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The purpose of this paper is to comment on the opera-
tions of flber integration, or integration over the fiber,
which arise in the study of the cohomology of bundles.

Let & = (E, II;, B, F, G) be a smooth (C~) bundle, where as usual
E is the total space, B the base, F the (connected) fiber, G the
group, and [7,: E— B the projection. Assume H*F') to be finite
dimensional for all k. A form @ on the total space is said to have
fiber-compact support if, and only if, for all x e B, there is a neigh-
bourhood U, of %, a trivialization ¢: U, x F = n3'(U,), and a compact
set K F such that (support ¢*w) N (U, x F)c U, x K. Denote
these k-forms by A%(E), and their de Rham cohomology by HE(E).
When F is compact A%(E) = A*(E), the algebra of all k-forms on F;
if B is compact, A (E) is the algebra A.(E) of forms on E with
compact support. Now integration over fiber has been defined by
various authors as a linear map

¥: H(E) — H" ™ (B; H™(F)) , k =z m,

where m is the dimension of F. These definitions are essentially
algebraic in nature; for example ¥ has been defined by a spectral
sequence. Using this idea when & is orientable, a linear map

7. HYE) — H*"(B)

is defined, and called algebraic fiber integration on account of the
origin of the definition.
On the other hand, when & is orientable, there is the geometrical-

ly defined linear map %F: AL(E) — A*™(B) given roughly speaking by

()0 =1, o

where w e A%(E), xe B, and F, denotes the fiber of & over 2. The
induced map ¥, of cohomology is called geometric fiber integration:
¥,: Hi(E)— H*™(B). The main purpose of the paper is to show

THEOREM. ¥, =U,.

1. The spectral sequence in A;(E).

33
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(a) In this section we obtain results analogous to a theorem of
Borel [6], which we use to obtain an expression for ¥,.

The action of G on F induces an action on H*(F') and on H}(F),
k=012 .-, m, where HF(F') denotes the de Rham cohomology of
forms on F with compact support. Denote by A* the total space of
the bundle over B with fiber H}(F'); because this bundle has a
discrete group, the exterior derivative 6%¢ in A%(khY) (the p-forms
on B witn coefficients in k% is a differential operator. Denote
Ker 6%7/Im 657* by H?(B; h).

(b) We filter AX(E) following Hattori [5] and Borel [6]: when
{x;}, {y;} are coordinates on neighbourhoods in B and F' respectively,
t=1,2 e m—m, j=1,2 +++, m, where n = dim F, we use the
same symbols to denote coordinates induced on sufficiently small open
sets in K; then according to Hattori and Borel, I® consists of those
forms which involve at least p base differentials dx;.

It will be convenient to define this filtration by a bigradation of
A.(E). For this purpose, it is necessary to assume that a fixed
connection ([7], p. 63) has been prescribed in &. Of course, by the
remarks above, the filtration will be independent of the connection.
If X is a C= vector field on E, then by definition its horizontal and
vertical parts, HX and VX respectively, induced by the connection,
are again C = vector fields. Whenever {z;}, {y;} are coordinates on an
open set W C E, as described above, we denote by dy3, 7 =1,2, -+,
m, the l-forms on W defined by dyi(x) = dy;(VX), where X is a
vector field on W. Then {dz;} U {dyi} generate A'(W) over C=(W).

DEFINITION 1. C??= C?Y(E) = {®wec A Y(E) | 1(X) ++- 1( X, )@ =
(YY) -+ i1(Y,p) o = 0 for all horizontal vector fields X; and vertical
vector fields Y; on Ej}.

