THE CONVEX CONE OF \(n \)-MONOTONE FUNCTIONS

ROY MARTIN RAKESTRAW
THE CONVEX CONE OF n-MONOTONE FUNCTIONS

R. M. RAKESTRAW

A reformulation of the Krein-Milman Theorem is used to obtain an integral representation of each function in a certain class of real monotonic functions defined on $[0, 1]$.

Let $\{i_1, i_2, i_3, \cdots\}$ denote a fixed sequence all of whose terms are either 0 or 1, and let M_1 be the set of real nonnegative functions f on $[0, 1]$ such that

$$(-1)^{i_1} A_h f(x) = (-1)^{i_1} [f(x + h) - f(x)] \geq 0,$$

$h > 0$, for $[x, x + h] \subset [0, 1]$. Let M_n, $n > 1$, be the set of functions belonging to M_{n-1} such that

$$(-1)^{i_n} A_h f(x) = (-1)^{i_n} [A_h^{-1} f(x + h) - A_h^{-1} f(x)] \geq 0$$

for $[x, x + nh] \subset [0, 1]$. If $f \in M_n$, then f is said to be an n-monotone function. Since the sum of two n-monotone functions is in M_n and since a nonnegative real multiple of an n-monotone function is an n-monotone function, the set M_n is a convex cone. It is the purpose of this paper to give the extremal elements (i.e., the generators of extreme rays) of this cone, and to show that for the n-monotone functions an integral representation in terms of extremal elements is possible.

A portion of this work appears in the author's Ph. D. dissertation written at Oklahoma State University under the direction of Professor E. K. McLachlan at which time the author was an NDEA Graduate Fellow. The proof of Proposition 3 was suggested by the referee. The author gratefully acknowledges the guidance given by Professor McLachlan and the assistance of the referee's comments.

1. Extremal elements of M_n. Let f be a function in M_i which assumes exactly one positive value in $[0, 1]$. If $f = f_1 + f_2$, where f_1 and $f_2 \in M_i$, then f_1 and f_2 are zero where f is zero and f_1 and f_2 are constant where f is constant. Therefore, f_1 and f_2 are proportional to f and f is an extremal element of M_i. On the other hand, if f assumes at least two positive values in $[0, 1]$, then a nonproportional decomposition can be given by taking

$$f_1(x) = \min \{f(x), (1/2) [f(0) + f(1)]\}$$

and $f_2 = f - f_1$. Therefore, the extremal elements of M_i are precisely the functions in M_i which assume exactly one positive value in $[0, 1]$.

Let $f \in M_n$, $n > 1$, and let $a_0 = 0$ if $i_1 = 0$ and $a_0 = 1$ if $i_1 = 1$. If $f(a_0) > 0$ and f is not constant, then take $f_1 = f(a_0)$ and $f_2 = f - f_1$.

735
In so doing, f_1 and $f_2 \in M_n$ and f_1 and f_2 are not proportional to f. Therefore, the only extremal elements f of M_n with $f(a_0) > 0$ are the positive constant functions.

Let $f \in M_n$, $n > 1$, and define $a_0' = 1 - a_0$, if $i_2 = 0$ and $a_0' = a_0$ if $i_2 = 1$, where a_0 is defined above. It can be shown that if $f \in M_n$, then f must be continuous on $[0, 1]$ except at a_0' [9, p. 148]. It follows that the only extremal elements of M_1 that are in M_n are those which are continuous on $[0, 1]$ except, possibly, at a_0', and these functions are again extremal elements of M_n.

If $i_2 = 0, f \in M_n$, $n > 1$, f is not constant on $(0, 1)$ and f is discontinuous at $a_0' = 1 - a_0$, then take $f_1(x) = 0$ for $x \in [0, 1]$ and $x \neq a_0'$,

$$f_1(a_0') = f(a_0') - \lim_{x \to a_0'} f(x) > 0$$

and $f_2 = f - f_1$. In so doing, f_1 and $f_2 \in M_n$ and f_1 and f_2 are not proportional to f. Hence, whenever $i_2 = 0$, the only extremal elements of M_n that are discontinuous at $a_0' = 1 - a_0$ are the functions which are positive at a_0' and zero elsewhere on $[0, 1]$.

On the other hand, if $i_2 = 1, f \in M_n$, $n > 1$, f is not constant on $(0, 1)$ and f is discontinuous at $a_0' = a_0$, then let

$$f_1(x) = \lim_{x \to a_0'} f(x) > 0 ,$$

$x \in [0, 1]$ and $x \neq a_0'$, $f_1(a_0') = 0$ and $f_2 = f - f_1$. Then f_1 and f_2 are in M_n and f_1 and f_2 are not proportional to f. Therefore, whenever $i_2 = 1$, the only extremal elements of M_n that are discontinuous at $a_0' = a_0$ are the functions which are zero at a_0' and equal to a positive constant elsewhere on $[0, 1]$.

Consequently, the extremal elements of M_n, $n > 1$, which are not extremal elements of M_1 must be zero at a_0 and continuous on $[0, 1]$. It will be shown that these extremal elements of M_n are indefinite integrals of the extremal elements of a cone which is similar to M_1. This cone is given in Definitions 1 and 2.

DEFINITION 1. If g is a real function monotonic on $(0, 1)$ and $n > 1$, then define the (possibly extended real-valued) function $I(g, n - 1; \cdot)$ by the equation

$$I(g, n - 1; x) = \int_{a_0}^{x} \int_{a_1}^{t_1} \cdots \int_{a_{n-2}}^{t_{n-2}} \int_{a_{n-2}}^{t_{n-2}} g(t) \, dt \, dt_{n-2} \cdots \, dt_2 \, dt_1$$

for $x \in (0, 1)$, where $a_0 = (1/2) [1 - (-1)^{i_1}]$ and

$$a_j = (1/2) [1 - (-1)^{i_j+i_{j+1}}], 1 \leq j \leq n - 2.$$
DEFINITION 2. Let K_n, $n > 1$, denote the convex cone of real functions g on $(0,1)$ such that

(a) g is right-continuous;
(b) $(-1)^{(1)}(1-n)g(x) \geq 0$, for $x \in (0,1)$;
(c) $(-1)^{(1)}(1-n)\Delta g(x) \geq 0$, for $0 < x < x + h < 1$;
(d) $I(g, n-1; x)$ is finite, for $x \in (0,1)$; and
(e) $\lim_{x \to -1} I(g, n-1; x)$ exists and is finite.

Note. If $g \in K_n$, $n > 1$, then $I(g, n-1; \cdot)$ will denote the function which is the continuous extension to $[0,1]$ of the function given in Definition 1.

DEFINITION 3. Let a and b be two distinct numbers in the interval $[0,1]$ and define the function $\chi_{(a,b)}$ on $(0,1)$ by

$\chi_{(a,b)}(x) = 1$, if x is between a and b or $0 < x = \min \{a, b\}$;
$\chi_{(a,b)}(x) = 0$, otherwise.

DEFINITION 4. If m is a nonzero real number, $\xi \in [0,1]$ and $n > 1$, then define the function $e(m, \xi, n-1; \cdot)$ by the equation

$e(m, \xi, n-1; x) = mI(\chi_{(\xi,1-a_{n-1})}, n-1; x)$

for $0 \leq x \leq 1$, where $a_{n-1} = (1/2) [1 + (1/2)^{(1)}]^{(1)}$.

