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Let P be a polynomial with real non-negative coefficients
and variables x;;,1=1,---,k,j=1,---,n. Letd= Zln,
Let R; be the d-dimensional real vector space. Let M be the
subset of R; defined by

]\Zz{x]weRd,wi,jZ0,2“’1’,1':1}
j=1

where the symbols z; ; denote the components of z. If z is
a vector in the mterlor of M define =(x) as the vector in M
with components x} ; given by
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The expression on the right is evaluated at x. The trans-
formation - is defined on the boundary of M by the same
formula if the denominators do not vanish.

Let F be the set of fixed points of ¢ in M. It is shown
that if = is a homeomorphism of M onto itself, there is a set
of d —k functions fi, ---, fo-r defined on M — F such that
fi#) = fi(z(x)) for x€ M — F. The functions f; are continuous
and independent on an open dense subset of M — F. Explicit
expressions for certain invariant functions are also obtained.

1. The transformation 7. The transformation 7 defined in the
introduction can be used to iteratively find local maxima for the poly-
nomial P. It was shown by L. E. Baum and J. A. Eagon [1] that
if P is a homogeneous polynomial with positive coefficients and if z
is an element of M such that z(z) is defined then either z(x) = (x) or
P(z(z)) > P(x). This result was generalized at the suggestion of 0.
Rothaus by L. E. Baum and G. R. Sell [2] to arbitrary polynomials
with positive coeflicients.

It will be assumed in this paper that the transformation 7 is a
homeomorphism of M onto itself. According to an unpublished result
of L. E. Baum, 7 is a homeomorphism of M onto itself if and only
if the expression for P as a sum of distinct monomials with positive
coefficients contains monomials ¢; ;x; ;¢ for all t=1, -+, k,7=1, +++, n;
where ¢;,; > 0 and w; ; is an integer greater than zero. Since this con-
dition is satisfied if and only if 7 is defined on all of M, a necessary
and sufficient condition that 7 is a homeomorphism of i1 onto itself
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766 P. F. STEBE

is that ¢ be defined an all of M. We will not prove L. E. Baum’s
result here, but will give a single example of a polynomial P for which
7 is a homeomorphism. Let

g
Pzzzllefj.
7=

=1

The r-transformation associated with P is given by

rr
X, = M%’J .
2,075
The inverse of ¢ restricted to M is given by
x’.llvm
xi,j = TEL_._
S w
h=1

where the real positive mth roots are to be chosen.

2. The existence of invariants.

2.1. Notation and definitions. As above, we let I denote the
space of real vectors (,,,, «««, @,n, =+, Tpy *+*, Xs,,) satisfying x;; =
0’
and

i Li,; = 1.
Let M be set of real vectors

(yl,ly "t ylml‘ly oy Yy 000y yk,n,’;‘l)

satisfying ¥;; = 0 and
D ¥ =1.

If yeM let (y) be the point of M with coordinates x;; = ¥;,; for
1<j=<mn._ and

Liyn; = 1- n_i‘al Yii «
=1
Clearly + is a homeomorphism of M onto I.

Let @ be a transformation of a set S onto itself. We inductively
define @™"(x) for n = 0 and z€ S by ?%(x) =2 and @*(x) = Y(¥""(2)).
If @ is a one-to-one transformation of S onto itself, we inductively
define @™(x) for n < 0 and z € S by the rule " (z) = @~*(®™(z)). Also,
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if @ is a one-to-one transformation of S onto itself, we have @™**(x) =
P"(p*(x)) for all xS and all pairs of integers (r, s).

Let {z,} be a sequence of points of a topological space S. A cluster
point of {x,} is a point p of S such that every neighborhood of p
contains infinitely many elements of the sequence {x,}.

2.2. Proof of the existence theorem.

LEMMA 2.1. The transformation T = "'ty of M into itself has
the following properties:

(i) Let P be the polynomial defined on M by the formula P(y) =
P(y(y) for ye M. If yeM, either y = T(y) or P(T(y)) > P(y).

(ii) The set of fixed points of T on M 1is the union of the set
of eritical points of P on M and the sets of critical points of P
restricted to boundary simplices of M.

(iii) The set of fixed points T in M has only finitely many com-~
ponents. KEach component of the set of fived points of T is compact
and P is constant on each of the components of the set of fixed points
of T.

(iv) T 4s a homeomorphism of M onto itself if and only if © is
a homeomorphism of M onto itself.

(v) If xeM, every cluster point of a sequence {T'™(x)}, n = 0, is
a fixed point of T. If T is a homeomorphism, every cluster point
of the sequence {T™(x)} is a fixzed point of T.

Proof. To prove (i), let y be an element of M such that T(y) =
9. Then 4 'z4p(y) # y and Ty(y) #= (y). Thus +(y) is not a fixed
point of 7 and it follows that

P(T(y)) = Plyy™ 't (y) = Py (y) > Py () = P@y) .