Here, as usual, ¢(Z) is the substitution operator with respect to
the vector field Z on E:

’L(Z)CU(Zl, ) Zp+q-—l) = Q)(Z, Zl, Tt ZP-HI—-I)

when Z,, ---, Z,,,_, are vector fields on FE, w ¢ A**%(E). Thus i(Z):
Az E) — Az*Y(E), because A (E) is clearly stable under 7(Z).
Now we let Greek letters a, B, etc., represent sequences of posi-
tive integers of the form (¢, ---, %,), for some positive integer p,
with 4, <4, < --- <4, Then dx, will denote dx; A --- A dw;, and
so on. We put |a|=p when a = (, <-+,%,). Then if W is a
coordinate neighbourhood in E, wec A¥E), we may write /W as

(1) /W = Z“IZ o*dx, N\ dy;
p+a=k |al=p
|8l=¢
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where w**ec C=(W), the C=-functions on W. Consequently any
w e C?(W) may be written

(2) w = >, w*dx, N\ dy,
lal=p
181=¢

with w**e C=(W).

DEFINITION 2.
I»? = @ Creter , I? = @ e,

rZp q=0

It is easily seen that

ProroSITION 1. {I?}3., %5 a decreasing filtration of Ar(E). It is
the filtration associated with the gradation {C?}3., of Ap(E), where
C? = @,z C™, because I* = P,:,C".

Note in particular that I°= A,(E), and I*= {0} for »p >dim B =
n— m.

ReEmMARK. If the above definitions are carried out for A(E), one
obtains the filtrations of Hattori [5] and Borel [6]. In particular,
the filtration is independent of the choice of connection in £.

(¢) Denote by {Er7 the spectral sequence defined by the filtra-
tion {I*7% of A,(E) defined above (see § 2). Then we will next show

PROPOSITION 2.
Epe = H*(B; h9) , p,qa=0.

Let o7 be the sheaf of germs of p-forms on B, and &5~ the sheaf of
germs of C=-functions on B.

DEFINITION 3. The sheaf &7¢ of fiber-compact ¢-forms along the

fiber of &.
We first define the presheaf # ¢ on B by & «(U) = C*'(II5(U)),
when U is open in B. Then & is the sheaf induced by & °.

LEMMA 1. EP=I'(5 Q® F 9 (I'(S”) denotes the module of
sections of any sheaf &%, and all temsor products are over the sheaf

&%)

Proof. From the definitions we have that
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(3 ) Eop,q = C*

DEFINITION 4.
Q' QR 79— C?7.,

Let selI'(.o7" @ & 9); then if U c B is sufficiently small, we may
write s locally as a sum of terms of the form w, where

o = (o) o (Fotan)

with we C=(U), wfeC~(I;'(U)). Put

Q@) = 3, (@ M1)o dv, A\ dy}

18l=q

and extend linearly to define 2(s).

LEMMA 2. Q s well-defined, independent of the choice of coordi-
nates.

Proof. This follows from the fact that if {%;}, {7} are coordi-
nates defined on an open set in F overlapping the domain of defini-
tion of the coordinates {x;}, {y,}, then

Az, = 3 9% gy,

el=p ax,,
and
-
(4) dgs = 3, 2Ledy;
1a=q 0Y,

where 0%,/0x, represents the p X p sub-matrix with rows «, columns
¢ of the (n—m) X (n—m) matrix with entries 0%;/0x;, and analogously
for 0%,:/0y.. Note that equation (4) is mot the equation of transfor-
mation for the dy,’s; the latter equation also involves linear combi-
nations of the dz,’s. Since £ is easily seen to be an isomorphism,
this completes the proof of Lemma 1.

DEFINITION 5. The homomorphism
0pn I ® F ) —> T'(5" @ 777 .

