FUNCTION ALGEBRAS OVER VALUED FIELDS

G. BACHMAN, E. BECKENSTEIN AND L. NARICI

In this paper we consider primarily algebras $F(T)$ of continuous functions taking a topological space T into a complete nonarchimedean nontrivially valued field F. Some general properties of function algebras and topological algebras over valued fields are developed in §§1 and 2. Some principal results (Theorems 6 and 7) are analogs of theorems of Nachbin and Shirota, and Warner: Essentially that $F(T)$ with compact-open topology is F-barreled iff unbounded functions exist on closed noncompact subsets of T; and that full Fréchet algebras are realizable as function algebras $F(\mathcal{M})$ where \mathcal{M} denotes the space of nontrivial continuous homomorphisms of the algebra.

Nachbin and Shirota’s well-known result provides a necessary and sufficient condition for an algebra of real-valued continuous functions on a topological space to be barreled when it carries the compact-open topology. To develop an analog of Nachbin’s theorem for F-valued functions, it is necessary to bypass the heavily real-number-oriented machinery on which his proof depends. We accomplish this in part by developing an ordering of the elements of a discretely valued field (Sec. 3, Def. 2) which serves to take the place of the usual ordering of the reals. We also consider a notion of “support” of a continuous F-valued linear functional on $F(T)$ (Sec. 3, Def. 3). The support notion is developed without measure theory or representation theorems for continuous linear functionals.

The results of the paper depend heavily on theorems proved by Ellis ([3]), Kaplansky ([7],[8]), and van Tiel ([14]), as well as the proofs of the major theorems as originally presented by Nachbin ([10]) and Warner ([15]) which provided the ideas for this line of approach.

Throughout the paper “algebra” (denoted by X or Y) includes the presence of an identity and commutativity. The underlying field F is assumed to be a complete nonarchimedean rank one nontrivially valued field. Unless otherwise stated, T denotes a 0-dimensional (a base for the topology consisting of closed and open sets exists) Hausdorff topological space and $F(T)$ the algebra of continuous functions from T into F with pointwise operations. The terms Banach space or Banach algebra are used throughout in the sense of [12].

1. Topological algebras over valued fields. In this section we discuss some basic properties of topological algebras over fields with valuation. We assume throughout that the underlying field F is a
complete nonarchimedean rank one nontrivially valued field.

Definition 1. A topological algebra X over F is nonarchimedean locally multiplicatively F-convex (NLMC) if there exists a base \mathcal{B} of neighborhoods U of 0 in X such that for each $U \in \mathcal{B}$, (1) U is F-convex (i.e. if λ and μ are scalars such that $|\lambda|, |\mu| \leq 1$, then $\lambda U + \mu U \subset U$), and (2) $UU \subset U$.

Definition 2. A seminorm p on X is nonarchimedean and multiplicative respectively if for all $x, y \in X$ (1) $p(x + y) \leq \max \{p(x), p(y)\}$ and (2) $p(xy) \leq p(x)p(y)$.

Proposition 1. A topological algebra X is an NLMC algebra iff the topology on X is generated by a family P of nonarchimedean multiplicative seminorms.

Proof. Given such a family P generating the topology on X, the sets $\{x| p_\epsilon(x) \leq \epsilon, p_\epsilon \in P, 0 < \epsilon \leq 1\}$ form a base at 0 satisfying the condition of Definition 1.

Conversely, if \mathcal{B} is a base at 0 satisfying the conditions of Definition 1, then, letting $p_\mu(x) = \inf \{|\mu|\,|x \in \mu U, \mu \in F\}$ the seminorms $(p_\mu)_{\mu \in \mathcal{B}}$ constitute the desired family P.

Proposition 2. If the valuation on F is discrete and X is an NLMC algebra, then there exists a family P' of nonarchimedean multiplicative seminorms generating the topology on X such that $p'(X) \subset |F|$ for each $p' \in P'$.

Proof. Let P be a family of nonarchimedean multiplicative seminorms generating X’s topology. For each $p \in P$ let $p'(x) = \inf \{|\mu|\,|x \in \mu U, \mu \in F\}$. Each such p' is clearly nonarchimedean and multiplicative. Moreover since $p(x) \leq p'(x) \leq |\mu^{-1}|p(x)$ for any nonzero $\mu \in F$ such that $|\mu| < 1$ and $|\mu|$ generates the value group of F, P' will also generate the topology on X.

Definition 3. An NLMC algebra X is discrete if there exists a family P of nontrivial nonarchimedean multiplicative seminorms generating the topology on X such that each p in P is discrete [the only limit point of $p(X)$ is 0].

Proposition 3. A Hausdorff NLMC algebra X is discrete iff F is discretely valued.

Proof. Use Prop. 2.

If X is a topological algebra over C, the complex numbers, then we can identify the nontrivial continuous homomorphisms of X into C with the closed maximal ideals in X ([9, p. 13]). This is no longer
true for noncomplex algebras, and we single out those algebras in which the $1 - 1$ correspondence still obtains for special attention.