Statement (i) may be well known but include a proof for the
sake of completeness. Note first that « maps the set of fixed points
T onto the set of fixed points of z. Let @ be a fixed point of = in
M and let « have coordinates (x;;). The equation 7(x) = = implies the
equations

L oP oP )
» i — 22 ) =0
@ ’J<zx‘ v kaxi,,, ax.,;,j
for all ¢, j, and since 7 is defined at z, these equations imply 7(x) =
. If x is an interior fixed point of M, no x;,; is zero so that z(x) = &
is equivalent to

oP oP

axi,]' aximi

=0
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for all 7, j. But this just the condition that 4 *(y) be a critical point
of P. Thus the fixed points of T interior to M are just the interior
critical points of P.

Now suppose ¥ is a fixed point of T on the boundary of M. Clearly
y(y) is a fixed point of = on the boundary of M. If (y) =z = (2:,),
certain variables w;; are zero at z. Let M, be the part of the
boundary of I determined by the equations x;; = 0 for all 4, j such
that z;; = 0. If no z,, is zero, it follows as before that y is a
critical point of P restricted to M, = *(M,). Note that M, is a
subset of the boundary of M. If some z;,, is zero, the variables u;,;
describing M, are subject to the additional constraint > u,; = 1,
where the sum is over the subscripts ¢, j such that z;; = 0. Since
the partial derivatives 0P/ox; ;(z) are equal for %, j such that z;; + 0,
it follows that y is a critical point of P for P restricted to M,. Con-
versely, if y is a critical point of P restricted to M,, it follows that
y is a fixed point of 7.

Let us prove (iii). Let R, be d-dimensional real space, with coor-
dinates x;; as described in the introduction. Let P be a polynomial
defined on R,. Let S, be the set of points of R, satisfying the equa-
tions:
oP oP

axi,j ax'imi

§ xi; =1 for all 7, and
J=1

for all 4, j, where the partial derivatives of P are evaluated at
(@, oo, @huy o0, ¥ia,)e According to H. Whitney [5], a real algebraic
variety such as S, has only finitely many components and each
component is a union of finitely many components of differentiable
manifolds (of various dimensions). Let @ = P(x},, ---,#},). The
partial derivatives of @ with respect to @, ; for § < m; with the restric-
tions
Sl =10=1 .k
Jj=1

are all zero on S,. Thus @ can have only one value on a component
of a differentiable manifold contained in S,, and thus can have only
finitely many values on S,. Since @ is continuous and the components
of S are arcwise connected, @ must be constant on each component
of S..

Let o be the mapping of R, into itself given by @(®.,, «+-, ¥1,.,) =
(@3, <+, 2%,,). The set S = @(S) is given by the relations:

(i) x,; =0 for all 4, 7,

(i) >ma;=1foria=1,... k% and

(iii) 0P/dx;; = 0P/ox;,,, (evaluated at (x,,, «--, @;,,,) for all 4, j.
Since @ is continuous, S can have only finitely many components.
Since Q(x) = P(p(x)) for all xe R;, the range of P on S is then range
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of @ on S,. Hence P assumes only finitely many wvalues on S, and
by continuity of P, P is constant on each component of S. Since S
is just the 4 image of the set of critical points of P on M, S is the
+ image of the subset of fixed points of T corresponding to these
critical points.

The same argument applies to the sets of critical points of P
restricted to the boundary sets of M given by certain z;; = 0. Since
the set F of fixed points of T is the union of the set of critical points
of P on M and the sets of critical points of P restricted to each of
finitely many subsets of the boundary of M, F has just finitely many
components, and P assumes only finitely many values on F. By con-
tinuity, P is constant on each component of F. Since F' is compact,
each of its finitely many components is also compact.

Part (iv) of the lemma follows from the fact that + is a homeo-
morphism of M onto M. Since T = +'z+, T is 2 homeomorphism of M
onto M if = is a homeomorphism of M onto M. Since 7 = Ty, the
converse follows.

The final result, (v), follows directly from the Baum-Eagon in-
equality (c.f. Section 1 of this paper), and Lemma 2.1 of Bhatia-Szego
[3].

In the following, we restrict our attention to those transformations
7 for which 7 is a homeomorphism of M onto itself and 7T is a homeo-
morphism of M onto itself.

There is an obvious relation between the functions f defined on
M such that f(T(x)) = f(z) for all # in M and the functions g defined
on M such that g(z(y)) = g(y) for all ye M. If f(T(x)) = f(x) for all
x €M then g(y) = f(¥(y)) is such that

9 (W) = fYTy™ (W) = ATy () = f¥®) = 9(y) -

Conversely, if g(r(y)) = g(y) it is clear that f(z) = g(v'(x)) is such
that f(T(®)) = f(x). Thus we can find all invariant functions of =
from the invariant functions of 7.

A spherical neighborhood of a point ¢ of the interior of M is a
d — k dimensional ball contained in M with center at . If z is on
the boundary of M in d—% dimensional real space, a spherical neighbor-
hood of # in M is the intersection of M and an d — %k dimensional ball
with center at x.

