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In this paper we prove several theorems concerning appro-
ximation by holomorphic functions on product sets in C* where
each factor is either a compact plane set or the closure of a
strongly pseudoconvex domain. In particular we show that
every continuous function which is locally approximable by
holomorphic functions on such a set is globally approximable.
Our results depend on a generalization of a theorem of
Andreotti and Stoll on bounded solutions of the inhomogeneous
Cauchy-Riemann equations on certain product domains.

1. Statement of results. If K is a compact set in C" let C(K)
denote the Banach space of continuous complex-valued functions on
K with the uniform norm, and let H(K) denote the closure in C(K)
of the space of functions which are holomorphic in some neighborhood
of K. When n =1, each function in H(K) is the uniform limit of a
sequence of rational functions which are finite on K and the spaces
H(K) (usually denoted R(K) in this instance) have been extensively
studied. In particular, the following properties of H(K) are well-
known in the case n = 1 (cf. Chapter 8 of [2]):

(1) If U is a neighborhood of K, feCYU), and 0f[/0Z2 =0 on
K, then f|Ke H(K).

(2) If feCK) and if for each xe K there is a neighborhood
U, of » in C such that fe HKNU,), then fec H(K).

(8) If s a complex Borel measure on K, then pt = 0fi/0Z where

o) = -1 €= 27dp0

18 locally integrable on C. A measure t is an annihilating measure
Jor H(K)(i.e., Sfd;t =0 for all fe H(K)) if and only if § is sup-
ported on K.

Properties (1)-(3) are not valid for arbitrary compact sets of C»,
even if one restricts one’s attention to holomorphically convex, or
even polynomially convex sets. A celebrated example of Kallin [6]
shows that (2) fails in general for polynomially convex compact sets.
Also, Chirka [3], by modifying her example, has shown that for each
positive integer s there is a compact holomorphically convex set K*
in €* and a function f,e C*(K*®) such that f,¢ H(K®) although odf,
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vanishes on K*® to order s.'

In this paper we consider compact sets K < C* of the form K =
K x ..« x K, where each K, is either a compact set in C or the
closure of a strongly pseudo-convex domain in C". For such K we
prove the following theorems:

THEOREM 1.1. If U is a meighborhood of K, feC™(U), and
o°f)oz* = 0 on K for all @ = (ay, -+ -, @,) with >, a; = r, then fe H(K).

THEOREM 1.2. If feC(K) and if for each x e K there is a neigh-
borhood U, such that fe HKNU,), then fe HK).

THEOREM 1.3. A measure p on K is an annihilating measure
for H(K) if and only if there exist distributions \,, -+, N, of order
< r — 1 with support in K such that p = >, 0\;/0%Z;.

It is possible that Theorem 1.1 remains valid if f is merely
required to satisfy df/0z; =0on K, 1 <j <n. We know of no counter-
example.

Theorem 1.2 implies an approximation theorem of the Keldysh-
Mergelyan type if, in addition to the above hypotheses, K has the
‘“segment property”, i.e., if there is an open cover {U;} of 0K and
corresponding vectors {w; such that for 0 <t <1 z + tw, lies in the
interior of K whenever ze K 0N U,. In this case every function which
is continuous on K and holomorphic in the interior of K satisfies the
hypotheses of Theorem 1.2 so lies in H(K). In particular, if K is a
product of smoothly bounded domains, then K has the segment
property. The case » =1 when K is the closure of a strongly pseudo-
convex domain in C" has been treated by Lieb [8] and Kerzman [7].
We use their method to prove Theorem 1.2.

If we consider Theorem 1.3 in the case » = 1 we conclude that
each annihilating measure for H(K) where K is the closure of a
strongly pseudo-convex domain is the 2z-divergence of an n-tuple of
measures supported on K (distributions of order 0). This implies the
following localization theorem for annihilating measures which is well-
known in case # = 1 [2, Lemma 8.2.11] and which is a sort of dual
version of Theorem 1.2, which it clearly implies.