We first define the presheaf homomorphism d%: % ?— F . Let
Uc B be open, ¢e.& «U) = C*(Il[z((U)), and Y,,---,Y,,, be vertical
vector fields on 77 (U). Then
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3%(U)(¢)(Yu' ] Yq+1)

1 o ) .
—_ = _11-—-1Yi K""’Yi’...’ 1
(5) qH;;( ) Y (6 ( o+1)
+ —'1__24,(_1)i+j¢([Yi’ E]’ Yy, ?i’ e ?j’ "°’Yq+1)
q + 1<

where the symbol ¥; indicates that Y; is to be omitted. In terms
of coordinates, if ¢ = 3=, @ dy}, with wfe C~(I3'(U)), then

(6) 35(U) (¢) =3 %% dyy A dys
1B=¢ & 0Y,

Now 6% is the sheaf homomorphism induced by 0%, and 6% is the
homomorphism of modules of sections induced by (—1)?1,2 & d%.

Let 429 Ef? — EP ¢ be the map induced by the exterior deriva-
tive on E; that is, 427 is defined by the diagram below, where oz
is the canonical projection:

s N I:D,q+1

IP;'I

P,q P,q+1

! &

Eop,q SN Eop,q+1 .
420

Now in view of Ef? = C? 427 is exactly the differential operator
induced in C? by the exterior derivative on E:

pp,q+15 = AP C?9 —— (Cratt ,
where o7t AytetY(E) — C?*™ is the canonical projection induced by

AF(E) = @p,qcp’q°

LEMMA 3. The diagram below is commutative:

2
' @ 79 —s C?? = gpe
5%"1 Ag,q
I' (5 Q@ 7Y -Q____) Cra+t = Fpatt

Proof. Any sel'(&F Q # 9 is locally expressible on W C K
as a sum of terms of the form

o =(garan)e (gotan)

laj=p q
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so that
Qw) = 3, (0F 1) of dx, A dys .

Now we may write on W

(7) dy; = dy; + 3, 0; da;
(8) dyk:dyz+§,Cidxf

where 6%, (e C=(W).
Replacing dy; using equation (7) one obtains

Qw) = 3, (0 ) @f dw, N\ dy? + IZ (++ ) da, A dy,

«|>p
2

(where (---)* indicate coefficients of terms with |[a|> p) so that
using the definition of 0”?*!, one obtains on account of 4/0y,(wIl;) =0,

B
(9)  4p70(@) = p1000(0) = 3 3 58 @l dui A e A ds
al=p k

18l=q

One sees immediately that this is the same as the expression for
20%(w), proving Lemma 3.
As a consequence we have

Ep? = Ker 42/Im 407" = Ker 6%/Im 037" .

Let #? be the sheaf of germs of smooth sections of the bundle &°.
Now one can show by an argument identical to the one employed by
Borel ([6], pp. 206, 207) that there is an isomorphism

10) #* = Ker 6%2/Im ¢4 ,

and hence also Ker 6%/Im 0% = A%(h%). Thus we have
LEMMA 4. EP = A3RY).

Proof of Proposition 2. Because H?(B; h?) = Ker 6%7/Im 6277 (see
§1 (a) for the definition of 0%7% and Ep* = Ker 47?/Im 47~"? it suf-
fices to show that the diagram (11) below is commutative:

o

_— Elp,q

AB(R?)

(11) 4z rr;w

m

—_— E1p+1,q .

ApP ()
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Here Q' is the isomorphism induced by virture of Lemma 4.
Consider the exact sequence of cochain complexes

0 —— P+t _f__, Cr @ [0k athns J >0 ——— 0

lAgH—l,qﬂ P Ag»q

00— Qo Croat! @ Crtbe — 5, Oretl 5 ()
i .

S

where 077 is induced by the exterior derivative d: A(¥)— A(E) and
iWd) = (0,d), deC?™, j{e,d) = ¢,ce C?,

Now it is known ([3], p.85) that the differential operator 477 is
the same as the connecting homomorphism d*¢ induced by this exact
sequence:

d»*: Ker 47%/Im 429" —— Ker 42+¢/Im 47+* .
Consequently, if @< Ker 42¢
Api([@]ppa) = [1707 Y " @] grra

where [w];r« indicates the class of @ in Ef? and so on; that is,
Ar([]p.) is 6”@ modulo Im 45+,