LEMMA 2.2. Let T be a homeomorphism of M onto itself. If =,
ts a point of M but not a fixed point of T, there is a spherical neigh-
borhood N of =, in M such that the sets T"(N) are disjoint for —co <
r < oo,

Proof. Since 2, is not a fixed point of T, T(x,) # x,. By Lemma
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1, () P(T(x)) — P(x,) = 4 > 0. Since P is continuous on M, there is
a neighborhood U of x, such that P(x) < P(x,) + 4/8 for all x¢ U and
a neighborhood V of z(x,) such that P(y) > P(T(x,)) — 4/3 for all ye
V. Since T is a continuous transformation, T(V) N U is a neighbor-
hood of %, Let N be a spherical neighborhood of %, contained in
T (V)N U. Since Nc U and T(N) cV, for arbitrary x € N, y € T(N)
we have

P) < Play) + g P(T()) — g < P).

If xe Nand z€ T™(N) for m =1, z = T™(u) for some u € N and P(z) =
P(T(w)) > P(x) since T(u) € T(N). Thus T™(N)N N is empty for m = 1.

Suppose T"(N) N T*(N) is not empty for » = s. We agssume r > s
andletye T"(N)N T*(N). Then T "(y) e Nand (T (y))=T"*(y) e N
so that N and 7" (N) intersect. This contradiction shows that
T"(N)N T#(N) is empty for r = s.

If ©, ye M, let |2 — y| denote the Euclidean distance between
and y.

LEMMA 2.3. Let T be a homeomorphism of M onto itself. There
s a positive number & such that if x is a point of M but not a fized
point of T, there is at least one element of the sequence {T"(x)} ot
distance greater than or equal to € from the set of fixed points of T.

It follows from Baum and Sell [2] that the set F' of fixed points
of T is an asyptotically stable set. This Lemma is a consequence of
Theorem 4.19 of Bhatia-Szego [3].

A fundamental set S for T on M is a subset of M defined as
follows: S contains no fixed point of T but if x is not a fixed point
of T, T*(x) e S for a single integer n depending on S and z.

LemmA 2.4. If T is a homeomorphism of M onto itself, T has
a measurable fundamental set.

Proof. Let D. be the set of points of M at distance greater
than or equal to ¢ from F, the set of fixed points of 7. According
to Lemma 2.3, ¢ > 0 may be chosen so that D, contains at least one
element of every sequence {T"(z)} for ¢ F. Since D, does not meet
I, it follows from Lemma 2.2 that about each x € D, there is a spheri-
cal neighborhood N, such that the sets T™(N,) are disjoint (if 2 is a
boundary point of M, the set N, is the intersection of a ball with M).
Since D, is compact, it is compact relative to M so that there may
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be selected a finite covering N, ---, N, of D, from the sets N..
Clearly, each sequence {T"(x)} for e M — F can meet an N; in at
most one point.

Let

Ll = Nl, L2 = NZ - U Tﬂ(Nl)y ety
+oo foo +oo
L, =N, —UTN)—UTN) = +o0 = U TN,

Clearly U L; is a fundamental set for T in M. Since T is continuous
and each N, is measurable, |2 T"(N;) is measurable. Hence each
L; is measurable and {7 L; is measurable.

Let F be the set of fixed points of = in M.

THEOREM 1. If T is a homeomorphism of M onto itself, and F
18 the set of fized points of T, there exist d — k T-invariant functions
of T which are continuous and independent on an open dense subset
of M — F. Thus there are d — kt tnvariant functions continuous and
independent on an open dense subset of M — F.

Proof. Let S be a fundamental set for T on M, as constructed
in the proof of Lemma 3.4. Let S* be the boundary of S and let
B =z T"S*). Then M —F— Bisdensein M — F. ForxzeM—F
let o(x) be the element of {T"(x)} in S. We will show that @ is con-
tinuous on M — F — B.

If xe M — F — B, ¢(x) is the unique intersection of {7T"(x)} with
S. Hence there is an integer m such that 7™(x) € S. Since z ¢ B, T™(x)
is an interior point of S. Let U be a neighborhood of T™(x) in S.
Since T™ is continuous, V = (T™)Y(U) = T~™(U) is a neighborhood
of z. If yeV, T™y)e S so that @(y) = T™(y) for all ye V. Hence
@ is continuous in a neighborhood of x¢e M — F — B, and M — F — B is
open. Clearly, @ = T™ for some m in a neighborhood of x ¢ M — F — B,
If we set P(®) = (£u(a), ) Fomea(®), +++, fim,_,(@)) 50 that the f,() are
the components of @(x), it follows that the f; ;(x) are continuocus and
independent on M — F' — B, since ®(x) is a local homeomorphism on
M — F — B. Since 9(T(x)) = @@), fi,;(T(x)) = f;,;(x) so the f;; are
T-invariant.

3. The construction of invariant functions. In order to con-
struct invariant functions, we will use more information about
sequences {T"(x)} for z not a fixed point of 7 in M. As above, we
assume that 7 is a homeomorphism of M onto itself. For xe M, let
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L, be the set of cluster points of {T"(x)|% > 0} and let 7, be the set
of cluster points of {T"(x)|n < 0}. Note that L, and [, are respec-
tively the w and a limit sets of .

LemmA 3.1. The set of cluster points of {T™(x)} is the union of
l, and L,. The value of P is constant on each of 1, and L,. If P(L,)
denotes the value of P on L, and P(l,) denotes the value of P on 1,
we have P(L,) > P(l,) whenever x is not a fixed point of T in M.

The proof of Lemma 3.1 is straightforward.

