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AMALGAMATING ABELIAN ORDERED GROUPS

Kerra R. PIERCE

Sums, or amalgamations, of two abelian ordered groups
with a subgroup amalgamated are constructed in two ways.
These constructions are used to investigate the structure of
the class of all amalgamations with the given groups and
subgroup fixed, where the class is partially ordered in a
natural way. In particular, necessary and sufficient conditions
are found for there to be (a) exactly one amalgamation, up
to equivalence, and (b) exactly one minimal amalgamation,
up to equivalence.

It is known [5] that the class of abelian (totally) ordered groups
(o-groups) has the amalgamation property. Relying on the injective
property of 7,-groups, the indicated proof is existential in nature,
and yields no information about the amalgamations. In this paper
we present two ways to construct all amalgamations of a subgroup
of two abelian o-groups. For the first way we merely consider a
certain class of homomorphic images of the abelian amalgamated
free product (Theorem 1.2). The technique quickly yields some
general information about the structure of the class of all amalga-
mations of a given subgroup (Corollaries 1.8 and 8.3). The second
way is more specific, involving the existence of certain embeddings
of the groups into a Hahn group (Theorem 2.8). An amalgamation
is called minimal if it admits no o-homomorphisms which are 1 — 1
on the component groups. These turn out to be important because
every amalgamation is a lexicographic extension of a non-essential
group by a minimal amalgamation (Lemma 3.1). In §4 we use the
second construction to determine when there is precisely one minimal
amalgamation (Theorem 4.3), and if there is more than one, how
many there are (Theorem 4.6). In addition, we determine under what
conditions there is exactly one amalgamation (Theorem 4.4).

The possibility exists that these techiques can be adapted to the
class of abelian lattfice-ordered groups (l-groups) since the author in
[6] has shown that the class of abelian l-groups has the amalgamation
property. The class of Il-groups, however, does not have this pro-
perty (see [6, Theorem 3.1]). The author in [6] and N. R. Reilly in
[7] have determined some sufficient conditions for amalgamation to
occur in this class.

NoraTiON. All groups are additive and abelian. Z, @, and R
denote respectively the o-groups of integers, rational numbers, and
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real numbers. |z | stands for the cardinality of =, and we let | R| = ¢c.
We sometimes denote a partially ordered group by [H, P] where
P = H* is the positive cone (partial order) of H. The lexicographic
direct sum of the o-groups G and H is written as G @©* H (i.e.,
0<g+hif 0<h, or h =0 and 0 < g). The classes of groups and
o-groups are denoted respectively by & and £

The reader should consult [3] for basic facts about o-groups. [4]
is also a good reference.

1. Preliminaries; the free product construction. A class .o of
similar algebraic structures is said to have the amalgamation property
if whenever G, H, and K are in . and o, G— H and o0, G— K
are embeddings, there exist Le .22 and embeddings #,: H— L and
7, K— L such that o7 =o0,,. If L is generated by Hn U K,
then the triple (L, %, »,) is called an amalgamation of G in H and
K. For simplification, ¢, and o, will always be incusion maps, and
we may just use L in place of (L, n, 7). For fixed G, H, and K,
we say that (L, 7, v,) is freer than (M, p,, ;) (denoted L > M) if
there is a homomorphism 6: L — M such that %0 = ¢, (1 =1,2). If
0 is an isomorphism then L and M are equivalent (denoted L ~ M).
One easily shows that ~ is an equivalence relation, > is reflexive
and transitive, and L ~ M if and only if L > M and M > L. &,
(G, H, K) is a representing set of amalgamations of G in H and K
if it consists of exactly one amalgamation out of every equivalence
class. &, (G, H, K) is partially ordered by >, and any two such
representing sets are canonically isomorphic. Our object is to deter-
mine much of the structure of <2, (G, H, K).

If &2, (G, H, K) has a greatest element, it is the free product
wm % of H and K with G amalgamated. Of interest here is the
free product (F, p,, t.) in &. It can be represented as

F=H®K)G*

where g, and p, are the natural embeddings and G* consists of all
pairs (g4, —gt) (9 € G).