Definition 4. A commutative Hausdorff NLMC algebra X with identity e is a Gelfand algebra if for every closed maximal ideal $M \subset X$ the factor algebra X/M (with quotient topology) is topologically isomorphic to F.

Associated with the nontrivial nonarchimedean multiplicative seminorms p generating the topology on an NLMC algebra X, are nonarchimedean normed algebras X/N_p where N_p is the ideal $p^{-1}(0)$ where X/N_p is normed by taking $\| x + N_p \| = p(x)$. The completions X_p of these normed algebras are referred to as factor algebras.

Proposition 4. If X is a Gelfand algebra and X/N_p is complete, then X/N_p is a Gelfand algebra.

Proof. Let π_p denote the continuous homomorphism $x \rightarrow x + N_p$ from X onto X/N_p. We observe that if M is a maximal ideal in the Banach algebra X/N_p, then M is closed; thus $\pi_p^{-1}(M)$ is a closed maximal ideal in X containing N_p. For any $x \in X$ there exists $\mu \in F$ such that $x - \mu e \in \pi_p^{-1}(M)$ (X is a Gelfand algebra), so that $\pi_p(x) - \mu \pi_p(e) \in M$ where e is the identity of X. Thus $(X/N_p)/M$ is algebraically isomorphic to F. Since M is closed, the factor structure is a one-dimensional Hausdorff topological vector space and is therefore topologically isomorphic to F.

Proposition 5. Let P be a saturated family of seminorms generating the topology on the NLMC algebra X and let $(X_p)_{p \in P}$ denote the associated factor algebras. If each X_p is a Gelfand algebra, then X is a Gelfand algebra.

Proof. Let M be a closed maximal ideal in X. By [1, p. 466] there exists $p \in P$ such that $M \supset N_p$ and $\inf \{ p(e - x) | x \in M \} > 0$. Consequently $\pi_p(M)$ is a proper ideal in X/N_p and $\pi_p(e)$ is not an adherence point of $\pi_p(M)$. Thus $\pi_p(M)$ is a proper ideal in X_p and is therefore contained in a closed maximal ideal $N \subset X_p$. Since X_p is a Gelfand algebra, N is the kernel of a continuous nontrivial homomorphism f_p taking X_p into F. Hence $f = f_p \pi_p$ is a continuous nontrivial homomorphism taking X into F. It follows from elementary considerations that the kernel of f is equal to M. Consequently X/M is seen to be algebraically—hence topologically—isomorphic to F.

A result similar in spirit to this can be found in [2, p. 175]. We turn next to some examples.
Example 1. Let F be a local field, let T be a 0-dimensional Hausdorff space and let $F(T)$ carry the topology of uniform convergence on compact sets. The topology on $F(T)$ is generated by the nonarchimedean multiplicative seminorms p_K where K is a compact subset of T and for any $x \in F(T)$, $p_K(x) = \sup_{t \in K} |x(t)|$. We may identify $F(T)/p_K(0)$ with a subalgebra of $F(K)$. Moreover we may construct a Stone-Cech compactification β_T of T as is done in [3, p. 243] utilizing the compact valuation ring V of F in place of the compact interval $[0,1]$. Since V is Hausdorff and 0-dimensional, β_T will be compact, Hausdorff and 0-dimensional. Thus the Ellis-Tietze extension theorem ([4]) applies and any function continuous on K may be extended to a function continuous on β_T. It follows that $F(T)/p_K(0) = F(K)$.

The continuous nontrivial homomorphisms of $F(K)$ into F are in 1–1 correspondence with the points t of K ([11]) and using this result it can be shown [9, p. 31] that the points of T generate the continuous nontrivial homomorphisms of $F(T)$ into F.*

Topological algebras X for which all homomorphisms of X into F are continuous are called functionally continuous [9, p. 51].

What follows is an example of such an algebra.

Example 2. Let F be any complete nonarchimedean nontrivially valued field and T a 0-dimensional Hausdorff space. $F(T)$ carries the compact-open topology. A subalgebra X of $F(T)$ is “closed under inverses” if when $x \in X$ and $x^{-1} \in F(T)$, $x^{-1} \in X$. We apply Michael’s proof [9, p. 54] and observe that if Conditions 1 and 2 below are satisfied, then the homomorphisms of X are generated by the points of T and therefore X is functionally continuous.

1. For any $x_1, \ldots, x_n \in X$ such that $\bigcap_{t=1}^n x_t^{-1}(0) = \emptyset$, there exists $y_1, \ldots, y_n \in X$ such that $\sum x_i y_i = e$ where e is the constant function $e(t) = 1$ for all $t \in T$.

2. For some positive integer m there exists $x_1, \ldots, x_m \in X$ such that for all $\mu_1, \ldots, \mu_m \in F$, $\cap (x_i - \mu_i e)^{-1}(0)$ is compact.