THEOREM 1.4. Let K be the closure of a strongly pseudoconvex
domain in C". Let p be an annihilating measure for H(K). If
{U} is a finite open covering of K there exist amnihilating measures

1 The referee has pointed out that Kallin, in an unpublished remark and without
knowledge of Chirka’s paper, observed that her counterexample could be made to yield
this additional property.
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Y for HKNU) (in particular each p; is supported in U,) such that
p= 2t

All of our results are derived from an estimate (Theorem 2.2
below) for Cauchy-Riemann operator in certain product domains. This
theorem is a generalization of a theorem of Andreotti and Stoll [1] for
the case of a polyeylinder. Qur proof, like theirs, follows the induction
procedure used in the proof of the familiar Dolbeaut-Grothendieck
lemma, but we make essential use of the representation theorem of
Grauert and Lieb [5] for bounded solutions of the Cauchy-Riemann
equations in strongly pseudo-convex domains.

2. The basic estimate.

DEFINITION 2.1. An open set G in C™ s called admissible if (a)
n =1 and G is a bounded open set or (b) n >1 and G is a strongly
pseudo-convex domain with C= boundary.

The following theorem is due to Grauert and Lieb [5] in the case
n > 1, and is simply a restatement of known properties of the Cauchy
kernel when »n = 1.

THEOREM 2.1. Let G be an admissible open set in C*. Then
there exists a differential form 2, 2) of type (n, n — 1) in £, of type
0, 0) in 2, defined in a neighborhood of G x G such that

(i) Q is of class C= off the diagonal of G x G:

(ii) there is a neighborhood of 0G X G in G x G in which 3,Q =
0;

(i) 4f g is a bounded (0,1) form of class C= such that dg = 0
on G, and if

@ = ={ 9@ A 2¢,2)

then feC=(G) and of =g in G;
(iv) there is a constant 4(G), independent of z such that

[l 9lam © = 48

where a(l, 2) 1s any coefficient of 2 and dm is Lebesgue measure on
G;

(v) G has a sequence {G,} of admissible neighborhoods whose
intersection is G such that {4(G.,)} is a constant sequence.

Also, G is the union of an increasing sequence of admissible open
sets {G,} for which {4(G,)} is a comstant sequence.
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If G is an open set in C" we denote by BC>(G) the space of func-
tions on G whose derivatives of all orders are bounded and continuous
on . We will need the following corollary of Theorem 2.1.

COROLLARY. Let G be an admaissible open set in C*. Let U, be
open in C*, k =1,2. Suppose that

gl(z7 €, W), cety gn(z’ €, w) € BCOO(G X []1 X UZ)

and that g = 3 g,dZ; satisfies 0,9 =0 in G x U, x U,. Then there
exists f e BC~(G x U, x U,) such that

(i) 0,f =g in G xX U, x Uy

(i) Il = 4(G) max,g;<. 1915

(iii) iof D is a differential operator on C™ X C™ with constant
coefficients, then

IIDf]| = 4(G) max | Dg;lf

(In particular, if each g; s holomorphic in U, for fized (z,x)€
G x U, then f has the same property.)

Here || f| = suPexp,xv, [ |-

Proof. Let f(z, x, w) = —g 9, =, wy A 2, ), where 2 is as in
G

Theorem 2.1. Since all the derivatives of g are bounded we may
differentiate under the integral sign as often as we wish. The corol-
lary then follows immediately from Theorem 2.1.

Let G = G, X -++ X G, be an open set in C* where each G, is an
open set in C". If f is a function on G and ¢ = 3 ¢g;,dZ; is a (0, 1)
form on G we will use the following notation:

1£lle = sup | £
1£ 118 = max (13 0"l

(where a = («,, ---, @,) is an n-tuple of nonnegative integers, |a| =
2
0°f |02 = 0'™ f0ZF « v o OFn
and
A, ={a=(a, -, a,): |a| =k and a; =0
if j>n 4+ 0+ 0

A1 = NLA1g
llglle"" = max [{g;[|"""

lgll§" = llglle>” -
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We can now state our basic result.

THEOREM 2.2. Let G = G, X +++ X G, be an open set in C™ where
each G; is an admissible open set im C™. Let g be a C~ (0,1) form
in G such that dg =0 in G and ||g||§™ < <. Then there exists f ¢
C=(G) such that

(i) 0f =g in G

i flle = BDHilgllg™.

Here 4 is any number =1 such that 4 = 4(G,;) as defined in Theorem
2.1.

Proof. We first prove the theorem in the case when each coeffi-
cient of g is in BC(G).