Let X’ denote the divisible closure of the o-group X. The order
on X can be extended to X’ by letting &’ be positive if na’'e X+ for
some positive integer n. Any o-homomorphism »: X — Y has a unique
extension to 7’: X’ — Y’, and 7 is 1 — 1 if and only if » is 1 — 1.
The next lemma justifies restricting our attention to the class of
divisible o-groups. The proof is straightforward.

LEmma 1.1. If (L,n,n,) is an amalgomation of G in the o-
groups H and K, then (L', 7, 0., is an amalgamation of G’ in H'
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and K', and the induced map L — L’ is an order isomorphism from
<, (G, H, K) onto ¥, (G', H', K').

From now on we will consider only divisible groups and sub-
groups. We will make frequent use of the fact that divisible sub-
groups are direct summands. Since division in an o-group is unique,
we can alternately consider them as rational vector spaces and sub-
spaces.

Let V be a rational vector space. Define the set OQ(V) of
orderable quotients of V to be the collection of all o-groups of the
form [V/I, P] where I is a rational subspace of V (V/I is torsion-
free, hence orderable). Partially order OQ(V) by defining [V/I, P] =
[V/J, Q] if and only if I & J and the natural homomorphism

v+-I—v+J

preserves order.

THEOREM 1.2, Let G be a subgroup of each of the o-groups H
and K and let (F, p, p,) be the free product in & of H and K with
G amalgamated. Then <%, (G, H, K) is isomorphic to the subset F of
OQ(F') consisting of all [F/I, P] such that

1) INHp UK =0, and

2 Hpy+ K, + 1< P.

Proof. If [F/I, P] is in & and ¢(I): F— F/I is natural then
pwo(I) and p¢(I) are o-embeddings. Thus the collection of ([F'/I, P],
mo(l), mo(l)), [F/I, Ple &, is a collection of amalgamations in &£
of G in H and K. Furthermore, one easily checks that the partial
order on & is identical with the induced partial order >. It
remains to show that every equivalence class of amalgamations is
represented. If (L, %, n,) e <,(G, H, K) then L is also an amalgama-
tion in &, whence there is a group epimorphism ¢: F'— L such that
o =7 (1=12. If I =ker(¢) and 6: F/I— L 1is natural then
evidently (L, %, ) and ([F/I, L*07"], p¢, t.9) are equivalent. This
completes the proof.

COROLLARY 1.8, Let &¥ = ¥.(G, H, K). Then

(1) =¥ is an tnverse root system; ti.e., the set of all elements
exceeded by a given element forms a chain,

(2) Ewvery element of & exceeds exactly lome minimal element,
and is exceeded by at least one maximal element, and

(8) FEach component of & (i.e., the set of elements exceeding o
minimal element) is a lower semilattice.
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Proof. The set of ordered quotients below [F/I, P] in & is
evidently antiisomorphic to the set of all subgroups J, I S J & F, J/I
convex in [F/I, P], ordered by inclusion. But this is a totally ordered
set. Hence (1) is proven. For [F/I, Ple &# let @ be a total order
on I and let @ be the total order Q' U{xrc F:x+ I P} on F. Then
[F, @] is maximal in &% and exceeds [F/I, P]. Going the other
way let J be the largest subgroup of F such that I = J, J/I is con-
vex in [F/I, P] and disjoint from (Hpy, + Ky, + I)/I. If Q is the
order on F/J induced by P, then [F/J, Q] is minimal and exceeded
by [F/I, P]. By (1) it is unique. Thus (2) is proven. Finally sup-
pose [F/I, P] and [F/I’, P'] both exceed the minimal element [F/J’,Q’]
of #. Then the collection of subgroups J such that J/I is convex
in [F/I, P] and J/I' is convex in [F/I’, P'] is nonempty and linearly
ordered by inclusion. If J* is their intersection, then evidently
[F/J*, P+ J*/J*] is in . and the infimum of the two given ordered
quotients. This proves (3) and completes the proof of the corollary.

2. Constructing amalgamations using Hahn embeddings.

LEMMA 2.1 [7]). Ewery partial order on a set can be extended to
a total order.