The principal theorem of this section can now be stated and the remainder of the section will be devoted to its proof. The key results are Lemma 3 and Proposition 2.

THEOREM 1. The extremal elements of M_1 are the functions in M_1 which assume exactly one positive value in $[0,1]$. The positive constant functions and the extremal elements of M_1 which are discontinuous at $a_1' = (1/2) [1 + (1/2)^{(1)}]^{(1)}$ are extremal elements of M_n, $n > 1$. The functions $e(m, \xi, n-1; \cdot)$, where $(-1)^{(1)}(1-n) m > 0$ and $\xi \in (0,1)$ or $\xi = a_{n-1}$ are extremal elements of M_n, $n > 1$. There are no other extremal elements of M_n, $n > 2$, are those functions $e(m, a_k, k; \cdot)$, where $(-1)^{(1)}(1-k) m > 0$ and $1 \leq k \leq n - 2$.

In the same manner that the extremal elements of M_1 were found, it can be shown that the extremal elements of K_n are precisely those functions in K_n which assume exactly one nonzero value in $(0,1)$. Before determining the extremal elements of M_n, it is shown in the following three lemmas how the n-monotone functions are related to the functions in K_n, where $n > 1$.
LEMMA 1. If \(f \in M_n \), then \(f^{(n-1)} \in K_n \), where \(n > 1 \).

Proof. Since \((-1)^{(n)} A_n^* f(x) \geq 0 \) for \(0 \leq x < x + nh \leq 1 \), then \(f^{(n-2)} \) exists and is continuous on \((0,1)\) and \((-1)^{(n)} f^{(n-2)} \) is convex [1]. Therefore \((-1)^{(n)} A_n^* f^{(n-2)} \) has a right-continuous, nondecreasing right-hand derivative [4, p. 10]. It follows that \((-1)^{(n)} A_n^* f^{(n-1)}(x) \geq 0 \) for \(0 < x + h < 1 \). If \(f \in M_n \), then \((-1)^{(n-1)} A_n^{-1} f(x) \geq 0 \) for \(0 \leq x < x + (n - 1) h \leq 1 \), which implies that

\[
(-1)^{(n-1)} A_{n-1}^* A_{n-2}^* \cdots A_1^* f(x) \geq 0
\]

for \(0 \leq x < x + \delta_1 + \delta_2 + \cdots + \delta_{n-1} \leq 1 \) [1]. It then follows that \((-1)^{(n-1)} f^{(n-1)}(x) \geq 0 \) for \(0 < x < 1 \), since \(f^{(n-1)} \) exists on \((0,1)\). It remains to show that

\[
\lim_{x \to 1^{-}} I(f^{(n-1)}, n - 1; x)
\]

exists and is finite and this proof will be by induction on \(n \).

If \(f \in M_2 \), then

\[
f(x) = \int_{a_0}^{x} f'_+(t) \, dt + \lim_{x \to a_0} f(x),
\]

which implies that

\[
\lim_{x \to a_0^{-}} I(f^{(n-1)}, n - 1; x) = \lim_{x \to a_0^{-}} f(x) - \lim_{x \to a_0^{-}} f(x)
\]

and this latter limit exists and is finite since \(f \) is monotonic on \([0,1]\) [4, Theorem 1.1]. Now assume that \(f \in M_n \) implies that

\[
\lim_{x \to a_0^{-}} I(f^{(n-1)}, n - 1; x)
\]

exists and is finite and let \(f \in M_{n+1} \). Then \(f \in M_n \) and it follows from the first part of the proof that \((-1)^{(n-1)} f^{(n-1)} \) is nonnegative and monotonic on \((0,1)\) and

\[
(-1)^{(n-1)} f^{(n-1)}(a_{n-1}) = \lim_{x \to a_{n-1}^{-}} (-1)^{(n-1)} f^{(n-1)}(x)
\]

\[
= \inf \{ (-1)^{(n-1)} f^{(n-1)}(x); 0 < x < 1 \}.
\]

Therefore,

\[
\lim_{x \to a_0^{-}} I(f^{(n)}, n; x)
\]

\[
= \lim_{x \to a_0^{-}} I(f^{(n-1)} - f^{(n-1)}(a_{n-1}), n - 1; x)
\]

\[
= \lim_{x \to a_0^{-}} I(f^{(n-1)}, n - 1; x) - f^{(n-1)}(a_{n-1}) I(1, n - 1; x)
\]

exists and is finite by the induction hypothesis.
LEMMA 2. If $g \in K_n$, then $I(g, n - 1; \cdot) \in M_n$, where $n > 1$.

Proof. The proof will be by induction on n. If $g \in K_2$, then

$$I(g, 1; x) = \int_{a_0}^{x} g(t) \, dt$$

for $x \in [0, 1]$, and since $(-1)^{(i_1)}g(t) \geq 0$, $t \in (0, 1)$, and

$$a_0 = (1/2) \left[1 - (-1)^{(i_1)} \right],$$

then $I(g, 1; x) \geq 0$. If $0 \leq x < x + h \leq 1$, then

$$(-1)^{(i_1)}A_{\chi}^1 I(g, 1; x) = \int_{x}^{x+h} (-1)^{(i_1)}g(t) \, dt \geq 0.$$

Since $(-1)^{(i_2)}g$ is nondecreasing, then $I((-1)^{(i_2)}g, 1; \cdot)$ is convex [4, p. 13]. It follows that $(-1)^{(i_2)}A_{\chi}^2 I(g, 1; x) \geq 0$ for $0 \leq x < x + 2h \leq 1$, and hence, $I(g, 1; \cdot) \in M_n$. Assume that $I(g, n - 1; \cdot) \in M_n$ for $g \in K_n$ and $n > 1$. If $g \in K_{n+1}$, then let

$$f(x) = \int_{a_{n-1}}^{x} g(t) \, dt,$$

for $x \in (0, 1)$. Since $(-1)^{(i_n)}g$ is nonnegative and

$$a_{n-1} = (1/2) \left[1 - (-1)^{(i_{n-1}+i_n)} \right],$$

it is easily seen that $f \in K_n$ and it follows from the induction hypothesis that $I(g, n; \cdot) = I(f, n - 1; \cdot) \in M_n$. By a repeated application of the mean value theorem for a Riemann integral, it can be shown that

$$A_{\chi}^{n} I(g, n; x) = h^{n-1}f(\xi)$$

for $0 \leq x < \xi < x + (n - 1)h \leq 1$. Since $(-1)^{(i_{n+1})}g$ is nondecreasing, then $(-1)^{(i_{n+1})}f$ is convex on $(0, 1)$ [4, p. 13]. It follows that

$$(-1)^{(i_{n+1})}A_{\chi}^{n+1} I(g, n; x) = (-1)^{(i_{n+1})}A_{\chi}^{n} A_{\chi}^{n} I(g, n; x) = (-1)^{(i_{n+1})}A_{\chi}^{n} f(\xi) \geq 0$$

for $0 \leq x < x + (n + 1)h \leq 1$, and this inequality, together with the fact that $I(g, n; \cdot) \in M_n$ implies that $I(g, n; \cdot) \in M_{n+1}$.