If g isa (0,1) form on G, then g = 3, ¢° where each ¢g* is a (0, 1)
form on G; with coefficients depending only on the other variables as
parameters. For each %,1 < k < r we consider the following Asser-
tion k:

Let G =G, X +++ X G, be as above. Let g be a (0,1) form on G
whose coefficients lie in BC=(G) and such that dg = 0 in G. Suppose
that

g9=29

%=1

where each g° is a (0,1) form on G;, (with coefficients depending also
on the other variables). Then there exists f e BC*(G) such that

(i) of =g

(i) IS lle = B |jg]|*m .

We shall prove Assertion 1 and then show that for £k =1,2, -..,
r — 1, Assertion % implies Assertion % + 1. (Of course Assertion »
implies Theorem 2.2 in the case g is of class BC>.)

If g satisfies the hypotheses of Assertion 1, then g is a d-closed
(0, 1) form in G, whose coefficients are holomorphic functions in G, x

. X @G, for fixed z in G,. Assertion 1 thus follows directly from the

Corollary to Theorem 2.1.

Suppose now that Assertion k is true and that g satisfies the
hypotheses of Assertion (k + 1). Then

Notice that dg = 0 implies d,,,9*** = 0 (where §,,, differentiates only
with respect to the variables from G,.;) and that the coefficients of
g are holomorphic in G,,, X -+ X G,. Applying the corollary to Theo-
rem 2.1 we conclude the existence of u ¢ BC=(G) such that d,,.u = g**!
and such that % is holomorphic in G4y X +++ X G,. Let s =g — ou.
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Then ds = 69 = 0 and s is clearly a sum of (0, 1)-forms involving only
differentials in the variables from G, ---, G,. By Assertion k there
exists t € BC~(G) such that dt = s.

Let f =u +t. Then df =g. Also,

A= Mlull + 112 ]]
= Allgll + BDHH[s][*F

But
||s”(k—-1,k-—1) é zk_“g"’ (k—1,%~—1)
+ max I|au/anH(k—-l,k-—1)
1=jsnp
< gl 4 o
= ”g”(k-—-l,k-—'l) + A“g]]”"’”
< @) g]* .
Hence

£ < 4+ @HEHYlg||*»
= @l .

This concludes the proof in the case when g is of class BC=.
Suppose now that g satisfies the hypotheses of Theorem 2.2. By
Theorem 2.1 and what has been proved so far, we can find a sequence
of open sets {G,} and a constant C independent of v such that
(i) GGG
(i) G= UG,
(iii) there exists f, € BC~(G,)
such that df, = ¢ on G, and

1£:lle, = Cligllg™

For each ¢ let S, = {f.|G.:v = ¢. Since f, — f. is holomorphic
on G, for each v, and {f, — f.|G,} is uniformly bounded, S, is rela-
tively compact by Montel’s theorem. Thus we may choose, for each
M, a subsequence {f,,.} of S, which converges uniformly on G,, such
that {f,,...} is a subsequence of {f,,}. Then the diagonal sequence
{fu.} converges uniformly on each G, to a continuous function f
defined on all of G. But f is in fact in C~(G) since, if v > ¢, f,, — fun
is holomorphic on G, and f,, — fu.— f — fur o0 G,. Thus f— f.,. is
holomorphic, hence in C=(G,) so feC=(G, for each p. This also
shows that df = g on G. Finally, if z¢ G then there exists ¢ such
that ze G, for v = p. This means that

[fu®)| = Cllgllg™™
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but f(2) = lim f,.(2) so
Hflle = Cllglle™ -
3. Proofs of Theorems 1.1 and 1.2.
Proof of Theorem 1.1. We may suppose that f has compact

support in U. Choose ¢e C=(C") such that ¢ = 0, Sq& =1and ¢ =0
outside the closed unit ball. For each ¢ > 0 define f; by

£1@) = S fe — sw)p(w)dw .
Then f, € C=(C"), f; — f uniformly as 6 — 0 and for each «,
(3F,/37)(2) = g(aafﬁ/azu)(z — bw)p(w)dw

so if G is an open set in C7,
o1 = I1Fll s=1,2, .-

where G° = {z — ow:z2€ G, |w| < 1}.