Now suppose that @ € A3(k?); then for a coordinate neighbourhood
Uc B, w/U may be written as

/U (x) =;g;',, [0**dYs)arr, 00

|18l=¢

where 2 ¢ U C B and w* ¢ C=(II7*(U)).
A consideration of the isomorphism £' yields

2@/U) = 3, (0o, A dyilspe
18l=¢

= [2 w*dx, N dyﬁ + Z ( . .)aﬂdxa A\ dy,,Lp’q ’

Llal lal>p
|1Bl=¢ #

it

where we have again replaced dy; by means of equation (7).
A short computation now shows, when all quotients have been
taken, and using (8), that
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r a
12) A @/U) =| 33 Ol
18i=q

’

A i, A dyﬁ]

P+1 q
on the other hand,

20 (0/U) = 29p( 5 [G)“ﬁdyﬁ]frgmd%)

( Z [ g] dmk /\ dma)
2k 0%, liatey]

where [0**dy}],1,, indicates the section of 27 over U defined by

M/f\

|
|=

AH

o
18

[0"dyslusm (@) = [0%dYilnir,, v U

(recall that (%), = HI(F,)).
The expression above clearly yields the right hand side of equa-
tion (12), as required.

2. Fiber integration, algebraic definition. As mentioned earlier,
algebraic fiber integration is defined by using the definition of Borel
and Hirzebruch [1] applied to the spectral sequence {F,} arising from
the filtration {I*} of fiber-compact forms on the total space of &.

For convenience we recall some definitions from the theory of
(decreasing) spectral sequences:

Zpt = Ap"(E) N{aeI?|dac I}
Dy = Ay (E) N I* oI
Ert = Z2 (2250 @ Dy

where 0 < p, q, s < oo,
Let II: Z — Hy(E) be the canonical projection; then

(13) H»* = Hp(E) 0 I(Z2) filter Hy(E), and E27 = Hro/Hz e,

Because dim F = m and dim B = n — m, it follows that E»?= 0
for ¢ >m, p =0, » =0 and that I* =0 for p > n — m.

LeEMMA 5. (@) EP"C ERY, r=3, p=0.
(by E}f™1 =EZ™, r>supn—Fk k—m), k=m, ¢ =0.
(¢) EBEm = HEE)/HLE™"", k= m.

As a consequence of Lemma 5 we now have an injection
hy EE™m = Bl e C B

where 7, = sup(n—Fk, k—m) + 1, and a projection h,; HiE)— EL—™™,
Let y: Ef™™ = H*™(B; h™) be the isomorphism induced by 2 (Pro-
position 2). Then the definition of Borel, Hirzebruch yields yxk.h,:
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*E)— H"™B; h™). We now define o: H*™(B; h™) — H*™(B),
under the assumption that & is orientable, in the following sense
(see [4]):

DEFINITION 6. ¢ is orientable if, and only if, there exists an m-
form ~ on E such that for all xe B, ¢} 4 is an orientation on F,,
the fiber over z; ¢,: F,C E. If such a 4 has been chosen, ¢ is called
oriented.

Clearly F' is orientable when ¢ is.

Recall that <™ = Ker 03/Im 03 = & ™/Im o3

We first define a map of presheaves, .7: & ™ — &,~, where

%%~ denotes the presheaf of germs of C=-functions on B: Let z ¢ U,
U open in B, and @ ¢ .5 "(U); then (L7 (U)(®))(®) =§ o(@). To show
— F

this is well defined, let {U;/jeJ} be a covering of B by open sets
such that E is trivial over each U;, with ¢;: U; X F = I[I(U;), jeJ.
Define +;,.: F'— F, by +¥;,.(f) = ¢;(, f), x€ U;, feF. Then

(14) (F (U) @)@ = deg v | v5.(0@) ;

this shows that _#(U)(w) is C~ in x, because, since @ has fiber-
compact support, the forms +}.(w(x)) on F have supports contained
in a common compact set for x in sufficiently small open sets in B.