In the proofs that follow, $f^{(k)}(a_k)$ should be interpreted as

$$f^{(k)}(a_k) = \lim_{x \to a_k} f^{(k)}(x),$$

where $f \in M_n$, $n > 2$, and $1 \leq k \leq n - 2$. Since $f^{(k)} \in K_{k+1}$, this limit will always exist and be finite. It is a consequence of Lemmas 1 and
2 that \(f = I(f^{(n-1)}, n-1; \cdot) \) whenever \(f \in \mathcal{M}_n, n > 1 \), and \(f^{(k)}(a_k) = 0 \) for \(0 \leq k \leq n-2 \). It is shown in the following lemma that extremal elements of \(\mathcal{M}_n \) can be obtained directly from the extremal elements of \(\mathcal{K}_n \).

Lemma 3. If \(g \in \mathcal{K}_n \) and \(f = I(g, n-1; \cdot) \), then \(f \) is an extremal element of \(\mathcal{M}_n \) if, and only if, \(g \) is an extremal element of \(\mathcal{K}_n \), where \(n > 1 \).

Proof. Suppose that \(f \) is an extremal element of \(\mathcal{M}_n \). If \(g_1 \) and \(g_2 \in \mathcal{K}_n \) such that \(g = g_1 + g_2 \), then

\[
I(g, n-1; \cdot) = I(g_1, n-1; \cdot) + I(g_2, n-1; \cdot).
\]

If \(f_j = I(g_j, n-1; \cdot), j = 1, 2 \), then \(f_1 \) and \(f_2 \in \mathcal{M}_n \) and \(f = f_1 + f_2 \). Since \(f \) is an extremal element of \(\mathcal{M}_n \), there are numbers \(\lambda_j \geq 0 \) such that \(f_j = \lambda_j f_j, j = 1, 2 \), which implies that \(g_j = \lambda_j f_j^{(n-1)} = \lambda_j g, j = 1, 2 \), and \(g \) is therefore an extremal element of \(\mathcal{K}_n \).

Conversely, if \(g \) is an extremal element of \(\mathcal{K}_n \) and \(f_1 \) and \(f_2 \in \mathcal{M}_n \) such that \(f = f_1 + f_2 \), then \(g_1 \) and \(g_2 \in \mathcal{K}_n \) and \(g_1 + g_2 = f_1^{(n-1)} = g \), where \(g_j \) is the \((n-1) \)th right derivative of \(f_j, j = 1, 2 \). This implies there are constants \(\lambda_j \geq 0, j = 1, 2 \), such that \(g_j = \lambda_j g \). It is evident from the definition of \(f \) that \(f^{(k)}(a_k) = 0 \), where \(0 \leq k \leq n-2 \). This, together with the fact that \(f_j^{(k)} \in \mathcal{K}_{k+1} \) for \(1 \leq k \leq n-2 \), implies that \(f_j^{(k)}(a_k) = 0, j = 1, 2 \) and \(0 \leq k \leq n-2 \).

Hence,

\[
f_j = I(g_j, n-1; \cdot) = I(\lambda_j g, n-1; \cdot) = \lambda_j I(g, n-1; \cdot) = \lambda_j f
\]

for \(j = 1, 2 \), and \(f \) is therefore an extremal element of \(\mathcal{M}_n \).

Proposition 1. The function \(e(m, \xi, n-1; \cdot) \) is an extremal element of \(\mathcal{M}_n, n > 1 \), where \((-1)^{i(n-1)} m > 0 \) and \(\xi \in (0, 1) \) or \(\xi = a_{n-1} \).

Proof. Since \(m\chi_{(\xi, a_{n-1})} \) is an extremal element of \(\mathcal{K}_n \) whenever \((-1)^{(i(n-1)} m > 0 \) and \(\xi \in (0, 1) \) or \(\xi = a_{n-1} \), and

\[
e(m, \xi, n-1; \cdot) = I(m \chi_{(\xi, a_{n-1})}, n-1; \cdot),
\]

the result follows immediately from Lemma 3.

Proposition 2. The function \(e(m, a_k, k; \cdot) \) is an extremal element of \(\mathcal{M}_n, n > 2 \), where \((-1)^{(k)} m > 0 \) and \(1 \leq k \leq n-2 \).

Proof. Since \(\mathcal{M}_n \) is a subcone of \(\mathcal{M}_{k+1} \) and \(e(m, a_k, k; \cdot) \) is an extremal element of \(\mathcal{M}_{k+1} \), it is sufficient to show that
If \(f = e(m, a_k, k; \cdot) \), then \(f = I (f^{(k)}, k; \cdot) \), where

\[
f^{(k)}(x) = m\chi_{(a_k,1)}(x) = m\chi_{(0,1)}(x) = m
\]

for \(0 < x < 1 \). Since \(f^{(k)} \) is constant on \((0,1)\), it follows from a repeated application of the mean value theorem for a Riemann integral that

\[
\Delta_{k+1}^k f(x) = \Delta_{k}^k \Delta_{k}^1 f(x) = h^k \Delta_{k}^1 f^{(k)}(\xi) = 0
\]

for \(0 < x < x + (k + 1)h \leq 1 \), where \(x < \xi < x + kh \) and thus, \(\Delta_{k}^1 f(x) = 0 \) for \(0 < x < x + ph \leq 1 \) and \(p \geq k + 1 \). Hence, \(f \in M_n \), for every \(n \), which implies that \(f \) is an extremal element of \(M_p \), for \(p \geq k + 1 \).

It will follow, as a consequence of the next three lemmas, that no other functions in \(M_n \) are extremal elements of \(M_n \), \(n > 2 \).

Lemma 4. Let \(f \in M_n \), \(n > 2 \), such that \(f(a_0) = 0 \), \(f \) is continuous on \([0, 1]\) and \(f \neq e(m, a_k, k; \cdot) \) for \((-1)^{i_k} m > 0 \) and \(1 \leq k \leq n - 2 \). If there is an integer \(k \) such that \(1 \leq k \leq n - 2 \) and \(f^{(k)}(a_k) \neq 0 \), then \(f \) is not an extremal element of \(M_n \).

Proof. Let \(k \) denote the smallest integer such that \(f^{(k)}(a_k) \neq 0 \). Then \(f \in M_n \subset M_{k+2} \) implies that \(f^{(k+1)}(x) \in K_{k+2} \), and it follows from Lemma 2 that \(I(f^{(k+1)}; k+1; \cdot) \in M_{k+2} \). Since \(f(a_0) = 0 \) and \(f^{(p)}(a_p) = 0 \) for \(1 \leq p < k \), then

\[
I(f^{(k+1)}; k+1; \cdot) = I(f^{(k)}; k; \cdot) - f^{(k)}(a_k) I(1, k; \cdot) = f - e(m, a_k, k; \cdot)
\]

where \(m = f^{(k)}(a_k) \). Since

\[
\Delta_{k}^p e(m, a_k, k; x) = 0
\]

for \(0 < x < x + ph \leq 1 \) and \(k + 1 \leq p \leq n \) and \(f \in M_n \), it follows that

\[
(-1)^{i_p} \Delta_{k}^p I(f^{(k+1)}; k+1; x) = (-1)^{i_p} \Delta_{k}^p f(x) \geq 0
\]

for \(0 < x < x + ph \leq 1 \) and \(k + 1 \leq p \leq n \). Hence,

\[
f - e(m, a_k, k; \cdot) \in M_n ,
\]

where \(m = f^{(k)}(a_k) \), and a nonproportional decomposition of \(f \) can be given by taking \(f_1 = e(m, a_k, k; \cdot) \) and \(f_2 = f - f_1 \). Thus \(f \) is not an extremal element.