We note that if $X = F(T)$, then by the results of a sequel to this paper [16], it follows that X satisfies statement 1. If, in addition, there exists a bijection $x \in X$, then X satisfies 2. Hence if we take $T = F$ and let T carry any 0-dimensional Hausdorff topology finer than

* The result of Example 1 actually obtains if F is any complete nonarchimedean nontrivially valued field as it can be shown in this case that a bounded continuous function defined on a compact subset K of T mapping into F can be extended to a bounded continuous function mapping T into F. The same comment applies to Example 1, parts (c), (d), and (e) of Sec. 2.
the valuation topology on F, the nontrivial homomorphisms of the algebra $F(T)$ taking values in F are generated by the points of T.

2. Function algebras over valued fields. In this section we discuss function algebras over valued fields. First we prove a version of a theorem of Kaplansky ([7, p. 173]) which is relevant to the material to follow; we include this proof because there seems to be an inconsistency in the use of "totally disconnected" in [7].

Lemma 1. (Kaplansky) Let T be a topological space and let $F(T)$ be endowed with the topology of uniform convergence on compact sets. I is a closed ideal in $F(T)$, iff there is some closed subset H of T such that $I = \{f \in F(T) \mid f(H) = \{0\}\}$. I is a closed maximal ideal in $F(T)$ iff there is some $t \in T$ such that $I = \{f \mid f(t) = 0\}$.

Proof. Suppose I is closed in $F(T)$ and let $H = \bigcap_{g \in I} g^{-1}(0)$. Letting $J(H) = \{f \mid f(H) = \{0\}\}$, we see that $I \subseteq J(H)$, and that $J(H)$ is a closed ideal. We show that if $f \in J(H)$, then $f \in I$.

Let K be any compact subset of T. If $y \in K$, then as I is an ideal, there exists $g_y \in I$ such that $g_y(y) = f(y)$. Since the clopen sets $\{U_y \mid y \in K\}$ where $U_y = \{x \in T \mid |f(x) - g_y(x)| < \varepsilon\}$ cover K for any fixed $\varepsilon > 0$, there exist y_1, \ldots, y_n such that $K \subseteq \bigcup_{i=1}^n U_{y_i}$. Since the sets U_{y_i} are clopen, we see that there exist pairwise disjoint clopen sets W_i such that $K \subseteq \bigcup_{i=1}^n W_i$ where $W_i \subseteq U_{y_i}$ for each i. Letting k_A denote the characteristic function of the set A, we see that if $h = \sum_{i=1}^n g_{y_i}k_{W_i}$, then $h \in I$ and $\sup_{t \in K} |h(t) - f(t)| < \varepsilon$. As $\varepsilon > 0$ can be made arbitrarily small, it follows that $f \in \overline{I} = I$.

In the proof to follow, "totally disconnected" is used as in [13, p. 380]: distinct points may be separated by clopen sets.

Theorem 1. (Kaplansky) Let S and T be 0-dimensional Hausdorff spaces. Let $F(S)$ and $F(T)$ carry their compact-open topologies and suppose that $F(T)$ is topologically isomorphic to $F(S)$. Then S and T are homeomorphic.

Proof. Let A be a topological isomorphism from $F(S)$ onto $F(T)$. If K is a closed subset of S and $J(K)$ denotes the ideal of functions that vanish on K, note that a mapping A' is defined by $A(J([s])) = J([t]) = J(A'(s))$ for some $t \in T$; i.e. $A': S \to T$ is such that $A'(s) = t$, and is well-defined as T is totally disconnected. Since A is injective and S is totally disconnected, then A' is injective as well. For any $t \in T$, $J([t]) = A(M)$ where M is a closed maximal ideal in $F(S)$.
Since $M = J([s])$ for some $s \in S$, A' is seen to be surjective.

Clearly $(A')^{-1} = (A^{-1})'$ so to show that A' is a homeomorphism, it suffices to show that A' is a closed map. To this end, since S is 0-dimensional, $K = \bigcap_{s \in J(K)} g^{-1}(0)$; since $J(K) = \bigcap_{s \in S} J([s])$, it follows that $A(J(K)) = J(A'(K)) = \bigcap_{s \in S} J([A'(s)])$. If $t \in A'(K)$, then $t = A'(s)$ where $s \in K$. Thus $J(K) \notsubset J([s])$ and $J(A'(K)) \notsubset J([t])$. As $J(A'(K)) = J(A'(K)) \notsubset J([t])$, we see that $t \notin A'(K)$ and therefore $A'(K) = A'(K)$.

Example 1. Let T be a totally disconnected Hausdorff space and let $F(T)$ carry the compact-open topology. We note immediately that the set of evaluation maps constitutes a set of distinct continuous homomorphisms of $F(T)$ into F. Moreover properties (a)—(e) also hold.