LEMMA 2.2. The class of ordered sets has the amalgamation pro-
perty. More specifically, if A is a subset of the ordered sets B and
I’y and B* and v* determine the same cut of A—i.e., @ < B* if
and only if a < v*(ae A)—then there is an amalgamation A(4") of
A in B and I in which g* < 7*(8* = 7).

Proof. Let BNI = A and extend the orders on B and I” to a
partial order of BU I” by letting s <v if s < a <7 for some ac 4
or if B, g*, v, and 7v* all determine the same cut of A, and letting
vy=pR if y=a=p for some awc A. Its extension to a total order
yields 4 as desired. For 4’, first identify g8* and v*, then proceed
as above.

LEMMA 2.3. The class of archimedian o-groups has the amalga-
mation property. If the amalgamated subgroup is nonzero, then any
two amalgamations are equivalent.

Proof. Let G be a subgroup of each of the archimedian o-
groups H and K, and let v;; H— R and 7,: K— R be o-embeddings.
Since every o-isomorphism between subgroups of R is realized as
multiplication by a positive real number, there exists 0 < re R such
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that (gv,)r = g7, for all ge G. Putting 9, = vr, L = Hy, + K7,, we
have the desired amalgamation (L, 7, ). If (M, g, t) is also an
amalgamation with M < R, then 7'y, =s and 7'y, =t for some
0<s,teR. If G+* 0 we must have s = ¢, and thus L and M are
equivalent via the o-isomorphism induced by s.

The following concept is introduced for notational convenience.
A TI-wvaluation of an o-group H is a map v~ (H’, H,) from the
ordered set I” to pairs of convex subgroups of H satisfying

(1) H,Hr. If H < H’, then H" covers H,,

(2) v <0 implies H' < H;, and

8) If n =0 then he H'\H, for some v e I
H is called a I'-group. < is a value of h if he H'\H,. The spine
of H is the subset 7', = {v: H,C H'}. The valuation is proper if
I’ = I',. Evidently all proper valuations are identical. For basic
results on I"-valuations see Conrad [2].

An easy consequence of the definition is the

LEMMA 2.4. For every vel,
H =NH{v<ddocrl,).

A J-valuation on H is said to extend a [I'-valuation if " S 4 and
(H°, H;) = (H7, H,) whenever 6 = v and ve [l

LEMMA 2.5. If I' & 4 then every I'-valuation on H has a unique
extension to a Ad-valuation.

Proof. Evidently defining
H =H=NH06<vvel,)

for all 6 € A\I" produces an extension. To prove uniqueness we note
that the spine of any extension is I',, so by Lemma 2.4 all exten-
sions are equal to the one just defined.

An o-embedding o: G — H between I'-groups is a I"'-embedding if
G,0 = H,N Go and G0 = H' N Go. G is a I'-subgroup of H if the
inclusion map is a [I"-embedding. Every subgroup of a /'-group
admits a unique I"-valuation making it a I"-subgroup.

For each veI' let R, be an archimedian o-group. The Hahn
group V(I", R,) is the subgroup of I R,(veI') consisting of all func-
tions with inversely well-ordered support, ordered by letting f be
positive if its greatest nonzero component is positive. V(I", R,) admits
a natural I"-valuation where V7(V,) = {f; f(6) =0 for all § > (0 =7)}.
If H is a I'-group we define V(H) = V(I", H'/H,). Banaschewski’s
proof [1] that a divisible I"-group H is I"-embeddable in V(H), although



716 KEITH R. PIERCE

elegant, is too restrictive (§ 4), so we will use Conrad’s decomposition
proof from [2], outlined below. A collection 7' of subgroups 7, of a
[-group H is a I'-decomposition of H if

1 H,=HnNT,

@ H=H"+ T, and

(8) For every h, he T, for all but at inversely well-ordered sub-
set of I,
The map T: H— V(H), hT(v) = (b + T,) N H7, is a I'-embedding.
If S is a I'-decomposition of the I'-subgroup G, then there is a I'-
decomposition T of H such that S= TN G (i.e., S, = T, N G for all
vel).