LeEMMA 3.2. Let x, be an element of M. Fither there is a neigh-
borhood N of x, such that P(L,)) = P(L,) for all ze N or in every
neighborhood of w, there is an ® such that P(L,) > P(L,).

Proof. Suppose there is a neighborhood N, of x, in M such that
P(L,) = P(L,) for all ze N,. Let n be a positive number. Let S’
be the set given by S, = {z|P(L,) > P(L,) — 7). We will show that
each S, is open. If x is an element of S,, there is an m such that
P(T™(x)) > P(on) — 7. Since T™ is continuous, there is a neigh-
borhood N, of % such that P(T"(y))>P(L,) — 7 for all y in N,. But
P(L,) = P(T"(y)) for all ye M so that P(L,)eS, for all y in N,.
Hence S, is open. Let N(n) = S, N N,. Since &, is an element of S,
for all positive », N(») is not empty for » > 0. Since N(») is contained
in N,, and S,, P(L,) = P(L,) = P(L,) — 7 for all # in N(y). Since
the points of L, are in F, the set of fixed points of T, P(L,) can
assume only finitely many values. Hence for » sufficiently small

P(L,) = P(L,) =z P(L,) — 7

implies that P(L,) = P(L,), and so for some 7, < N(7) implies that
P(L,) = P(L,).

LEMMA 3.3. Let x, be an element of M. FEither there is a neirgh-
borhood N, of x, in M such that P(on) = P(L,) for all = in N,, or
every mneighborhood N of x, contains an open subset @y such that
P(L) = P(L,) for all y and z in Q.

Proof. Suppose x, is an element of M and there is no neighbor-
hood U of w, in M such that P(L,) = P(L,) for all @ in U. Let N
be a neighborhood of z,. According to Lemma 3.2, there is an element
¢ of N such that P(L,) > P(L,). Let K be the least upper bound
of P(L,) for # in N. Since the range of P(L,) is finite, there is a
point y of N such that P(L,) = K. Thus P(L,) = P(L,) for all = in
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N, and N is a neighborhood of y. 13y Lemma 3.2, there is a neigh-
borhood U of y such that P(L,) = P(L,) for all z in U. Let &, =
NnU.

Using the fact that if T is a homeomorphism of M onto itself,
T~ is defined and either ¢ = T~(x) or P(T'(x)) < P(z), we can modify
the above arguments to prove a similar lemma about the function
PQ,).

LEMMA 3.4. Let x, be an element of M. FEither there is a neigh-
borhood N, of ®, in M such that P(l,) = P(l,) for all  in N,, or
every mneighborhood N of x, contains an open subset Py such that
P(l,) = P(l,) for all y and z in Py.

THEOREM 2. There 1s an open dense subset G of M — F such that
for any function f continuous on M, the series

~+oco — _
2 AT @)[P(T™(=) — P(T"7"(@))]
represents a T invariant function continuous on @G.

Proof. Let G, be the set of all elements  of M such that P(L,)
is constant in a neighborhood of z. Let G, be the set of all elements
2 of M such that P(l,) is constant in a neighborhood of z. Clearly,
G. and G, are open relative to M and by Lemmas 3.8 and 3.4, each
of G, and G, is dense in M. Hence G=(M - F)NG NG, is an
open dense subset of M — F.

For each = in M let S(x) denote the series

S@) = 3 P(T"@) — B(T™@) -

Now S(x) converges at each x to P(L,) — P(l,).

Let y be an element of G. There is a neighborhood U of y such
that S(x) represents the constant function in U. Since y¢F and F
is compact, there is a neighborhood V of y containing no fixed points
of T. Let W be a neighborhood of y such that Wc UNV. Now
S(z) is a series of positive terms converging to a continuous function
on W, and so by E. C. Titchmarsh [4], art. 1.81, S(z) converges
uniformly on W. Let f(x) be any function continuous on M. The
series

F@) = S AT @)IB(T(@) — HT@)

converges uniformly on W since f is bounded on M. Since f, P and
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T are continuous, F(z) is continuous on W and hence at y. Clearly
F(T(x)) = F(x), so the function F is a continuous T invariant function
on G.

We initiate the study of differentiable T invariant functions by
defining certain series of continuous functions on G, the set defined
in the proof of Lemma 3.4. Recall that a point x, of M is a point
of G if and only if z, is not a fixed point of 7 and there is a neigh-
borhood N of %, such that the functions P(L,) and P(l,) are constant
on N.

LEMMA 3.5. If a function h(x) is defined on all of M — F by
the formula

wwm~ﬂw+%@w—ﬂm

M) = P — Py

’

then h(x) has the following properties:

(i) h(z) is defined and nomnegative on M — F,

(il) M(x) is continuous at every point of G, and

(iil) if x, ©s a point of G, there is a metghborhood V of x, such
that V is contained in G, and an integer m > 0 such that

WT(@)) > -
4
and
0 < MT*x) < %
for all m >m and ze V.