(a) If K is a compact subset of T, p_K is as in Ex. 1 of Sec. 1, and $N_K = p_K^{-1}(0)$, then the completion of the normed algebra $F(T)/N_K$ is $F(K)$.

Proof. Since T is totally disconnected, the characteristic functions in $F(T)$ separate the points of T. Thus the functions $f |_K$ as f runs through $F(T)$ separate points in K. The desired result now follows from an application of Kaplansky’s Stone-Weierstrass theorem ([8] or [12] p. 161).

(b) With “V^*-algebra” as in [12, p. 148], if T is locally compact, then $F(T)$ is the projective limit of V^*-algebras as in [9, p. 17].

Proof. The complete NLMC algebra $F(T)$ is the projective limit of the factor algebras $F(K)$ as K runs through the compact subsets of T and each $F(K)$ is a V^*-algebra.

(c) If T is ultranormal and F is a local field, then $F(T)/N_K = F(K)$.

Proof. Use the Ellis-Tietze extension theorem of [4].

(d) If T is 0-dimensional and F is a discretely valued field, then $F(T)/N_K = F(K)$ for any compact subset K of T.

Proof. Apply a modification of the Ellis-Tietze extension theorem to functions $f \in F(K)$ and thereby extend f continuously to a ‘Stone-Cech’ compactification $\beta H T$ where H is any local field. Where Ellis used local compactness of the field F, we use discreteness of the valuation on F, and compactness of $\beta H T$.

(e) The points of T constitute all continuous homomorphisms of $F(T)$ into F when F is discretely valued.

Proof. See Ex. 1 of Sec. 1 and use (d).
3. Main results. Let \(X \) be a NLMC algebra over a discretely valued \(F \). Then, as in the classical case ([9, p. 33]), if \(X \) is the projective (dense inverse) limit of a family \((F(K_n)) \) of Gelfand \(V^* \)-algebras by mappings \(\pi_{mn}: F(K_n) \rightarrow F(K_m), m > n \), where \((K_n) \) is a family of compact 0-dimensional Hausdorff spaces (it following that \(K_n \) is homeomorphically embedded in \(K_m \)), then \(X \) is topologically isomorphic to \(F(\bigcup K_n) \) where* \(F(\bigcup K_n) \) carries the compact-open topology. Moreover in this case \(\bigcup K_n \) can and will be identified with the set of all nontrivial continuous homomorphisms of \(X \) into \(F \) and carries the weak topology generated by \((K_n) \).

Definition 1. Let \(\mathcal{M} \) denote the nontrivial continuous homomorphisms of an MLHC algebra \(X \) over \(F \) into \(F \), and let \(\mathcal{M} \) carry the weak-* topology. Let \(F(\mathcal{M}) \) denote the algebra of continuous functions mapping \(\mathcal{M} \) into \(F \) with compact open topology and consider the map \(\psi: X \rightarrow F(\mathcal{M}) \) where, for any \(x \in X \), \(\psi(x)(h) = h(x) \) for each \(h \in \mathcal{M} \). \(X \) is called a full algebra if the homomorphism \(\psi \) is an isomorphism of \(X \) onto \(F(\mathcal{M}) \).

In [9] E. A. Michael stated that he did not know whether or not \(\psi \) was a topological isomorphism in the case where \(X \) is a Fréchet full algebra. S. Warner proved that this was true in the classical case ([15, p. 269]). In this section we show that \(\psi \) is a topological isomorphism if \(F \) is a local field (Theorem 7). It then follows according to some results of van Tiel [14] that \(X \) is the projective limit of a sequence \((F(K_n)) \) of Gelfand \(V^* \)-algebras where \(K_n = V_n \cap \mathcal{M} (V_n^0 \) is the polar of a neighborhood \(V_n \) of 0 in \(X \) coming from a base of \(F \)-convex closed neighborhoods of 0). Thus we will have a partial converse of the result which was described in the opening paragraphs of this section. We also note that by Prop. 5 of Sec. 1, \(X \) is a Gelfand algebra under the hypothesis just mentioned.

In what follows \(F \) is assumed to be discretely valued. In some cases it will also be assumed that \(F \) is a local field so that certain standard results from the duality theory of topological vector spaces ([14]) may be used.