Thus there is a sheaf homomorphism .7: g ™— &~; if
®welIm o3 (U), then by Stokes’ Theorem, (.7 (U)(w))(x) = 0, for all
x€ U. Consequently, .# induces a sheaf homomorphism, also denoted
by %4 #: F ™Imor = 4™ — &,>°. Lastly,

o: H*™(B; h™) —> H*™(B)

is canonically induced by .# on account of the commutative diagram
below:

Ay = Mm@ ) T80 portm) = ag
51{3—m,m‘[ Jég—m
raQ.”)

Ag—m+1(hm) ~ l’(%k—m+1 ® ém) > [‘(!%k'—’m-l-l) — AZ—WL-H .

Combining ¢ with the map yhh, we obtain algebraic fiber integration
¥, = oyhhy; ¥,: HYE) — H*™(B).

3. Fiber integration, geometric definition ([4], chapter 7). For
arbitrary manifolds B, F, and e B, yc F, define
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i, F'—— B X F by 1.(y) = (%, %), yeF,
1, B—— B X F by 1,(x) = (%, y), x€B.

When & e T,(B), put & = (i,),£ € T\,,y(B x F) and when e T,(F), let
6 = (iac)*ce T(ac,y)(B X F)°

Define n, = C»YB x F)— AWF; N *T}(B)) (with the trivial con-
nection in the product bundle B x F') by

(7\:;,0))(2/, Cl, A CU)(glr ct EP) = a)((x, y); él: ety ém 51; cccy EQ))

where xe B, we C*Y(B x F'), {;e T,(F) and &;e T.(B). For the pro-
duct bundle B x F' geometric fiber integration is the linear map

g : C»"(B x F) — A*(B), p =0,

S N, XE B, r=m
r where w e C»"(B x F').

defined by (S a)) (%) = {
»
0, r #= m,

For an arbitrary oriented bundle &, let {Uj;, ¢} be a family of
trivializations as before with ¢;: U; x F = II7((U;). If we ALXE),
7w is a fiber-compact form on U; X F, so that w; defined by w;(x) =
deg ’I/I‘j,x<§ ¢j‘w\)(x) is a k—m form on Uj. Deﬁneg Ab(E) — A¥™(B)

r / F
by (S (a)))(x) = w;(x) when z e Uj.
”
It is easily shown that this is independent of the choice of Uj,

so that § is well defined ([4]).
b

Furthermore, g Op = 0g g , 80 that there is an induced map
F E

v, H(E)— H*"™(B),
k= m, called geometric fiber integration.
4, Proof of Theorem. ¥, =71,.

Let [w] € HE(E) be represented by w e AL (E).
If W, = I[I7}(U;) is sufficiently small we may write

G)/WJ = Z w“ﬁdxa AN dyﬁ , Wfe Cm(Wj) ,

lal+18l=k

or, upon substitution of equation (8) for dy,,

(15) O/ W; = 3, oo, Ndy; + 3, (-+2)7 dwe A dyj
|ai=k—m al>k—m
|Bl=m 8

Since h,: HX(E)— HiYE)/HE ™™ = Fk~™™ is merely the projection,
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(o) =| 3, ovds, A dyz]EZ_m,m -

la|=k—m
|Bl=m

Hence,

[0y m dx,,]

HE—m (B: hm)

Xhth([w]) = { agk—-

al
|Bl=m

m

and
V. ([w]) = oxhh,(@]) = [tut-—mn 5 -
where pte A*™(B) with

(16) peo) = 3 (g v |via( S ordyy) der
la|=k—m 1Bi=m
when 2z e U,.
On the other hand,

Uy(w]) = [%Fw]Hk—m (B)

and

an (] o)@ = degvi. | nro) =deg v | (5 0y.du)ds,

as a short computation shows.
A comparison of (16), (17) shows that ¥, = ¥, as required.
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