Lemma 5. Let \(f \in M_n \), \(n > 2 \), such that \(f \neq 0 \), \(f(a_0) = 0 \), \(f \) is
continuous on \([0, 1]\) and \(f \neq e(m, a_k, k; \cdot)\) for \((-1)^{i_k} m > 0\) and 1 \(\leq k \leq n - 2\). If \(f_{+}^{(n-1)} = 0\) on \((0, 1)\), then \(f\) is not an extremal element of \(M_n\).

Proof. If \(f_{+}^{(n-1)} = 0\), then there is a positive integer \(k \leq n - 2\) such that \(f^{(k)} \neq 0\) and \(f^{(k)}\) is constant on \((0, 1)\). Thus, \(f^{(k)}(a_k) \neq 0\) and it follows from Lemma 4 that \(f\) is not an extremal element.

It follows from Lemmas 4 and 5 that if \(f\) is an extremal element of \(M_n\), \(n > 2\) such that \(f(a_0) = 0\), \(f\) is continuous on \([0, 1]\) and either \(f_{+}^{(n-1)} = 0\) or \(f^{(k)}(a_k) \neq 0\) for some \(k\), 1 \(\leq k \leq n - 2\), then \(f = e(m, a_k, k; \cdot)\), where \((-1)^{i_k} m > 0\) and 1 \(\leq k \leq n - 2\).

Lemma 6. Let \(f \in M_n\), \(n \geq 2\), such that \(f\) is continuous on \([0, 1]\), \(f_{+}^{(n-1)} \neq 0\) and \(f^{(k)}(a_k) = 0\) for 0 \(\leq k \leq n - 2\). If \(f\) is an extremal element of \(M_n\), then \(f = e(m, \xi, n - 1; \cdot)\), where \((-1)^{i_{n-1}} m > 0\) and \(\xi \in (0, 1)\) or \(\xi = a_{n-1}\).

Proof. Since \(f^{(k)}(a_k) = 0\) for 0 \(\leq k \leq n - 2\), then

\[f = I(f_{+}^{(n-1)}, n - 1; \cdot) \]

and it follows from Lemma 3 that \(f_{+}^{(n-1)}\) is an extremal element of \(K_n\). Thus, \(f_{+}^{(n-1)} = m\lambda_{\xi, n-1-a_{n-1}}\) for \((-1)^{i_{n-1}} m > 0\) and \(\xi \in (0, 1)\) or \(\xi = a_{n-1}\), which implies that \(f = I(f_{+}^{(n-1)}, n - 1; \cdot) = e(m, \xi, n - 1; \cdot)\). This completes the proof of Theorem 1.

2. Integral representations. The set of functions \(M_n - M_n\), \(n \geq 1\), forms the smallest linear space containing the convex cone \(M_n\). With the topology of simple convergence, \(M_n - M_n\) is a Hausdorff locally convex space such that for each \(x \in [0, 1]\), the linear functional \(L_x\) defined by \(L_x(f) = f(x)\) is continuous.

Proposition 3. The set \(M_n\) is closed in \(M_n - M_n\) for \(n \geq 1\).

Proof. The linear functional \(F\) defined on \(M_n - M_n\) by \(F(f) = \Delta^n_x f(x)\), for \([x, x + nh] \subset [0, 1]\), is continuous in the topology of simple convergence. By definition, \(M_n\) is the intersection of a collection of closed half-spaces corresponding to such functionals.

Since \(M_n\) is closed and every \(n\)-monotone function \(f\) is nonnegative and bounded by \(f(1 - a_0)\), Tychonoff's theorem implies that the normalized \(n\)-monotone functions, namely

\[C_n = \{f \in M_n; f(1 - a_0) = 1\}, \]
form a compact base for M_n, $n \geq 1$. Thus, every nonzero n-monotone function can be uniquely expressed as a positive multiple of some f in C_n and f is an extreme point of the convex set C_n if, and only if, f is an extremal element of M_n which lies in C_n.

Definition 5. For $n \geq 2$, let m_ξ denote the number which satisfies the equation $e(m_\xi, \xi, n - 1; 1 - a_0) = 1$, where $\xi \in (0, 1)$ or $\xi = a_{n-1}$. For $n > 2$, let m_k denote the constant which satisfies the equation $e(m_k, a_k, k; 1 - a_0) = 1$, where $1 \leq k \leq n - 2$. Let $\text{ext } C_n$ denote the set of extreme points of C_n, $n \geq 1$, and let $e(m_0, a_0, 0; \cdot)$ denote the unique function in $\text{ext } C_n$, $n \geq 2$, which is discontinuous at $a'_0 = (1/2) [1 + (-1)^{(i+1)}]$; that is, $e(m_0, a_0, 0; x) = (1/2)[1 - (-1)^{(i+1)}]$ for $0 < x < 1$, $e(m_0, a_0, 0; a_0) = 0$ and $e(m_0, a_0, 0; 1 - a_0) = 1$.

The principal theorem of this section can now be stated and the remainder of the section will be devoted to its proof.

Theorem 2. To each $f \in C_n$, $n \geq 2$, there correspond unique non-negative regular Borel measures ν and μ on $[0, 1]$ and

$$\{e(m_k, a_k, k; \cdot): 0 \leq k \leq n - 2\},$$

respectively, such that

$$\nu([0, 1]) + f(a_0) + \sum_{k=0}^{n-2} \mu[e(m_k, a_k, k; \cdot)] = 1$$

and

$$f(x) = \int_0^1 e(m_\xi, \xi, n - 1; x) \, d\nu(\xi) + f(a_0) + \sum_{k=0}^{n-2} \alpha_k e(m, a_k, k; x)$$

for each $x \in [0, 1]$, where $\alpha_k = \mu[e(m_k, a_k, k; \cdot)]$ for each k and

$$e(m_{1-a_{n-1}}, 1 - a_{n-1}, n - 1; \cdot) = e(m_{k_0}, a_{k_0}, k_0; \cdot)$$

denotes the function which is the pointwise limit of the functions $e(m_\xi, \xi, n - 1; \cdot)$ as ξ approaches $1 - a_{n-1}$. Thus, each n-monotone function is a scalar multiple of such a representation.

Theorem 2 will be proved by using an integral reformulation of the Krein-Milman theorem. In order to apply this result, it must first be demonstrated that $\text{ext } C_n$ is closed.

Proposition 4. The set of extreme points of C_n is closed in C_n, $n \geq 2$.

Proof. Since C_n with the relative topology is a subspace of a first countable space, it will suffice to show that if $\{f_i\}$ is a sequence of functions in $\text{ext} \ C_n$ which converges pointwise to the function f, then $f \in \text{ext} \ C_n$ [3, p. 164]. Since all except a finite number of the functions in $\text{ext} \ C_n$ are of the form $e(m_{\xi_i}, \xi_i, n - 1; \cdot)$, where $\xi_i \in (0, 1)$ or $\xi = a_{n-i}$, it can be assumed without loss of generality that $f_i = e(m_{\xi_i}, \xi_i, n - 1; \cdot)$ for each i.