Definition 2. Let \(F \) be discretely valued and let \((a_{\mu})_{\mu \in H} \) be a system of distinct representatives of the cosets in the residue class field of \(F \). We may assume that \(H \) is totally ordered where \(\mu_0 \) corresponding to \(a_{\gamma_0} = 0 \) is the first element. Let \(\pi \in F \) be such that \(|\pi| < 1 \) and \(|\pi| \) is a generator of the value group of \(F \). If \(a \) and \(b \) are any two elements of \(F \) there exist \((a_{\mu}) \) and \((a_{\lambda}) \) such that \(a = \sum_{i=N}^0 a_{\mu_i} \pi^i \) and \(b = \sum_{i=N}^0 a_{\lambda_i} \pi^i \). We now define the supremum, \(\sup (a, b) \),

* We may assume \(K_n \subset K_{n+1} \) as there exist sets \(K_n' \) such that \(\mathcal{M} = \bigcup K_n' \) with \(K_n \subset K_{n+1} \), and \(K_n' \) homeomorphic to \(K_n \) for all \(n \).
of a and b as:

\[\sup(a, b) = \begin{cases}
 a & \text{if } |a| > |b| \\
 b & \text{if } |b| > |a| \\
 a & \text{if } a = b \\
 a & \text{if } |a| = |b|, a_{\mu_i} = a_{\lambda_i} \text{ for } i = N, \ldots, j - 1 \text{ and } \mu_j > \lambda_j
\end{cases} \]

Lemma 1. Let \(T \) be a topological space and let \(f \) and \(g \) be continuous functions mapping \(T \) into \(F \). Then the function defined at each \(t \in T \) by \(\sup(f(t), g(t)) \) and denoted by \(\sup(f, g) \) is continuous.

Proof. Suppose \((t_s) \) is a net in \(T \) converging to \(t \). We show that \(\sup(f(t_s), g(t_s)) \) converges to \(\sup(f(t), g(t)) \). Letting \(f(t) = a \) and \(g(t) = b \), we need only consider the last possibility for \(\sup(a, b) \), the first three being trivial. Choose \(\varepsilon > 0 \) such that \(\varepsilon < |\pi|^j \). For \(r \) such that \(|f(t_s) - f(t)| < \varepsilon \) and \(|g(t_s) - g(t)| < \varepsilon \) for \(s \geq r \), it follows that

\[f(t_s) - f(t) = \sum_{i=N}^{\infty} a_{\mu_i} \pi^i \quad \text{and} \quad g(t_s) - g(t) = \sum_{i=N}^{\infty} a_{\lambda_i} \pi^i \]

where \(M > j \). We may also write

\[f(t_s) = \sum_{i=1}^{j} a_{\mu_i} \pi^i + \sum_{i=j+1}^{\infty} a_{\mu_i} \pi^i \quad \text{and} \quad g(t_s) = \sum_{i=1}^{j} a_{\lambda_i} \pi^i + \sum_{i=j+1}^{\infty} a_{\lambda_i} \pi^i. \]

Thus, since \(a_{\mu_i} = a_{\lambda_i} \) for \(i = N, \ldots, j - 1 \) and \(\mu_j > \lambda_j \), it follows that \(\sup(f(t_s), g(t_s)) = f(t_s) \) for \(s \geq r \). Thus \(\sup(f, g)(t_s) = f(t_s) \rightarrow f(t) = \sup(f, g)(t) \).

Lemma 2. Let \(F(T) \) denote the algebra of continuous functions mapping the 0-dimensional Hausdorff space \(T \) into the discretely valued \(F \), with compact-open topology. If \(V \) is an \(F \)-barrel (closed absorbent \(F \)-convex set) in \(F(T) \), then there is some \(\delta > 0 \) such that \(\sup_{t \in T} |f(t)| \leq \delta \) implies that \(f \in V \).

Proof. Let \(B \) be the sup-norm Banach space of all bounded functions from \(T \) into \(F \). We note that \(V \cap B \) is an \(F \)-barrel in \(B \). Since \(B \) is \(F \)-barreled ([14, p. 268]) there is some \(\delta > 0 \) such that \(\sup_{t \in T} |f(t)| \leq \delta \) which implies that \(f \in V \cap B \).

Lemma 3. Let \(V, F, T \) and \(F(T) \) be as in Lemma 2, and suppose that for some compact subset \(K \) of \(T \), \(\{ f | f(K) = \{0\} \} \subset V \). Then there is some \(\mu > 0 \) such that whenever \(\sup_{t \in K} |f(t)| < \mu \), then \(f \in V \). Thus \(V \) is a neighborhood of 0 in \(F(T) \).

Proof. Let \(a \in F \) and denote the function sending each \(t \in T \) into \(a \) by \(a \). With \(\delta \) as in Lemma 2, choose \(a \in F \) such that \(0 < |a| \leq \delta \).
δ/2. Choosing an integer \(n \) so that \(\delta/n < |a| \), let \(f \in F(T) \) be such that \(\sup_{t \in K} |f(t)| \leq \delta/n \). With \(g = \sup (f, a) - a \), it follows that \(g(t) = 0 \) for each \(t \) in \(K \). Thus \(g \in V \). Since \(|f(t) - g(t)| \leq |a| \leq \delta/2 \) for all \(t \in T \), it follows that \(f - g \in V \). Since \(V \) is \(F \)-convex, \(g + (f - g) = f \in V \), and the proof is complete.

We continue towards nonarchimedean analogs of theorems of Nachbin (Theorem 3) and Warner (Theorem 7). First we consider a notion of support of a linear functional which serves to replace the classical notion used by Nachbin.