Proof. 1If z, is an element of M — F, x, is not a fixed point of
T and hence P(L,) — P(l,) > 0. Hence h(x) is defined on M — F.
Since P((L,) > P(xz) and P(x) > P(l,) for » in M — F, h(z) is positive
on M — F. To prove (ii), let z, be a point of G. By the definition
of G, there is a neighborhood N, of w, such that P(L,) and P(l,) are
constant on N,. By the definition of G, %, is not a fixed point of T
so that P(L,) — P(,) > 0. Hence P(L,) — P(l,) is a nonzero constant
on N,. Since P(x), P(L,) and P(l,) are continuous in N, k(z) is con-
tinuous in N, and hence at «,.

To prove (iii), let x, be a point of G and let N, be a neighbor-
hood of z, such that P(L,) and P(l,) are constant on N,. Then G D
N,. Let V be neighborhood of », such that Vc N, c G. As in the
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proof of (ii), A(x) is continuous on N, and hence on V. Since T isa
homeomorphism of M onto itself, 7" is a continuous transformation
of M onto itself for arbitrary integral n. Hence A(T"(x)) is continuous
on V for arbitrary integral ». Let n be an integer. Since P(L,.,) =
P(L,) and P(l,.,) = P(l,) the difference between h(T"*'(x)) and h(T"(x))
is given by the formula

3BT (@) — P(T*(@))]

T (@) — M(T"(x)) = —

No point of N, is a fixed point of T, since
P(Lynw) — Pllenw) = P(L,) — P(L.)
and
P(L,) - P(,) = P(L,) — P(l,) > 0.
Hence
KT () < h(T"(x))

for all # in V and all integers n. Hence A(T"(x)) is a monotone
decreasing function of n for each x in V. Since lim, .A(T*()) = 1/2
and lim,__.. A(T™()) = 2 for all & in V, it follows from the compact-
ness of V that there is an integer m such that

2 > W(T-"(z)) > ii—

and

3 1
= > nT" > —
1 > MT™(x) = 5
for all integers » > m and all elements x of V.

LEMMA 3.6. Let h(x) be the function defined in Lemma 3.5. Let
the sequence p,(x) be inductively defined for integral m by the rules:

(1) »=1

(i1)  Dpri(@) = A(T™(@))Pps(®) for n =1

(iii) p-.(®) = P (@/M(T™(®) for n = 1.
If ®, is an element of G every p,(x) is continuous at %, and there is
a netghborhood V of x,, a constant K and an integer m such that

0 < pu() < K-(%)W—m

for all  in V and all n such that |n}| > m.
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The proof of Lemma 3.6 is straightforward and has been omitted.
LemmaA 3.7, If q.,.(x) is defined by the formula

Gurla) = L=
2. [ps@)]"

je—oo

then

(i) each q,,. (%) is defined and continuous for x ¢ G,

(ii) ’Lf; %, 18 an element of G, there is a meighborhood V of x,
such that Vc G, and an integer m such that

0 < ¢u.@) < ((%\)T)'M—m

for all m such that |n| > m and all positive integers r.

(i) for all ® in G, ¢, .(T(®)) = Qui1,(2),

iv) if f(x) is a continuous function on M, and r and s are
positive integers

+oo
3 AT @) @)
defines a continuous T-invariant function on G.

Proof. To prove statement (i), let @, be a point of G. According
to Lemma 3.6, there is a neighborhood V of x, such that V< G and

|n]—m
0< pute) < -(2)
for n sufficiently large. Hence the series

4o
S, palo)
converges uniformly for all # in V. Since p,(x)" is continuous in V,
and

S pu) > ey =1,

every ¢,.(x) is defined and continuous in V. Since =, is an arbitrary
point of G, statement (i) is proven.

To prove statement (ii), let z, be a point of G. According to
Lemma 3.6, there is a neighborhood V of x, such that Vc G, a
constant K and an integer v such that

0 < pu(@) < K(%)"'_v .
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Let m be so larger that K-(8/4)* < 1. Then we have

0 < P < (—?’—)'M-m ,

4
so that
0<p@ < ((2))".
Since

S o)y > p(@ =1,

we can obtain the inequality of (ii).
Statement (iii) follows directly from the observation that whenever
2.(%) is defined, we have

(T — Dot1(X) .
D.(T()) Thin)

To prove statement (iv) note that wherever all ¢, .(x) are defined
we have

F(T o(T@) @, (T@))* = F(T"*(@))Qus1,+(®)"

so that the T invariance of the series of (iv) follows. Since f(x) is
continuous on M and M is compact, |f(x)| is bounded on M. By part
(iii), the series of part (iv) converges uniformly in a closed neighbor-
hood of each point of G for all positive integers ». Hence if » and
s are arbitrary positive integers,

oo
S AT @) @)
represents a continuous T-invariant function on G.

Let J be the Jacobian of the transformation 7 and let [J| be the
determinant of J. If |J]| is bounded away from zero on M, we can
construct 7 invariant functions which are differentiable on an open
dense subset of M — F. We can show that the hypothesis that |J|
is bounded away from zero on M and 7T is a homeomorphism are
reasonable by an example. Let P be any polynomial with positive
coefficients defined on /. Let R be the polynomial given by the
formula

i=1

B =3 (%)
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and let Q. = R + ¢P. For ¢ >0, Q. has positive coefficients and by
the unpublished result of L. E. Baum stated above, the T transforma-
tion T. associated with @, is a homeomorphism of M onto itself. The
T transformation associated with R = Q, is the identity transformation
so that the determinant of the Jacobian of T, is 1. If we let J, be
the Jacobian of T, |J.| is a continuous function of ¢, and |J,|—1 as
¢— 0 at each point of M. Since M is compact, there is an ¢ such
that [J.| > 1/2 at every point of M.