If $a_0 = a_1 = \cdots = a_{n-1}$, then the function in C_n are convex and

$$f_i(x) = \left(\frac{x - \xi_i}{1 - a_0 - \xi_i}\right)^{n-1} \chi_{(\xi_i, 1-a_0)}(x)$$

for $x \in (0, 1)$. If the sequence $\{\xi_i\}$ of real numbers converges to $1 - a_0$, then it is easily seen that

$$\lim_{i \to \infty} f_i(x) = 0$$

for $x \in (0, 1)$ or $x = a_0$. Since the topology of simple convergence is a Hausdorff topology, it follows that $f(1 - a_0) = 1$ and $f(x) = 0$, otherwise, which implies that $f = e(m_0, a_0, 0; \cdot)$ and $f \in \text{ext} \ C_n$. On the other hand, if $\{\xi_i\}$ does not converge to $1 - a_0$, then there is a real number $\xi_0 \neq 1 - a_0$ and a subsequence $\{\xi_j\}$ of $\{\xi_i\}$ such that $\{\xi_j\}$ converges to ξ_0. Hence,

$$\lim_{j \to \infty} f_j(x) = \lim_{j \to \infty} \left(\frac{x - \xi_j}{1 - a_0 - \xi_j}\right)^{n-1} \chi_{(\xi_j, 1-a_0)}(x)
= \left(\frac{x - \xi_0}{1 - a_0 - \xi_0}\right)^{n-1} \chi_{(\xi_0, 1-a_0)}(x)
= e(m_{\xi_0}, \xi_0, n - 1; x)$$

for each $x \in (0, 1)$. Therefore, since the topology is a Hausdorff topology, $f = e(m_{\xi_0}, \xi_0, n - 1; \cdot)$ and it follows that $f \in \text{ext} \ C_n$.

If $a_1 = a_2 = \cdots = a_{n-1}$ and $a_0 \neq a_{n-1}$, then the functions in C_n are concave and

$$f_i(x) = 1 - \left(\frac{x - \xi_i}{a_0 - \xi_i}\right)^{n-1} \chi_{(\xi_i, a_0)}(x)$$

for $x \in (0, 1)$. If the sequence $\{\xi_i\}$ converges to a_0, then

$$\lim_{i \to \infty} f_i(x) = 1$$

for $x \in (0, 1)$ or $x = 1 - a_0$ and $f = e(m_0, a_0, 0; \cdot)$. On the other hand, if there is a subsequence $\{\xi_j\}$ of $\{\xi_i\}$ which converges to $\xi_0 \neq a_0$, then
\[
\lim_{j \to \infty} f_j(x) = \lim_{j \to \infty} \left[1 - \left(\frac{x - \xi_j}{a_0 - \xi_j} \right)^{n-1} \chi_{(\xi_j, a_0)}(x) \right] \\
= 1 - \left(\frac{x - \xi_0}{a_0 - \xi_0} \right)^{n-1} \chi_{(\xi_0, a_0)}(x) = e(m_{\xi_0}, \xi_0, n - 1; x)
\]
for each \(x \in (0, 1) \) and \(f = e(m_{\xi_0}, \xi_0, n - 1; \cdot) \). In either case, it follows that \(f \in \text{ext } C_\kappa \).

If there are exactly \(p > 0 \) integers \(k_1, \ldots, k_p \) such that
\[
1 \leq k_1 < k_2 < \cdots < k_p \leq n - 2
\]
and \(a_{k_j} = a_{n-1}, 1 \leq j \leq p, \) and \(a_0 = a_{n-1}, \) then
\[
f_j(x) = m_{\xi_j} \left[\frac{(x - \xi_j)^{n-1}}{(n - 1)!} \chi_{(\xi_j, a_{n-1})}(x) \right] \\
+ \sum_{r=1}^{p} (-1)^r \sum_{j_r=r}^{j_2-1} (1 - a_0 - \xi_j)^{n-k_{j_r}-1}(1 - 2a_0)^{k_{j_r}-k_{j_1}}(x - a_0)^{k_{j_1}}
\]
for \(x \in (0, 1) \), where
\[
m_{\xi_j} = \frac{(1 - a_0 - \xi_j)^{n-1}}{(n - 1)!} \\
+ \sum_{r=1}^{p} (-1)^r \sum_{j_r=r}^{j_2-1} (1 - a_0 - \xi_j)^{n-k_{j_r}-1}(1 - 2a_0)^{k_{j_r}-k_{j_1}}(x - a_0)^{k_{j_1}}(n - k_{j_r} - 1)!(k_{j_r} - k_{j_r-1})! \cdots (k_{j_2} - k_{j_1})!(k_{j_1})!.
\]
If there is a subsequence \(\{\xi_j\} \) of \(\{\xi_i\} \) which converges to \(\xi_0 \neq 1 - a_0 \), then it is easily seen that
\[
f(x) = \lim_{j \to \infty} f_j(x) = e(m_{\xi_0}, \xi_0, n - 1; x)
\]
for each \(x \in (0, 1) \). On the other hand, if \(\{\xi_i\} \) converges to \(1 - a_0 \), then
\[
\lim_{j \to \infty} f_j(x) = m_{k_p} \left[\frac{(x - a_0)^{k_p}}{(k_p)!} \right] \\
+ \sum_{r=1}^{p-1} (-1)^r \sum_{j_r=r}^{j_2-1} \sum_{j_1=1}^{j_r} (1 - 2a_0)^{k_p-k_{j_1}}(x - a_0)^{k_{j_1}}(k_{j_r} - k_{j_r-1})! \cdots (k_{j_2} - k_{j_1})!(k_{j_1})!.
\]
for \(x \in (0, 1) \), where
\[
m_{k_p} = \frac{(1 - 2a_0)^{k_p}}{(k_p)!} \\
+ \sum_{r=1}^{p-1} (-1)^r \sum_{j_r=r}^{j_2-1} \sum_{j_1=1}^{j_r} (1 - 2a_0)^{k_p-k_{j_1}}(k_{j_r} - k_{j_r-1})! \cdots (k_{j_2} - k_{j_1})!(k_{j_1})!.
\]
In either case, it follows that \(f \in \text{ext } C_\kappa \).
Finally if there are exactly \(p > 0 \) integers \(k_1, \ldots, k_p \) such that \(1 \leq k_1 < k_2 < \cdots < k_p \leq n - 2 \) and \(a_{k_j} \neq a_{n-1} \), \(1 \leq j \leq p \) and \(a_0 \neq a_{n-1} \), then