In Lemmas 4 and 5 \(F(T) \) again denotes the algebra of continuous functions from the 0-dimensional Hausdorff space \(T \) into \(F \) with compact-open topology and \(\varphi \) denotes a member of the continuous dual \(F(T)' \) of \(F(T) \). For any subset \(S \) of \(T \), \(k_S \) denotes the characteristic function of \(S \) taking values in \(F \) and we note that \(k_S \in F(T) \) iff \(S \) is clopen. Let \(\mathcal{S} \) denote the family of subsets \(U \) of \(T \) such that \(U \) is clopen and \(\varphi(fk_U) = 0 \) for all \(f \in F(T) \).

Lemma 4. The family \(\mathcal{S} \) has the following properties: (1) If \(U \) is a clopen subset of \(G \in \mathcal{S} \), then \(U \in \mathcal{S} \); (2) \(\mathcal{S} \) is a ring of sets.

Proof. To prove (1) we observe that \(k_U = k_Gk_U \). (2) follows readily from (1).

Definition 3. The support of \(\varphi, F_\varphi \), is defined to be \(C(\cup \mathcal{S}) \).

We observe that since \(\varphi \) is continuous there is some compact set \(K \subset T \) and an integer \(N \) such that if \(f \in F(T) \), then \(|\varphi(f)| \leq N \sup_{t \in K} |f(t)| \). Thus, if \(f \) vanishes on \(K \), then \(\varphi(f) = 0 \).

Theorem 1. In the same notation as above (1) \(F_\varphi \subset K \) and therefore \(F_\varphi \) is compact, (2) if \(\varphi \) is nontrivial, then \(F_\varphi \) is not empty, and (3) if \(G \subset T \) is open and \(G \cap F_\varphi \) is not empty, then there exists \(f \in F(T) \) such that \(f(CG) = \{0\} \) and \(\varphi(f) = 1 \).

Proof. (1) If \(G \) is a clopen subset of \(CK \), then—since \(k_G \) vanishes on \(K \)—\(\varphi(fk_U) = 0 \) and \(G \in \mathcal{S} \).

(2) If \(F_\varphi \) is empty, \(T = \bigcup \mathcal{S} \), and it follows that for some \(U_i \in \mathcal{S} \), \(K \subset \bigcup_{i=1}^\infty U_i = G \). Since \(\mathcal{S} \) is a ring of sets, \(G \in \mathcal{S} \) and since \(CG \) is clopen and contained in \(CK \), \(\varphi(f) = \varphi(fk_U) = 0 \) for all \(f \in F(T) \). But then \(\varphi \) is trivial.

(3) If \(G \cap F_\varphi \neq \emptyset \), there is some \(t \in G \cap F_\varphi \). Since \(T \) is 0-dimensional, \(t \in U \subset G \) where \(U \) is clopen. Since \(U \cap F_\varphi \neq \emptyset \), then \(U \notin \mathcal{S} \) and there is some \(g \in F(T) \) such that \(\varphi(gk_U) \neq 0 \). We of course may assume that \(\varphi(gk_U) = 1 \). Letting \(gk_U = f \), (3) is seen to be proved.
In order to apply this notion of support to our version of Nachbin’s theorem (Theorem 3) we require that F_φ have the property that if f vanishes on F_φ, $\varphi(f) = 0$. We now develop a case where this is true and which makes the notion applicable to Theorem 3 as well as settling Michael’s question in this setting (Theorem 7).

Lemma 5. Suppose that $\varphi(g) = 0$ for any $g \in F(T)$ which vanishes on any clopen set G containing F_φ. Then if f vanishes on F_φ, $\varphi(f) = 0$.

Proof. Suppose that $f \in F(T)$ vanishes on F_φ, and let $A_n = \{ t \in T \mid |f(t)| < 1/n \}$ ($n = 1, 2, \ldots$). As $F_\varphi \subset A_n$ for any n and A_n is clopen $\varphi(f) = \varphi(fk_{A_n}) + \varphi(f(1 - k_{A_n}))$. By the hypothesis, since $f(1 - k_{A_n})$ vanishes on A_n, $\varphi(f) = \varphi(fk_{A_n})$. Let K be a compact subset of T such that $|\varphi(f)| \leq N \sup_{t \in K} |f(t)|$. Hence $|\varphi(f)| = |\varphi(fk_{A_n})| \leq N \sup_{t \in K} |f(t)|$, $|f(t)| < N/n$. Since this is true for every n, $\varphi(f) = 0$.

Theorem 2. Let T be a Lindelöf space. Then if f vanishes on F_φ, $\varphi(f) = 0$.