In the following we will assume that |J| is bounded away from
zero on M, but we note that local results can be obtained by restricting
our attention to elements # of M such that |J| is bounded away from
zero in some neighborhood of the sequence {T'*(x)}.

LEMMA 3.8. If T is a homeomorphism of M onto itself, the
Jacobian determinant |J| of T is bounded away from zero on M and
tou,0(@) demotes the (u, v) component of T™(x), then:

(i) for every n and subscript pair <, 7, 0/0%;;(t,,.,.(%)) s con-
tinuous on M;

(ii) there is a comnstant B such that

|2 tuunla)| < B
0%;, ;

%3

for all (3,7) and all x in M;
(iii) 4f C is a compact subset of G there is a positive integer r
such that the first partial derivatives

0

N7 X
a%q ()

(see Lemma 3.7 for the definition of the functions q,,.(x)) are continuous
in C and there are constants L, and L, such that

|20, @)| < LLy"
axm-

and 0 < L, <1, for all z in C.

Proof. Since T* is a rational transformation of M, with nonzero
denominators, 0/0%; ;(t.,...(%)) is continuous on M for all » = 0. Since
the Jacobian determinant of T is bounded away from zero on M, the
same result holds for 0/0x;,;(t_,,.,.(®)).

To prove (ii), note that

0 ot - Ot 1,0,0(%)
t% ww — 1,%5% Tn 1 n—1,u%,v
0%; @) ;;' 0%,,, ( @) ox

L1y
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for all n and every « in M. Since

atl,u,v
s (®)

is bounded on M for all (r,s), it follows inductively that there are
bounds L, and R, such that

l—a—tn,u,v@c){ < LR
0%;,;

for all n > 0. Since the determinant of

= ()

(2%

is bounded away from zero on M, the elements of the matrix J=' are
bounded on M. It follows that there are constants L, and R, such
that

l 9 t'n,u,v(x)l < L2°R;

)
for all n < 0. Clearly there is a constant B such that B'"' > L,-R/"
and B*!' > L,-R\*, so that

I

tan®)| < B
3%,;
for all n, w, v and all x ¢ M.
To prove (iii) we will show first that for a given x,€ G there is
a closed neighborhood V, of x, and an integer 7 such that
=0
>

—= 0,5

[p.(@)]"

converges uniformly in V,,O for all » = 4. By Lemma 3.6, there is a

neighborhood V of , such that G > V, a bound K and an integer m
such that

AN
0< p.0) < K-(2)

for all ze V.
For n > 0 we will inductively find a bound S such that
0 nt
!69&,.,,-1)"(:”)] < 8.

We have
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a_a__pn(x) = 2 T @) p.iie)
X

457 2%

= MT"(x))

at’ﬂ UV
Das (%) + Poa(®) Z s
axi,y xu 2 axi,i

Now 0 < A(T*(x)) < 2 for ¢ V, and there is a bound B, such that
| Prs(®@)| < B, for zc V. For every subset of G,

oh _ __?_;_ 0%, v( P)

is bounded on G since P is a polynomial and P(L,) — P(l,) ranges
over a finite set not including zero for all xe€ G. Since G is closed
under the transformation T, there is a constant B, such that |ok/ox,,,|<
B, at T*(x) for every element « of V. Thus

J 0

+ dB,B,B" .
me-

o] < 2|2
0;,;

If K, is maximum of 2,dB,B, and B we have

< Kl(‘go%jpn_i(w)} + Kf) .

0
0;,;
Since p,(x) = 1, we have

}a pl(w)’<Kz

pz(x)’ < 2K
0%;,;

and

’ 9 (x)‘ < nKrt < S
3xm-

for some bound S and all z in V.
Since h(T™(x)) > 1/2 for all xe V, a similar argument yields a
constant S, such that

l op,, (x)] < §mi
8.’)5“-

for negative n all z€ V. Hence there is a single constant S so that

0P, (%)

< Slnl+l
0x;,;
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for all xe V. Now V was selected so that
3 |n|—m
0 < pa(@) < K<-4—>
for » such that |»| > m. For p sufficiently large,

0< p,,(a;) < (%)Inl’*?

for all » such that |n| > p > m, and so

0 < putar < ((2)7)"

and

a—i;pn(m) l

e 3 r—1\p 3 r—1 [n|—p
< =2 2
=n(s(3) V() s)
Now » can be chosen so large that S(8/4)* < 1. Thus there are con-
stants C and D so that 0 < D < 17 and
’ 0
0x; ;

213

o
| 5P

= [ 7P, (%)

pu(a)| < CD™

for all # in V. Hence the series
Foo
2. Pa(®)
has continuous first parial derivatives for x € V. Since
+-c0
S p.@) > pof@) =1,

we have that q,.(x) has continuous first partial derivatives for all «
in V. But
q'n,'r(w) = pn(x)r'qo,r(x)

S0 that_qn,,(w) has continuous first partial derivatives for all z in V.
Since V is compact, there is a bound U on the partial derivatives of
¢..(@) in V. Thus

P P P
N7 = T % T+ AL "
ax,;,,-q @) = q,,.(x) axm_p @) + p.(x) e

o, ()

and
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0 }< In]—p _3_ r(!'nl——z»).
lami’jqn,,(x) < wep + ( 4) U
=< R.-R}

with 0 < R, < 1.
Since C i§ compact, it can be covered with a finite set of neigh-
borhoods as V, so part (iii) of the lemma follows immediately.