\[
\begin{align*}
 f_i(x) &= m_{\xi_i} \left[\frac{(a_0 - \xi_i)^{n-1}}{(n - 1)!} - \frac{(x - \xi_i)^{n-1}}{(n - 1)!} \right] \chi_{(\xi_i, a_0)}(x) \\
 &\quad + \sum_{r=1}^{p} (-1)^r \sum_{j_r=r}^{j_{r-1}} \frac{(a_0 - \xi_i)^{n-k_{j_r}-1}(2a_0 - 1)^{k_{j_r}}}{(n-k_{j_r}-1)! (k_{j_r}-k_{j_{r-1}})! \cdots (k_{j_2}-k_{j_1})! (k_{j_1})!} \\
 &\quad - \sum_{r=1}^{p} (-1)^r \sum_{j_r=r}^{j_{r-1}} \frac{(a_0 - \xi_i)^{n-k_{j_r}-1}(2a_0 - 1)^{k_{j_r}}}{(n-k_{j_r}-1)! (k_{j_r}-k_{j_{r-1}})! \cdots (k_{j_2}-k_{j_1})! (k_{j_1})!} \\
\end{align*}
\]

for \(x \in (0, 1) \), where

\[
 m_{\xi_i} = \frac{(a_0 - \xi_i)^{n-1}}{(n - 1)!} \\
 + \sum_{r=1}^{p} (-1)^r \sum_{j_r=r}^{j_{r-1}} \frac{(a_0 - \xi_i)^{n-k_{j_r}-1}(2a_0 - 1)^{k_{j_r}}}{(n-k_{j_r}-1)! (k_{j_r}-k_{j_{r-1}})! \cdots (k_{j_2}-k_{j_1})! (k_{j_1})!}.
\]

If there is a subsequence \(\{\xi_j\} \) of \(\{\xi_i\} \) which converges to \(\xi_0 \neq a_0 \), then it is evident that

\[
 f(x) = \lim_{j \to \infty} f_j(x) = e(m_{\xi_0}, \xi_0, n - 1; x)
\]

for each \(x \in (0, 1) \). On the other hand, if \(\{\xi_i\} \) converges to \(a_0 \), then

\[
 \lim_{i \to \infty} f_i(x) = m_{k_p} \left[\frac{(2a_0 - 1)^{(k_p)}}{(k_p)!} - \frac{(x - 1 + a_0)^{(k_p)}}{(k_p)!} \right] \\
 + \sum_{r=1}^{p-1} (-1)^r \sum_{j_r=r}^{j_{r-1}} \frac{(2a_0 - 1)^{k_{j_r}-k_{j_1}}[(2a_0 - 1)^{k_{j_1}} - (x - 1 + a_0)^{k_{j_1}}]}{(k_p-k_{j_r})! (k_{j_r}-k_{j_{r-1}})! \cdots (k_{j_2}-k_{j_1})! (k_{j_1})!} \\
 = e(m_{k_p}, a_{k_p}, k_p; x)
\]

for \(x \in (0, 1) \), where

\[
 m_{k_p}^{-1} = \frac{(2a_0 - 1)^{(k_p)}}{(k_p)!} \\
 + \sum_{r=1}^{p-1} (-1)^r \sum_{j_r=r}^{j_{r-1}} \frac{(2a_0 - 1)^{(k_p)}}{(k_p-k_{j_r})! (k_{j_r}-k_{j_{r-1}})! \cdots (k_{j_2}-k_{j_1})! (k_{j_1})!}.
\]

In either case it follows that \(f \in \text{ext } C_n \) and this completes the proof.
DEFINITION 6. Let e_0 denote the function in $\text{ext} C_n$ which is identically one and let $e(m_{1-\sigma_{n-1}}, 1 - a_{n-1}, n - 1; \cdot)$ be the function defined by

$$e(m_{1-\sigma_{n-1}}, 1 - a_{n-1}, n - 1; x) = \lim_{\xi \to 1-} e(m_\xi, \xi, n-1; x)$$

for $0 \leq x \leq 1$ and $n > 1$. Finally, let

$$e(m_{k_0}, a_{k_0}, k_0; \cdot) = e(m_{1-\sigma_{n-1}}, 1 - a_{n-1}, n - 1; \cdot)$$

and notice that $k_0 = 0$ if $a_1 = a_2 = \cdots = a_{n-1}$ or k_0 is the largest positive integer such that $a_{k_0} \neq a_{n-1}$.

If the mapping $\phi: [0, 1] \to \text{ext} C_n$, $n \geq 2$, is defined by

$$\phi(\xi) = e(m_\xi, \xi, n-1; \cdot)$$

for $0 \leq \xi \leq 1$, then it follows from the proof of Proposition 4 that ϕ is continuous. If $E = \phi([0, 1])$, then ϕ is a homeomorphism from $[0, 1]$ onto E, since $[0, 1]$ is a compact space and E is a Hausdorff space. By the Krein-Milman representation theorem, to each f in C_n there corresponds a regular Borel probability measure μ on $\text{ext} C_n$ such that

$$L(f) = \int_{\text{ext} C_n} L d\mu$$

for each continuous linear functional L on $M_n - M_n$, since both C_n and $\text{ext} C_n$ are compact subsets of $M_n - M_n$, $n \geq 2$. For $0 \leq x \leq 1$, the evaluation functional L_x defined by $L_x(f) = f(x)$ is continuous on $M_n - M_n$, so that

$$f(x) = \int_{\text{ext} C_n} L_x d\mu$$

for each $x \in [0, 1]$. Define ν on each Borel subset B of $[0, 1]$ by

$$\nu(B) = \mu(\phi(B)); \text{ i.e., } \nu = \mu \phi .$$

Since $L_x[\phi(\xi)] = e(m_\xi, \xi, n-1; x)$, then

$$\int_E L_x d\mu = \int_{\phi^{-1}(E)} L_x \phi d(\mu \phi) = \int_0^1 e(m_\xi, \xi, n-1; x) d\nu(\xi)$$

for $0 \leq x \leq 1$. Finally, by observing that $\mu(e_0) = f(a_0)$, since e_0 is the only function in $\text{ext} C_n$ which is positive at a_0, Equation (1) can be written as
\[f(x) = \int_0^1 e(m, x, n - 1; \alpha) \, d\nu(\xi) \]

\[+ f(a_0) + \sum_{k=0}^{n-2} e(m_k, a_k, k; x) \mu[e(m_k, a_k, k; \cdot)] . \]

It remains to prove that \(\mu \) is unique. Since \(\mu \) is supported by \(\text{ext } C_n \), then \(\mu \) is a maximal measure in Choquet's ordering \([6, \text{pp. 24, 70}]\). Thus, by the Choquet-Meyer uniqueness theorem, it suffices to prove that \(C_n \) is a simplex \([6, \text{p. 66}]\).

Lemma 7. Suppose \(f \in M_n - M_n \) and \(n \geq 2 \). Then there is a function \(g \in K_n \) such that \(g - f_{+}^{(n-1)} \in K_n \) and if \(h \) is any function in \(K_n \) such that \(h - f_{+}^{(n-1)} \in K_n \), then it must follow that \(h - g \in K_n \).