For each 4,1 <% < r we can find a sequence {Gi of admissible
neighborhoods such that K; = N G¢ and such that {4(G?)} is a constant
sequence. Let us denote the constant by 4;. Choose 4 = 1 such that
Ad=4;, for 1 i 7.

Let ¢ > 0 be given. Choose 0, such that ||f — fillzx <¢e/2 if 0 <
0,» Choose v such that if G = G X -++ X G2, then

171l < @4y
Then there exists 6 < d, such that
1711 < By

By Theorem 2.2 we can choose % € C~(G) such that du = of, and
fulle < @A) llofsll6~ .

Then % = f; — u is holomorphic in a neighborhood of K and

Lf = Rhile 1~ fille + 11fs — Rllx
<¢/2 + ||ulle
< /2 + @A) felle
< &/2 + B[ f e
<e.
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Proof of Theorem 1.2. (Here we follow Lieb [8].) Since K is
compact we can choose finitely many neighborhoods U,,, -+, U, which
cover K. Let U= U, U---UU,,. Choose sequences {G;} of admis-
sible neighborhoods of K;,1 <4 < » as in the proof of Theorem 1.1
and let 4 be as above.

Let ¢ > 0 be given. Choose vy such that G* = G X -+ X G lies
in U, and such that there exist holomorphic functions #; on U,, N G
with [ f — By, nx < e. Notice that [h; — h;| < [f — kil + [f — hs] <
2¢on U,, N U,; N K. By choosing v larger if necessary we may suppose
that |h; — h;| < 4e on U, NU,, NG

Choose a C= partition of unity ¢, --., ¢,, subordinate to the cover
{Uwi}‘ Let g,=2>}; ¢i(hi—h;). Notice that || g, |ly.,nx<2e. Also g;—g,=
h; — h, and 9g; — dg, =0 on U,, N U,, N G*. Thus {dg,} defines a (0, 1)
form g on G* which satisfies dg = 0 so by Theorem 2.2 we can find
€ C=(G*) that du = g on G* and

ulle = @) glle™ .
But

lgll& = max [|g, |y,

1ZkZn

and
0°g,/02% = ; (0°¢;/02%)(hy, — h) -

Hence ||g||%™ < 4eC where C is a constant depending only on the
partition of unity {g;}.

Let b, = g; — u. Thendb; =0on U,, N G*and b, — b, =g, — g, =
h; — hy. Thus {h; — b;} defines a holomorphic function 2 on G* and

[ f — kllx = max (1f — hille + 1g5lle) + llullx
< e+ 2 + 4C(34)e ,

where C and 4 are independent of e. Since ¢ was arbitrary, this
completes the proof.

4. Annihilating Measures for H(K). If G is an open set in C”
we denote by A®"(G) the space of differential forms of type (0, 1) on
G of class C=. We topologize A“Y(G) as the direct sum of % copies
of the Frechet space C=(G) with the topology of uniform convergence
on compact subsets of G of derivatives of all orders. The dual space
of C=(G) is the space of distributions on C* whose support is a compact
subset of G. We will identify the dual space of A®Y(G) with the
space of distributions with compact support in G.
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LEMMA 4.1. Let G be a domain of holomorphy in C*, K a compact
subset of G, and p an annihilating measure for H(K). Then there
exist distributions A, «--, N\, with compact support in G such that

p= —2; 0N[0%;.

Proof. C=(G) and A®Y(G) are Frechet spaces. Since G is a
domain of holomorphy, d maps C=(G) onto the closed subspace of (0, 1)
forms g satisfying dg = 0. The measure f, considered as a continuous
linear functional on C=(G), annihilates the kernel of 9, so by a theorem
of Dieudonné and Schwartz [4], ¢ is in the image of the adjoint,
0%, of d. But if A = (A, +-+, \,) is an n-tuple of distributions with
compact support in G and f e C~(G), then

@*N(f) = MoSf) = X N(05/0%;)
= — 23 (N/0Z)(f) -
Thus for some A\, ---, A, We have ¢ = —> 0\;/0Z;.
We will also consider, for a bounded open set G in C”, the Banach

space C7(G) of continuous functions on G whose derivatives of order
< r are bounded and continuous on G, with the norm

1. 1la = max [| Df [l

where «a is a 2n-tuple of non-negative integers and
D = (8/02,)%1 « + « (0/02,)*»(0)0Z,) %+t «+ « (3)0F,) "2 .