THEOREM 3. If C is a compact subset of G, there are integers r
and s such that for every fumction f(x), defined and with continuous
Jirst partial derivatives on M, the fumnction

F(@) = 3 A(T*@) g @)

is continuous and has continuous first partial derivatives for all
wm Uz T*(C) and

F(x) = F(T(x))

wherever F(x) is defined.

Proof. Clearly F(x) = F(T(x)) wherever F(x) is defined. Also,
if all first prtial derivatives 6/d,;;F(x) are defined and continuous at
x = %, it follows by elementary methods from the fact that |J| is
bounded away from zero on M and J is continuous on M that 0/ox; ;F(x)
is defined and continuous at T"(x,) for all n. Hence we need only
show that F'(x) has continuous first partial derivatives for all elements
x of C. We choose to show that the series of partial derivatives

S0 AT @) [, @)

= 02,4

converges uniformly in C.
Note that

O AT @)@ = s 3L | Vb

ax,-,,- v awu,v " (@) axi.j

-1 a N7 n
+ slg,, @) Lol 7 7r(w))
Ls,i
Since f and its first partial derivatives are bounded on M it follows
directly from Lemma 8.8 that s may be chosen so large that the
series

S 9 AT @), @)

== 0wy,
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is majorized by a geometric series, and the choice of s is independent

of f.

The analysis of this section can be extended to obtain a local
analogue of Theorem 1, i.e., a set of d — k& functions can be found
which are continuous on G, have nonzero Jacobian at a point #, of G
and are invariant with respect to T.

The author thanks L. E. Baum, D. Birkes, and D. S. Passman for
their many stimulating conversations during the conduct of this study.

REFERENCES

1. L. E. Baum and J. A. Eagon, An inequality with applications to statistical estima-
tion for probabilistic functions of Markov processes and to a model for ecology, Bull.
Amer. Math, Soc., 73 (1967), 360-363.

2. L. E. Baum and G. R. Sell, Growth transformations for functions on manifolds,
Pacific J. Math., 27, (1968), 211-227.

3. N. P. Bhatia and G. P. Szego, Stability Theory of Dynamical Systems, Springer.
4. E. .C. Titchmarch, The Theory of Functions, Second Edition, Oxford, 1939.

5. H. Whitney, Elementary structure of real algebraic varieties, Annals of Math., 66,
(1957), 545-556.

Received February 18, 1971 and in revised form July 20, 1972.

THE CITY COLLEGE






PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California 94305 University of Southern California

Los Angeles, California 90007
C.R. HoBBY RICHARD ARENS
University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E.F. BECKENBACH B.H. NEUMANN F. WoLF K. YosHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA UNIVERSITY OF SOUTHERN CALIFORNIA
CALIFORNIA INSTITUTE OF TECHNOLOGY STANFORD UNIVERSITY

UNIVERSITY OF CALIFORNIA UNIVERSITY OF TOKYO

MONTANA STATE UNIVERSITY UNIVERSITY OF UTAH

UNIVERSITY OF NEVADA WASHINGTON STATE UNIVERSITY

NEW MEXICO STATE UNIVERSITY UNIVERSITY OF WASHINGTON

OREGON STATE UNIVERSITY * * *

UNIVERSITY OF OREGON AMERICAN MATHEMATICAL SOCIETY
OSAKA UNIVERSITY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Under-
line Greek letters in red, German in green, and script in blue. The first paragraph or two
must be capable of being used separately as a synopsis of the entire paper. The editorial
“we” must not be used in the synopsis, and items of the bibliography should not be cited
there unless absolutely necessary, in which case they must be identified by author and Journal,
rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of
the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All
other communications to the editors should be addressed to the managing editor, Richard Arens,
University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the
price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to
individual faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270,
3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.



Pacific Journal of Mathematics

Vol. 43, No. 3 May, 1972

Max K. Agoston, An obstruction to finding a fixed point free map on a manifold . ... 543
Nadim A. Assad and William A. Kirk, Fixed point theorems for set-valued mappings

Of CONTYACTIVE TYPE . . o v e et ettt e e ettt e 553
John Winston Bunce, Characterizations of amenable and strongly amenable

CH-al@ebras. . ... ... 563
Erik Maurice Ellentuck and Alfred Berry Manaster, The decidability of a class of

AE sentence in the isols .. ... e e 573
U. Haussmann, The inversion theorem and Plancherel’s theorem in a Banach

SPACE . .. oo e et e e e 585
Peter Lawrence Falb and U. Haussmann, Bochner’s theorem in infinite