Proof. Let G be a clopen subset containing F_φ. Since CG is closed, CG is Lindelöf. Since $CG \subset GF_\varphi = \bigcup \mathcal{S}$, there exist $U_i \in \mathcal{S}$ such that $CG \subset \bigcup_{i=1}^\infty U_i$. Since \mathcal{S} is a ring, we may assume that the sets U_i are pairwise disjoint. Since $CG \cap U_i = V_i$ is clopen and contained in U_i then $V_i \in \mathcal{S}$. Thus $k_{CG} = \sum_{i=1}^\infty k_{V_i}$ in the topology of pointwise convergence on $F(T)$. We claim that the “pointwise convergence” of the preceding sentence may be replaced by “uniform convergence on compact sets.”

To prove this last statement, let L be a compact subset of T and consider $L \cap CG$. As $L \cap CG$ is compact and contained in $\bigcup_{i=1}^\infty V_i$, there is some integer N_L such that $n \geq N_L$ implies that $L \cap CG$ is contained in $\bigcup_{i=1}^n V_i$. But $CG \subset \bigcup_{i=1}^n V_i$ so $L \cap CG = L \cap (\bigcup_{i=1}^n V_i)$. Thus for $n \geq N_L$, CG and $\bigcup_{i=1}^n V_i$ have the same points in common with L, and $\sup_{t \in L} |(k_{CG} - \sum_{i=1}^n k_{V_i})(t)| = 0$ for $n \geq N_L$. Since L was an arbitrary compact set, the series is seen to converge in the compact-open topology and $\varphi(fk_{CG}) = \sum_{i=1}^n \varphi(fk_{V_i}) = 0$.

We now present a version of a theorem of Nachbin ([10, p. 472])

Theorem 3. Let $F(T)$ denote the algebra of continuous functions mapping the 0-dimensional Hausdorff space T into the discretely valued field F, with compact-open topology. Suppose that for each $\varphi \in F(T)'$, f vanishing on F_φ implies $\varphi(f) = 0$. Then $F(T)$ is F-barreled iff for every $E \subset T$ which is closed and not compact there is some $f \in F(T)$...
which is unbounded on E.*

Proof. Suppose that the condition holds and let V be an F-barrel in $F(T)$. To show that V is a neighborhood of 0 in $F(T)$ we begin by letting $K = \bigcup_{\varphi \in \psi} F_{\varphi}$. If K is not compact, let f be unbounded on K and consider the sets $A_n = \{ t \in T | |f(t)| > n \}$, $n = 1, 2, \ldots$. Each A_n is clopen and $A_n \cap K \neq \emptyset$. Thus there is some $F_{\varphi_n} \subset K$ such that $A_n \cap F_{\varphi_n} \neq \emptyset$. By Theorem 1 (3) there exists $f_n \in F(T)$ such that f_n vanishes outside of A_n and $\varphi_n(f_n) = 1$. Since $\bigcap_{n=1}^{\infty} A_n = \emptyset$, the function $f = \sum_{n=1}^{\infty} a_n f_n$ is a continuous function for any choice of $a_n \in F$. As it is clear that $A_m \bigcap F_{\varphi_n} = \emptyset$ for all sufficiently large m, we may (by considering a subsequence) assume that $\varphi_n(f_m) = 0$ for all $m \geq n$. By a proper choice of a_n we see that $|\varphi_n(f)| \to \infty$ and as $\varphi_n \in V^0$, af cannot belong to $V^{\infty} = V$ no matter how small $|a|$ is. Thus we contradict the fact that V is absorbent and K must be compact. If f vanishes on K, then f vanishes on F_{φ} for all $\varphi \in V^0$. Thus $f \in V^{\infty} = V$ so, by Lemma 3, V is a neighborhood of 0.

To prove the converse, let $F(T)$ be F-barreled and E be a closed noncompact subset of T. Let $V = \{ f | \sup_{t \in K} |f(t)| \leq \delta \}$, $\delta > 0$, and let K be a compact subset of T. As $E \cap CK \neq \emptyset$, using $\beta_{11} T$ as in Sec. 2 Ex. 1 (d) we may assert the existence of a sequence (f_n) of functions which vanishes on K but $|f_n(t_N)| \geq N$ for any positive integer N and some $t_N \in E$. Thus the set $\{ f | \sup_{t \in K} |f(t)| \leq \varepsilon \} \not\subset V$ for any $\varepsilon > 0$ and V is not a neighborhood of 0. It follows that V is not absorbing and there exists $f \in F(T)$ which is unbounded on E.

Corollary. Let T be a 0-dimensional Hausdorff Lindelöf space and F a discretely valued field. Then $F(T)$ is F-barreled.

Proof. We refer to Theorem 2 and the construction of the function in the proof of Theorem 6 for the proof of the corollary.

Theorem 4. Suppose the 0-dimensional Hausdorff space $T = \bigcup_{n=1}^{\infty} K_n$ where each K_n is compact, $K_n \subset K_{n+1}$, and each compact subset of T is contained in some K_n (i.e. T is hemicompact). Then denoting T endowed with the weak topology ([3], p. 131) generated by the sets (K_n) as T_w, $F(T)$ is dense in $F(T_w)$, each algebra carrying its compact-open topology.