A continuous linear functional on C7(G) is easily seen to define a
distribution on C* with support in G. In addition, we will denote
by B®"(G) the space of (0,1) forms on G with coefficients in C7(G),
topologized as the direct sum of n copies of C"(G) with the norm

13 9;d%;||a = max||g;|[5 .
1Sj=n

If G,c G, are two bounded open sets in C* let R: B®'(G,) —
B"(G,) be the operator which restricts forms in G, to G,. Then R*
is a norm-decreasing embedding of the dual space of B""(G,) into
B"(G,)* since, if xe B®Y(G)*, and g = >, ¢,dz; is in B"V(G,),

[(B*M(9)| = IMR) | = [IM] Ry Iz,
= [IMgllz, »

so [[R*N| < [IM].
With these preliminaries we can proceed to the proof of Theorem
1.3.

Proof of Theorem 1.3. Let {G,} be a sequence of bounded open
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neighborhoods of K such that

(i) G.cG..

(ii) K=nG,

(iii) there exists a constant C independent of v such that if ge
A®Y(G,), 09 = 0 in G,, and ||g ]| < oo, then there exists f e C=(G,)
such that 6f = g and

1 flle, = Cligllem™ .

If ¢ is an annihilating measure for H(K) we can apply Lemma
4.1 to obtain, for each v, an n-tuple »* = (\, ---, \s) of distributions
with compact support in G, such that g = —>)0\;/0Z;. Let W, be
the subspace of C™%(G,) consisting of restrictions to G, of C= func-
tions on C*. If fe W, we can find he(C=(G,) such that f — & is
holomorphic on G, and [[k]l,, < C|[af | where C is the constant in
(iii) above. Thus

G| = |(rap| = | |nap|
< lellll2llx = Cllpll llof &

where || ¢|| is the total variation of g. This means that )\’ defines a
continuous linear functional on the subspace o W, of B®Y(G,) of norm
=< CJ|¢l||l. By the Hahn-Banach theorem there is an n-tuple, which
we will continue to denote by M\, of continuous linear functionals on
C™(G,) such that

@ NGf) = S fdp for all feC=(C?)

{) (Wil = Clipll.

Now, by composing with the adjoint of the appropriate restric-
tion operator we may consider each \* so obtained as a continuous
linear functional on B”Y(G,). Then the sequence {\'} constitutes a
bounded sequence of elements in the dual space of a separable Banach
space. Consequently, there is a subsequence {\*} and an n-tuple \ =
(A +++, A,) of continuous linear functionals on C~(G,) such that
A — X\ in the weak star topology. Since each A} is supported, as a
distribution, on G,, and since K = NG, it follows that the support of
each );, as a distribution, lies in K. Moreover, if f is a C~ function
on C" then

MES) = lim @) = |fdp,

i.e., g = —>,0\/0%z;. Finally, it is clear that each ); is of order
=r—1.

Conversely, suppose ¢ is a measure on K, and g = >, 0\;/0Z, where
My, *++, A, are distributions with compact support on K. If f is holo-
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morphic in a neighborhood of K, then 0f/0%;, 1 £j < n, are identi-
cally 0 in a neighborhood of K so
| £ap = = @ur@z))

— > \(0f/0%;)
=0

Il

since the \; are supported on K.

Proof of Theorem 1.4. Let {¢;} be a C*= partition of unity sub-
ordinate to the open covering {U;}, i.e., suppose ¢;€C=(U,), ¢; has
compact support, 0 < 4, <1, and 3,4, =1 on a neighborhood of K.
If ¢ is an annihilating measure for H(K), then by Theorem 1.3
there exist measures ), .-+, A, on K such that

Il

0N = — 3 a(z ¢,5>Vj) /azj
~; Z $:(ON;/0%;) — ; Z (09:/0%;)N;

=3 {s — 3 Gpsom)\ |

<

S

7

I

where each y; is a measure compactly supported on U; N K. If & is
holomorphic on U; N K, then

0119 /0%; = h(o3./0%)
for 1 <7 <n. Thus
Jndgs; = (i — 5 [n@gfozyan,

S
N Sh“"id/“‘ - ;S@/a@)(mh)dx,.
0

.
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