AIMENSIONS . . oottt et e e e e e e e 601
Peter Fletcher and William Lindgren, Quasi-uniformities with a transitive base . . . . . 619
Dennis Garbanati and Robert Charles Thompson, Classes of unimodular abelian

GTOUP MAITICES . ..o o ittt it ettt et et 633
Kenneth Hardy and R. Grant Woods, On c-realcompact spaces and locally bounded

NOTMAL JUNCHIONS « .o oot e e e e et 647
Manfred Knebusch, Alex 1. Rosenberg and Roger P. Ware, Grothendieck and Witt

rings of hermitian forms over Dedekind rings..................c.ccoviea .. 657
George M. Lewis, Cut loci of points at infinity.............ccovuiiiiiiiininnon. 675
Jerome Irving Malitz and William Nelson Reinhardt, A complete countable LaQ,l

theory with maximal models of many cardinalities .......................... 691
Wilfred Dennis Pepe and William P. Ziemer, Slices, multiplicity,

Keith Pierce, Amalgamating abelian ordered groups . . . . ... ...
Stephen James Pride, Residual properties of free groups. .. ....
Roy Martin Rakestraw, The convex cone of n-monotone functio
T. Schwartzbauer, Entropy and approximation of measure prese
ransSformations . ......... ..o e e
Peter F. Stebe, Invariant functions of an iterative process for ma
polynomial . ...... ... . ... . e
Kondagunta Sundaresan and Wojbor Woyczynski, L-orthogona
R
Kyle David Wallace, C, -groups and A-basic subgroups . ... ...
Barnet Mordecai Weinstock, Approximation by holomorphic fu
product sets in C™ ... ..
Donald Steven Passman, Corrections to: “Isomorphic groups a
Don David Porter, Correction to: “Symplectic bordism, Stiefel-
and a Novikov resolution” ................... ...,
John Ben Butler, Jr., Correction to: “Almost smooth perturbati
OPCFALOTS” e
Constantine G. Lascarides, Correction to: “A study of certain s
Maddox and a generalization of a theorem of Iyer” .......
George A. Elliott, Correction to: “An extension of some results
reduction theory of von neumann algebras” .............
James Daniel Halpern, Correction to: “On a question of Tarski
theorem of Kurepa” ...........c.coiiuiiiiiiieennnnn..


http://dx.doi.org/10.2140/pjm.1972.43.543
http://dx.doi.org/10.2140/pjm.1972.43.553
http://dx.doi.org/10.2140/pjm.1972.43.553
http://dx.doi.org/10.2140/pjm.1972.43.563
http://dx.doi.org/10.2140/pjm.1972.43.563
http://dx.doi.org/10.2140/pjm.1972.43.573
http://dx.doi.org/10.2140/pjm.1972.43.573
http://dx.doi.org/10.2140/pjm.1972.43.585
http://dx.doi.org/10.2140/pjm.1972.43.585
http://dx.doi.org/10.2140/pjm.1972.43.601
http://dx.doi.org/10.2140/pjm.1972.43.601
http://dx.doi.org/10.2140/pjm.1972.43.619
http://dx.doi.org/10.2140/pjm.1972.43.633
http://dx.doi.org/10.2140/pjm.1972.43.633
http://dx.doi.org/10.2140/pjm.1972.43.647
http://dx.doi.org/10.2140/pjm.1972.43.647
http://dx.doi.org/10.2140/pjm.1972.43.657
http://dx.doi.org/10.2140/pjm.1972.43.657
http://dx.doi.org/10.2140/pjm.1972.43.675
http://dx.doi.org/10.2140/pjm.1972.43.691
http://dx.doi.org/10.2140/pjm.1972.43.691
http://dx.doi.org/10.2140/pjm.1972.43.701
http://dx.doi.org/10.2140/pjm.1972.43.701
http://dx.doi.org/10.2140/pjm.1972.43.711
http://dx.doi.org/10.2140/pjm.1972.43.725
http://dx.doi.org/10.2140/pjm.1972.43.735
http://dx.doi.org/10.2140/pjm.1972.43.753
http://dx.doi.org/10.2140/pjm.1972.43.753
http://dx.doi.org/10.2140/pjm.1972.43.785
http://dx.doi.org/10.2140/pjm.1972.43.785
http://dx.doi.org/10.2140/pjm.1972.43.799
http://dx.doi.org/10.2140/pjm.1972.43.811
http://dx.doi.org/10.2140/pjm.1972.43.811
http://dx.doi.org/10.2140/pjm.1972.43.823
http://dx.doi.org/10.2140/pjm.1972.43.825
http://dx.doi.org/10.2140/pjm.1972.43.825
http://dx.doi.org/10.2140/pjm.1972.43.825
http://dx.doi.org/10.2140/pjm.1972.43.825
http://dx.doi.org/10.2140/pjm.1972.43.826
http://dx.doi.org/10.2140/pjm.1972.43.826
http://dx.doi.org/10.2140/pjm.1972.43.826
http://dx.doi.org/10.2140/pjm.1972.43.826
http://dx.doi.org/10.2140/pjm.1972.43.827
http://dx.doi.org/10.2140/pjm.1972.43.827

	
	
	