Proof. First assume that \(i_{n-1} = i_n = 0 \). Since \(f_{+}^{(n-1)} \in K_n - K_n \), then \(f_{+}^{(n-1)} \) is of bounded variation on every interval \([0, x]\), where \(0 < x < 1 \). Define \(g(x) = f_{+}^{(n-1)}(0) + P_0^x(f_{+}^{(n-1)}) \), where \(P_0^x(f_{+}^{(n-1)}) \) denotes the positive variation of \(f_{+}^{(n-1)} \) over \([0, x]\), \(0 \leq x < 1 \) \([8, \text{p. 85}]\). Then both \(g \) and \(g - f_{+}^{(n-1)} \) are nonnegative, nondecreasing and right-continuous on \([0, 1]\). If \(h \in K_n \) such that \(h - f_{+}^{(n-1)} \in K_n \), then it follows that \(h - g \) is nonnegative, nondecreasing and right-continuous on \([0, 1]\). Therefore,

\[0 \leq \lim_{x \to 1-a_0} I(h - g, n - 1; x) \leq \lim_{x \to 1-a_0} I(h, n - 1; x) , \]

which implies that both \(g \) and \(h - g \) are in \(K_n \).

If \(i_{n-1} \) and \(i_n \) are not both zero, then define

\[y = (1/2) \left[1 - (-1)^{i_{n-1}+i_n}(1 - 2x) \right] \]

and

\[F(x) = (-1)^{(i_{n-1})} f_{+}^{(n-1)}(y) \quad \text{for } 0 \leq x < 1 . \]

Let \(G(x) = F(0) + P_0^x(F) \) for \(0 \leq x < 1 \) and define \(g(x) = (-1)^{(i_{n-1})} G(y) \). Then \(g \) and \(g - f_{+}^{(n-1)} \in K_n \) and it follows from the first part of the proof that if \(h \) and \(h - f_{+}^{(n-1)} \in K_n \), then \(h - g \in K_n \).

Definition 7. If \(u \) is a function in \(M_n - M_n \), \(n \geq 2 \), then define the functions \(u_k, 0 \leq k \leq n - 2 \), by

\[u_0(x) = u(a_0) \quad \text{and} \quad u_k(x) = I(u^{(k)}(a_k), k; x) \quad \text{for } 1 \leq k \leq n - 2 \]

where \(x \in [0, 1] \).

Lemma 8. Suppose \(f \in M_n - M_n \) and \(n \geq 2 \). Then there is a
function \(g \in M_n \) such that \(g - f \in M_n \) and if \(h \) is any \(n \)-monotone function such that \(h - f \in M_n \), then it must follow that \(h - g \in M_n \).

Proof. First assume that \(f^{(k)}(a_k) = 0 \) for \(0 \leq k \leq n - 2 \) and let \(g^{(n-1)}_+ \) denote the function in \(K_n \) guaranteed by Lemma 7. Define \(g = I(g^{(n-1)}_+, n - 1; \cdot) \); then \(g \in M_n \) and

\[
g - f = I(g^{(n-1)}_+ - f^{(n-1)}_+, n - 1; \cdot) \in M_n.
\]

If \(h \) is an \(n \)-monotone function such that \(h - f \in M_n \), then \(h^{(n-1)}_+ \) and \(h^{(n-1)}_+ - f^{(n-1)}_+ \in K_n \) and it follows that \(h^{(n-1)}_+ - g^{(n-1)}_+ \in K_n \). If \(h^{(k)}(a_k) = 0 \) for \(0 \leq k \leq n - 2 \), then

\[
h - g = I(h^{(n-1)}_+ - g^{(n-1)}_+, n - 1; \cdot) \in M_n.
\]

If there is some integer \(p \) such that \(0 \leq p \leq n - 2 \) and \(h^{(p)}(a_p) \neq 0 \), then let

\[
h = h - \sum_{k=0}^{n-2} h_k,
\]

where \(h_0 = h(a_0) \) and \(h_k = I(h^{(k)}(a_k), k; \cdot) \) for \(1 \leq k \leq n - 2 \). Then \(h^{(k)}(a_k) = 0 \) for \(0 \leq k \leq n - 2 \) and \(h \) and \(h - f \in M_n \), since \(h \) and \(h - f \in M_n \) (cf. proof of Lemma 4). It follows that \(h - g \in M_n \) which implies that

\[
h - g = \tilde{h} - g + \sum_{k=0}^{n-2} h_k \in M_n
\]

since \(h_k \) is an \(n \)-monotone function for \(0 \leq k \leq n - 2 \).

On the other hand, if there is a nonnegative integer \(p \leq n - 2 \) such that \(f^{(p)}(a_p) \neq 0 \), then let

\[
\tilde{f} = f - \sum_{k=0}^{n-2} f_k
\]

where \(f_k \) is given by Definition 7. Since \(\tilde{f} \in M_n - M_n \) and \(\tilde{f}^{(k)}(a_k) = 0 \) for \(0 \leq k \leq n - 2 \), it follows from the first part of the proof that there is an \(n \)-monotone function \(\tilde{g} \) such that \(\tilde{g} - \tilde{f} \in M_n \) and if \(h \) is an \(n \)-monotone function such that \(h - \tilde{f} \in M_n \), then \(h - \tilde{g} \in M_n \). Let \(k_j, 0 \leq j \leq p < n - 1 \), denote those integers for which

\[
(-1)^k f^{(k)}(a_k) > 0
\]

and define

\[
g = \tilde{g} + \sum_{j=0}^{p} f_{k_j}.
\]

Then \(g \in M_n \) since
Let \(f_{k_j} = I(f^{(k_j)}(a_{k_j}), k_j; \cdot) = e(f^{(k_j)}(a_{k_j}), a_{k_j}, k_j; \cdot) \in M_n \)
for \(0 \leq j \leq p \), and
\[
g - f = \bar{g} + \sum_{j=0}^{p} f_{k_j} - f = \bar{g} - \bar{f} - \sum_{k \neq k_j} f_k \in M_n
\]
since \(-f_k \in M_n\) if \(k \neq k_j \). Suppose that \(h \) is an \(n \)-monotone function such that \(h - f \in M_n \). Then
\[
h - f - \sum_{k=0}^{n-2} (h - f)_k \in M_n
\]
which implies that
\[
h - f - \sum_{k \neq k_j} (h - f)_k = h - f - \sum_{k=0}^{n-2} (h - f)_k + \sum_{j=0}^{p} (h - f)_{k_j} \in M_n
\]
since \((h - f)_{k_j} \in M_n\) (cf. proof of Lemma 4). Since \(h_k \) is an \(n \)-monotone function for \(0 \leq k \leq n - 2 \), then
\[
h - f + \sum_{k \neq k_j} f_k = h - f - \sum_{k \neq k_j} (h_k - f_k) + \sum_{k \neq k_j} h_k
\]
\[
= h - f - \sum_{k \neq k_j} (h - f)_k + \sum_{k \neq k_j} h_k \in M_n.
\]
Therefore,
\[
h - \sum_{j=0}^{p} f_{k_j} - \bar{f} = h - f + \sum_{k \neq k_j} f_k \in M_n
\]
and \(h - \sum_{j=0}^{p} f_{k_j} \in M_n \) since \(h - \sum_{j=0}^{p} h_{k_j} \in M_n \) and
\[
h - \sum_{j=0}^{p} f_{k_j} = h - \sum_{j=0}^{p} h_{k_j} + \sum_{j=0}^{p} (h_{k_j} - f_{k_j}) = h - \sum_{j=0}^{p} h_{k_j} + \sum_{j=0}^{p} (h - f)_{k_j}.
\]
It follows that \(h - \sum_{j=0}^{p} f_{k_j} - \bar{g} \in M_n \), which implies that \(h - g \in M_n \).

