Apply Theorem 1.8. It is easy to show that (b) implies the condition
in Theorem 2.3 and the method used in the first part of the proof
of Theorem 1.9 shows that the converse holds. Hence, (b) iff (a)
which completes the proof.

It may be mentioned that Theorems 2.3 and 2.4 give conditions
which are both necessary and sufficient for the equality LN(X) =
LN@X) to hold. This answers more fully the question raised in [9,
p. 237] where only necessary conditions were given.

In the remainder of this section we will give an internal charac-
terization of those spaces for which any one of the conditions of Theo-
rem 2.4 is satisfied.

Recall that a family & of subsets of X has the countable inter-
section property (CIP) if N,.F, = @ for each sequence (F',),.y of sets
drawn from .#.

Recall that an ultrafilter .o~ in R(X) converges to pegX if
{P} = N clox A

LeMMA 2.5. The c-realcompactification uX has the following de-
seription: uX = {pe pX|each ultrafilter in R(X) converging to p has
CIP}.
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Proof. Let pe 88X Dbe such that every ultrafilter in R(X) con-
verging to p has CIP and let T be c-realcompact with X & T < gX.
If p¢ T then there is a decreasing sequence (4,),.y in R(8X) with
peN.A,and N. (4, N T)= @. The family {Fe R(gX)|pecint,, F}U
(A,)..y is a filterbase in R(8X) which can be embedded in an ultra-
filter .o in R(BX). Then, {UN X|Ue .o} is an ultrafilter in R(X)
which converges to p but fails to have CIP, contrary to assumption.
Thus p is in every c-realcompact space containing X. Conversely,
given pe BX, suppose there is an ultrafilter .97 in R(X) converging
to p and a sequence (A,)..y in . with N.4, = @. Let B, =
cl[Nr.inty A;]. Then (B,),.5 is decreasing in R(3X) with N.(B.NX)=
@ and pe(),B,. The second part of the proof of Theorem 1.9 may
be used to conclude that p¢uX. Thus, the proof is complete.

Mandelker [10] defines a family & of subsets of X to be stable
provided each fe C(X) is bounded on some member of 5.

LEMMA 2.6. Awn ultrafilter o7 in R(X) is stable iff &7 converges
to a point of vX.

Proof. We modify the proof of Theorem 5.1 in [10]. Let .7 be
an ultrafilter in R(X) and set {p} = Nuco clix 4. If pepX —vX
there exists fe C(X) with f*(p) = - where f* is the extension to
BX of f: X— R* and R* is the one-point compactification of BR. The
set {x e gX | f*(x) e R* — (—mn, n)} is a neighbourhood of p for each n >
0 and hence meets every 4 in 7. It follows that f is unbounded on
every member of .o~ so that %7 is not stable. Conversely, suppose
pevX and choose f € C(X). Now f*(p) is finite and hence there exists
Be R(pX) with peint,y B and f* bounded on B. However, int;y BN
int;y A # @, for all A in .97 and the maximality of %~ implies that
BN X is in . Thus f is bounded on BN X and .7 is stable.

THEOREM 2.7. For any space X, the following are equivalent:
(a) uX =vX
(b) every stable ultrafilter in R(X) has CIP.

Proof. Let uX = vX and suppose that .o is a stable ultrafilter
in R(X). By Lemma 2.6 we have [,c.. cl;x 4 = {p} where peovX.
Thus, peuX and by Lemma ultrafilter .9~ has CIP. Conversely, if
pevX and & is any ultrafilter in R(X) converging to p then .o
is stable by Lemma 2.6 and has CIP by assumption. Thus, Lemma
2.5 implies that pe uX and we are finished.
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