A natural embedding o: V(I", P,) — V(I", R,) is one which is in-
duced by o-embeddings o,: P,— R,, where fo{v)= f(v)o,. In particular,
if G is a ["-subgroup of H, then the natural o-embeddings

0,: G'/G, — H'|H,

induce o: V(G)— V(H). One more fact from [2]: if S and T are
I'-decomposition on G and H respectively and S = TN G, then So =
T|G.

The standard amalgamation. For the remainder of the paper let
G be an ordered subgroup of the o-groups H and K, and let

a—(G*, Go) (ac 4), g—(H? Hy) (Be B),

and v— (K7, K,)(veI') be proper valuations of the respective
groups. There are unique embeddings of A in B and I such that
G=HNG=K*NG and G, = H,NG=K,NG. By Lemma 2.2
let 4 be an amalgamation of A in B and I'. By Lemma 2.5 extend
to 4-valuations on H and K. Evidently the maps

o— (H’°N G, H;NG)

and
o—(K°'NG, K;NG)

are 4-valuations on G which extend the given A-valuation. Thus by
2.5 they are the same, and we can therefore consider G as a 4-sub-
group of each of H and K. Let S, T, and U be 4-decompositions of
G, H, and K respectively such that S=7TNG=UNG, and let
0;: H— V(H) and o,: K— V(K) be natural 4-embeddings. Finally,
by 2.3 let (R;, v, Y»s) be an archimedian amalgamation of G’/G; in
H’/H; and K’°/K;, and let v,: V(H)— V(4,R;) and v,: V(K)— V(4,R;)
be natural J-embeddings. 7Tv, and Uy, agree on G, whence (HTy, =
KUy, Ty, Uv,) is an amalgamation of G in H and K. We will call
it a standard amalgamation.
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Evidently the spine of a standard amalgamation is the amalgama-
tion 4 of the spines. Thus every standard amalgamation is minimal.
The converse is false, as this example shows:

ExAMPLE 2.6. Let H= K= R@ *R and let G be all elements
with second component zero. Embed H and K in R *RP *R by
letting

(x, ’!!)771 = (x3 O’ y) ’
and
((U, y)’?Z = (x: y, y) .

The induced amalgamation is not standard since its spine properly con-
tains an amalgamation of the spine of G in those of H and K. If 7 is
the projection on the middle factor then replacing %, by 7, — 7,7 yields
a standard amalgamation. This motivates the following construction.

Let (L, m, 7,) be a minimal amalgamation and suppose that L is
an o-subgroup of the o-group N. If m: H— N is a group homomor-
phism satisfying

1) G < ker(w), and

(2) |hrm| < |hy,| for all he H (that is | 7, | exceeds every multiple
of |hm]), then we can form an amalgamation (M, p, t) by defining
W=mn+x t, =17, and M = Hp, + Kp,. We call M an expansion
of L.

A 4d-subgroup H of L is a c-subgroup if each of the natural
embeddings H’/H, — L’/L, is surjective.

LEmmA 2.7 [2]. If H is a c-subgroup of L and T is a 4d-decom-
position of L then TN H is a 4d-decomposition of H.

REMARK. This lemma, and hence also the proof of the following
theorem, fails if we use Banaschewski functions instead of decom-
positions. For example, let I" be the set of strictly negative integers,
L =V(I', R;) (R, = R) and let H be the divisible subgroup generated
2R;(vy £—2) and the element (---,1,1,1). If =, is the natural
Banaschewski function on L, then HN L7, = ¢, and hence 7, is not
the extension of any Banaschewski function on H.

THEOREM 2.8. Ewvery amalgamation is equivalent to an expansion
of a standard amalgamation.