If the function \(g \) of Lemma 8 is denoted by \(f \lor 0 \), then the least upper bound of two functions \(f_1 \) and \(f_2 \in M_n - M_n \) can be given by \(f_1 + (f_2 - f_1) \lor 0 \) and therefore \(M_n - M_n \) is a vector lattice. Thus, \(C_n \) is a simplex and the proof of Theorem 2 is complete.

3. Remarks. If \(i_2 = 0 \), then \(C_2 \) is the set of functions \(f \) which are monotonic and convex on \([0, 1] \) such that \(\max \{f(x) : 0 \leq x \leq 1\} = 1 \). If \(i_1 = 0 \), then the \(C_2 \) functions are nondecreasing and \(e(m_\xi, \xi, 1; x) = 0 \), \(x \in [0, \xi] \) and \((x - \xi)/(1 - \xi)\) for \(x \in [\xi, 1] \), where \(0 \leq \xi < 1 \). Thus, to each \(f \in C_2 \) there corresponds a unique nonnegative regular Borel measure \(\nu \) on \([0, 1] \) such that
\[
f(x) = f(0) + \int_0^x \frac{x - \xi}{1 - \xi} d\nu(\xi)
\]
for $0 < x < 1$. On the other hand, if $i_k = 1$, then these functions are nonincreasing and $e(m_{i_k}, \xi, 1; x) = 1 - (x/\xi)$, $x \in [0, \xi]$ and 0 for $x \in [\xi, 1]$, where $0 < \xi \leq 1$. It follows from Theorem 2 that to each f in C_0 there corresponds a unique nonnegative regular Borel measure ν on $[0, 1]$ such that

$$f(x) = f(1) + \int_x^1 [1 - (x/\xi)] \, d\nu(\xi)$$

for $0 < x < 1$.

If $i_k = 0$ for every $k \leq n$, then $e(m_{i_k}, \xi, n - 1; x) = 0$, $x \in [0, \xi]$ and $[(x - \xi)/(1 - \xi)]^{n-1}$ for $x \in [\xi, 1]$, where $0 \leq \xi < 1$, and

$$e(m_{i_k}, 0, k; x) = x^k$$

for $x [0, 1]$, where $1 \leq k \leq n - 2$. Thus, for each function f in C_n, there exist unique nonnegative real numbers $\alpha_1, \ldots, \alpha_{n-2}$ and a unique nonnegative regular Borel measure ν on $[0, 1]$ such that

$$f(x) = f(0) + \sum_{k=1}^{n-2} \alpha_k x^k + \int_0^x \left(\frac{x - \xi}{1 - \xi} \right)^{n-1} \, d\nu(\xi)$$

for $0 < x < 1$. In this case, the intersection of the M_n cones is the class of absolutely monotonic functions on $[0, 1]$. It is well known that if $f \in C_n$ for every n, then

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(0) \left(x^n/n! \right)$$

for $0 \leq x < 1$. For a discussion of these cones see [5].

Lastly, if $i_k = (1/2) [1 + (-1)^k]$ for $1 \leq k \leq n$, then

$$e(m_{i_k}, \xi, n - 1; x) = 1 - [1 - (x/\xi)]^{n-1},$$

$x \in [0, \xi]$ and 1 for $x \in [\xi, 1]$, where $0 < \xi \leq 1$, and

$$e(m_{i_k}, 1, k; x) = 1 - (1 - x)^k$$

for $x \in [0, 1]$, where $1 \leq k \leq n - 2$. It follows from Theorem 2 that for each function f in C_n, there exist unique nonnegative real numbers $\alpha_1, \ldots, \alpha_{n-2}$ and a unique nonnegative regular Borel measure ν on $[0, 1]$ such that

$$f(x) = 1 - \sum_{k=1}^{n-2} \alpha_k (1 - x)^k - \int_x^1 [1 - (x/\xi)]^{n-1} \, d\nu(\xi)$$

for $0 < x < 1$. In this case, the C_n functions were called alternating of order n by Choquet [2, p. 170]. It can be shown that if $f \in C_n$ for every n, then

$$f(x) = \sum_{n=0}^{\infty} f^{(n)}(1) \left[(x - 1)^n/n! \right]$$
for $0 < x \leq 1$. For a proof of this fact together with a discussion of these cones see [7].

REFERENCES

Received March 15, 1971.

UNIVERSITY OF MISSOURI
Max K. Agoston, *An obstruction to finding a fixed point free map on a manifold* 543

Nadim A. Assad and William A. Kirk, *Fixed point theorems for set-valued mappings of contractive type* ... 553

John Winston Bunce, *Characterizations of amenable and strongly amenable C*-algebras* ... 563

Erik Maurice Ellentuck and Alfred Berry Manaster, *The decidability of a class of AE sentence in the isols* ... 573

U. Haussmann, *The inversion theorem and Plancherel’s theorem in a Banach space* ... 585

Peter Lawrence Falb and U. Haussmann, *Bochner’s theorem in infinite dimensions* ... 601

Peter Fletcher and William Lindgren, *Quasi-uniformities with a transitive base* 619

Dennis Garbanati and Robert Charles Thompson, *Classes of unimodular abelian group matrices* ... 633

Kenneth Hardy and R. Grant Woods, *On c-realcompact spaces and locally bounded normal functions* ... 647

Manfred Knebusch, Alex I. Rosenberg and Roger P. Ware, *Grothendieck and Witt rings of hermitian forms over Dedekind rings* ... 657

George M. Lewis, *Cut loci of points at infinity* ... 675

Jerome Irving Malitz and William Nelson Reinhardt, *A complete countable $L_{01}^{\omega_1}$ theory with maximal models of many cardinalities* ... 691

Wilfred Dennis Pepe and William P. Ziemer, *Slices, multiplicity, and Lebesgue area* ... 701

Keith Pierce, *Amalgamating abelian ordered groups* ... 711

Stephen James Pride, *Residual properties of free groups* ... 725

Roy Martin Rakestraw, *The convex cone of n-monotone functions* ... 735

T. Schwartzbauer, *Entropy and approximation of measure preserving transformations* ... 753

Peter F. Stebe, *Invariant functions of an iterative process for maximization of a polynomial* ... 765

Kondagunta Sundaresan and Wojbor Woyczynski, *L-orthogonally scattered measures* ... 785

Kyle David Wallace, *C_2-groups and λ-basic subgroups* ... 799

Barnet Mordecai Weinstock, *Approximation by holomorphic functions on certain product sets in C^n* ... 811

Donald Steven Passman, *Corrections to: “Isomorphic groups and group rings”* 823

Donald Steven Passman, *Corrections to: “Isomorphic groups and group rings”* 823

Don David Porter, *Correction to: “Symplectic bordism, Stiefel-Whitney numbers, and a Novikov resolution”* ... 825

John Ben Butler, Jr., *Correction to: “Almost smooth perturbations of self-adjoint operators”* ... 825

Constantine G. Lascarides, *Correction to: “A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer”* ... 826

George A. Elliott, *Correction to: “An extension of some results of Takesaki in the reduction theory of von neumann algebras”* ... 826

James Daniel Halpern, *Correction to: “On a question of Tarski and a maximal theorem of Kurepa”* ... 827