Proof. Suppose that (M, g, 1) is an amalgamation and 4’ is its
spine. When B and I" are naturally embedded in 4’, the embeddings
agree on A, so some amalgamation 4 of A in B and I" is embedded
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in 4. We consider G, H, and K as 4’-groups and g, and p, as 4'-
embeddings. Let S and U be 4’-decompositions of G and K respee-
tively such that S = UN G. By choosing an appropriate 4’-decom-
position of M we can assume that M is a 4’-subgroup of V (M), and
if T’ is the natural 4’-decomposition of V (M), then

U=T'NK(e., U =(T; N Kp) " :

we will abuse the notation similarly throughout the proof). Let v,
and v,, be the natural embeddings of H’/H; and K’°/K; respectively into
M?’/M;, inducing v,; V(H) — V(M) and v,: V(K)— V(M). Note that
y,, and v, agree on G°/G, and the choice of decompositions implies
t.=Uv,. Let o, be a projection of M°/M, upon (H’/H,)y,, and define
7 H—V (M) by h9,(0) = hpt,(0)0,. 1f he H\H, then hyt,(0) = (h+ H;)vy,,
hn,(0) = hp,(0), and hp,(6') = hy,(0") = 0 for all ¢’ >4. It follows that
7, is an o-embedding. By the choice of decompositions again,

g11(0) € (H’[H,) v,

for all 6e 4’ and all ge G, whence g, and 7, agree on G. Therefore,
if we put », = ¢, and L = Hp, + K%,, then (L, 1, 7,) is an amalga-
mation. Furthermore M is an expansion of L by the homomorphism
T = p,—7,. It remains to show that L is a standard amalgamation.
Evidently the spine of L is precisely 4, so we can pare down to
4d-groups and 4-decompositions. T"” = T'NV(H) is evidently the
natural 4-decomposition of V(H). Since ny* embeds H as a c-sub-
group of V(H), then by Lemma 2.7, T=T"NH =T"NH is a de-
composition of H. Now TN G = S: since gp(0) € (H°/H;)v,, for all
g€ G and all de 4, then we have the following chain of equivalences:
geTy=gnvi'eT7 = gneT] —=gme T =gpeT;=geS, Finally,
we show that », = Tv,. Let he H, de 4. There exists h* e H® such
that

h,(0) = (h* + Hj)vy, = h*9,0) .
Then (b — h*)n, € T{, whence h — h* e T;. Thus
@i = h* + Hy = (h* + T)NH’ = (h+ Ty N H = hT(O) .
Thus 7, = Tv,, and it follows that
(L, 7., 75) = (HTv, + KOv,, Ty,, Ov,)

is standard.

3. The structure of components of <. Let (L, 7, 7n,) be an
amalgamation and let
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H, = (Hp, N Kn)n;t
and
K, = (H771 N K772) 772—1 .

Evidently there is a unique o-isomorphism A~ A* from H, onto K,
such that Ay, = h*y,. If G = H, — that is, Hp N Ky, = Gp, — we
say that the amalgamation has the strong intersection property.

We form next a particular kind of expansion. Let H = H, (P H,
and let p be the projection of H on H,. Let C be an o-group, =:
H,— C a group epimorphism such that G < ker (z). Embed H and
K in C@*L by defining g =% + or and g, =7,. Evidently
(Hp, + Ko, o, 1) is an amalgamation which is an expansion of L
by the homomorphism pr, and which is freer than L via the natural
projection map. We will call such a construction a wertical expan-
ston of L.

LEMMA 3.1. Ewery amalgamation freer than L is equivalent to
a vertical expansion of L.

Proof. Let (M, p, ) > (L, 7., 7,) via 6 and let C = ker (). Note
that ce C if and only if ¢= hp,—h*p, for some he H,. This implies
that Cn (Hip, + Kp) = 0. Thus M = CH* D for some subgroup D
which contains Hjy, + Ku,. Let o project H on H;, and 7, and <,
project M on C and D recpectively. By the above representation of
elements of C, 7z, maps H,p, onto C. Let 7= = pg7,. Then g, = p0
since Ky, & D, and

hyn = hotts + (b — ho) 4 = hopt, + hopt, + (b — ho) f, = b + b7, .

Thus M is a vertical expansion of the amalgamation (D, pt, t7.).
But D is equivalent to L via 7;'6.

THEOREM 3.2. Let #Z be a component of £,(G, H, K) with
least member (L, 7, 7,). Then _# is order isomorphic to OQ(H,/G).

Proof. Let M =C@*L and M’'< C’'@*L be vertical expansions
on L induced by 7 and 7' respectively. One easily checks that
M > M’ if and only if ker (7) < ker (') and the induced homomor-
phism from C to C’ preserves order; that is, M > M’ if and only if
H,/ker(n) = H,/ker(7’) in OQ(H./G). This provides the desired iso-
morphism.

COROLLARY 3.3. Let 0 be the dimension of H./G as a rational
vector space.
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(1) If 6 =0 (ie., L has the strong intersection property) then
A = {L}.

(2) If 0 =1 then # has 3 members-two incomparable members
exceeding L.

®) If ¢d>1 then _#Z has max {c, 2’} members, and the same
number of maximal members. If 6 is finite them every maximal
chain is finite, and 0 > c¢ if and only if every maximal chain has
cardinality at least ec.

Proof. (1) is obvious, and (2) is an immediate consequence of
there being exactly two orders on @, both archimedian. As for (3),
Teh [8] has shown that a rational vector space of rank greater than
1 admits at least ¢ orders. If ¢ is infinite, there are 2° orderings
of a basis of V = H,/G, and each of these yields a distinct lexico-
graphic direct sum ordering of V. Thus there are at least ¢-2°
orderings. But since V has W, 6 elements, there are at most ¢-2°
subsemigroups-let alone that many partial orders — and thus there
are exactly ¢-2° orders on V. Each of these yields a distinet maximal
member of OQ(V). Now maximal chains in OQ(V) correspond to the
collection of all o-homomorphic images of a maximal member [V, P]
of OQ(V). But [V, P] has at most ¢-2° convex subgroups and hence
admits at most that many o-homomorphic images. Thus |OQ(V)| =
¢-2’. If 0 is finite then again from [8], any order on V has finite
archimedian rank of at most 6. Using similar arguments, one can
show that if 6 > ¢ then the cardinality of the archimedian rank of
any order on V is greater than ¢. Thus every maximal chain in
OQ(V) also has cardinality greater than ¢. (See [4] for a discourse
on archimedian ranks of abelian groups.)

4. Applications to the study of &

LEMMA 4.1. Let (L,%,7n,) and (M, p, tt.) be amalgamations.
The following are equivalent:

1 L>M.

(2) For all he H and ke k, hn, < kn, implies htt, < ktts.

Proof. 1f L > M via 0 then Ay, < k7, implies

ht, = hnt < kn, = ky, .

Conversely, if (2) is true then the map 0: Ay, + kn,+— by, + kp, is a
well-defined o-epimorphism by which L > M.

Let he H and ke K. We say that G separates h from k if there
exists ge G such that either h < g <k or k < g < h, where at least
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one of the pair of inequalities is strict.
G has a basic archimedian value ae A if « is the least element
of B and of I'. Then G% H¢ and K* are nonzero archimedian sub-

groups.

LEmMmA 4.2. If G, H, and K are archimedian, G # 0, and G
does mot separate h from k, then hy, = kv, in any archimedian
amalgamation (L, 7, 1,).

Proof. Without loss of generality, L £ R, 7, and 7, are inclusion
maps, and 1€ G. Since G is divisible, » and % determine the same
cut of @ & G, whence they must be equal.

THEOREM 4.3. The following are equivalent:

1) ¥ =<<,(G, H K) has one component.

(2) For every he H and ke K, either G separates h from k, or
G has a basic archimedian value a with he H* and ke K°.

Proof. Suppose (2) is true, and let (L, n, %) and (M, p, p.) be
minimal. We will show that L~ M. Let hp, < kn,. If G separates
h from k then we must have hy, < kp,. If G doesn’t separate h
from k, then the second part of (2) holds. Inspecting the proof of
Theorem 1.2, we see that an amalgamation is minimal if and only
if it has no proper convex subgroup disjoint from the images of H
and K. Thus L and M have convex subgroups F and F'’ which
cover zero and contain the respective images of H* and K* In fact,
(F,n|D,n, | E) and (F’, tt,| D, p.| E) are archimedian amalgamations
of G* in H* and K% By Lemma 2.3, they are equivalent, and hence
hyty < kpt,. Thus L > M by Lemma 4.1. But since L is minimal,
then L ~ M.

Conversely, suppose that (2) fails for some he H and ke K, let h
have value ge B, and let & have value veI'. We consider two cases,
depending on whether or not 8 and v are in A. If neither is in A
then the hypotheses on % and % imply that for all ac A, either « is
greater than both 8 and v or less than both. By the proof of
Lemma 2.2 we can find amalgamations 4 and 4’ of A in B and 4
such that s < v in 4, but v< g in 4. These then lead to two
standard amalgamations, in one of which the image of % is strictly
less than that of %, and in the other the order is reversed. Thus
by Lemma 4.1 they are incomparable. Since standard amalgamations
are minimal, & has at least two components. On the other hand,
suppose that @ =v = aec A, and let (L, , ) be any amalgamation.
As usual, embed B and I" in 4, the spine of L, and without loss of
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generality consider L < V(L). Let V = V(£, R;) where 4’ arises
from 4 by adjoining e, and the order is extended by defining ¢ < ¢
for all 6 =, and 6 < e for all 6 < a. Let R, = L°/L;and let R, = Q.
V(L) can be naturally embedded in V. Since G N Q% = 0, one can
find a group homomorphism 7: H— R, such that G + H,Zker (r) and
ht = *1, depending on whether iy, < k%, or k», < kn,. Finally then,
using 7 we can expand to the amalgamation (M, p, t); i.e., t. = 7,
and for xze H, x,(d) = 21,(0), and x,(c) = xr. By hypothesis «a is
not the least element of both B and I', so M is also minimal. We
claim that L and M are incomparable. G/G., as embedded in H/H,
and K/K,, does not separate h + H, from k + K,. Thus by Lemma
4.2, hp(a) = kny(a). But (g, — kpe)(e) = =1, the sign chosen so that
htt, — kp, has sign opposite from iy, — k7,. Thus by Lemma 4.1 the
amalgamations are incomparable, so again & has at least two com-
ponents.

THEOREM 4.4. The following are equivalent:
1 |¥|=1
(2) For every he H and ke K, G separates h from k.

Proof. Suppose (2) is true. By Theorem 4.3, & has exactly
one component with minimal element L. But a consequence of the
hypothesis is that L has the strong intersection property. Thus by
Corollary 3.3, |.&| =1. Conversely, if & = {(L, 7, %)}, then in
particular condition (2) of Theorem 4.3 holds. But if the second part
of that condition is true then by Lemma 4.2 L fails to have the
strong intersection property, whence again by Corollary 3.3 there
exists an amalgamation properly exceeding L. But this is impossible.

THEOREM 4.5. & has either one, or at least ¢, components.

Proof. Suppose & has more than one component. By Theorem
4.3 there exist 0 < he H and 0 < ke K, not having the basic ar-
chimedian value if one exists, such that G does not separate A from
k. Let h have value B, and &k have value v. We distinguish two
cases. Suppose G is the least element of B and v is the least ele-
ment of I". Since neither is in A, there is an amalgamation 4 of
A in B and I' such that g =7v. Since G, = G* the choice of v,
H!/Hs— R; and v, K’/K;— R, in the construction of a standard
amalgamation can be arbitrary. We let (h+ Hpv,, =1 and for some
positive real number r let (k + Kyv,, = r. Evidently the induced
standard amalgamations, one for each r, are mutually nonequivalent.
On the other hand, suppose not both H,; and K, are zero. Let (L,
7, ;) be any standard amalgamation. We imitate the construction
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in the latter part of the proof of Theorem 4.3, except that we also
choose a group homomorphism z: K — R, such that G + K, < ker (%)
and kr = r. Then we define g, as before, and z, as x.(6) = x1,(0),
and xp,(e) = ww. Then the collection of amalgamations, one for each
r, again form a mutually nonequivalent set of minimal amalgama-
tions.
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