Proof. Since the topology of T_w is clearly stronger than that of T, $F(T) \subset F(T_w)$. We note that the topology of T_w restricted to K_n is

* In a sequel to this paper we show that Theorem 2 is true for any 0-dimensional Hausdorff space T and any complete nonarchimedean nontrivially valued field F. Thus Theorem 3 is true for all spaces T. We also show that the result of Theorem 3 holds of F is spherically complete ([16]).
equal to the topology \(K_n \) inherits from \(T \) and the compact subsets of \(T_w \) lie in the sets \(K_n \). Thus \(F(T) \) is a topological subspace of \(F(T_w) \).

Using Sec. 2 Ex. 1 (d), \(F(T)/N_K = F(K) \) for any compact set \(K \subset T \) and it follows that \(F(T) \) is dense in \(F(T_w) \).

Theorem 5. Let everything be as in the preceding theorem. If \(F(T) \) is complete then \(T = T_w \) iff \(T_w \) is 0-dimensional.

Proof. If \(F(T) \) is complete, then \(F(T) = F(T_w) \). Since they are topologically isomorphic under the identity map by the proof of Theorem 4, if \(T_w \) is 0-dimensional, then \(T = T_w \) by Theorem 1 of Sec. 2. We may also observe that the functions of \(F(T) \) generate the topology of the space \(T \) while those of \(F(T_w) \) generate the topology of \(T_w \). Thus as \(F(T) = F(T_w) \), the topologies are equal.

Theorem 6. Let \(F(T) \) denote the algebra of continuous functions mapping the 0-dimensional Hausdorff space \(T \) into the local field \(F \) and suppose that \(F(T) \) is a complete locally \(F \)-convex metric space with topology \(T \). If the homomorphisms determined by the points of \(T \) are the \(T \)-continuous homomorphisms, then \(T \) is the compact-open topology.

Proof. Let the set of evaluation maps determined by \(T \) be denoted by \(T^* \) and let \(T^* \) carry the Gelfand topology (i.e. the weakest topology for \(T^* \) with respect to which the maps \(t \rightarrow x(t) \) of \(T^* \) into \(F \) are continuous for each \(x \in F(T) \)). Since \(T \) is 0-dimensional the Gelfand topology coincides with the original topology on \(T \), i.e. \(T \) and \(T^* \) are homeomorphic. Since \((F(T), T) \) is \(F \)-barreled ([14, p. 268]), the polar of any compact subset of \(T^* \) is a neighborhood of 0 in \(F(T) \). Thus, identifying \(T \) and \(T^* \), \(T \) is seen to be stronger than the compact-open topology on \(F(T) \). If \(F(T) \) with compact-open topology could be shown to be \(F \)-barreled, the closed graph theorem could be applied to complete the proof. To show that \(F(T) \) is \(F \)-barreled, let \(E \) be a closed noncompact subset of \(T \). Since \(F(T) \) is a Frechet space, \(T^* \) is 0-dimensional and Lindelöf and therefore \(T \) is 0-dimensional and Lindelöf. Thus \(E \) is Lindelöf and there exists a denumerable clopen cover \((U_n) \) from which no finite subcover can be extracted. We may assume the family \((U_n) \) to be pairwise disjoint. Since \(CE \) is open in \(T \), \(CE = \cup V_\mu \) where each \(V_\mu \) is clopen so that \(T = (\bigcup_{n=1}^\infty U_n) \cup (\bigcup_{n=1}^\infty V_\mu) \) where the \((V_\mu) \) may be assumed to be pairwise disjoint. Defining \(H_{2n} = V_{\mu_n}, H_{2n+1} = U_n \) and setting \(L_n = H_n - \bigcup_{i=1}^{n-1} H_i \) then \(T = \bigcup_{n=1}^\infty L_n \) where each \(L_n \) is clopen and \((L_n) \) is pairwise disjoint. We note that \(E \) must intersect infinitely many \(L_n \)'s lest \(E \) turn out to be covered by finitely many of the \(U_i \). Now consider the function \(f: T \rightarrow F \)
defined by \(f(t) = \sum_{i=1}^{\infty} a^i k_{L_i}(t) \) where \(|a| > 1 \). We observe that \(f \) is unbounded on \(E \) and therefore \(F(T) \) with compact-open topology is \(F \)-barreled.*

We now prove a nonarchimedean version of a theorem of Warner ([15, p. 267]).

Theorem 7. Let the set of nontrivial continuous homomorphisms on the Frechet full algebra \(X \) be denoted by \(\mathcal{M} \). Let \(\mathcal{M} \) carry the weak-* (Gelfand) topology and \(F(\mathcal{M}) \) the compact-open topology. Then \(X \) is topologically isomorphic to \(F(\mathcal{M}) \).

Proof. Carrying the topology of \(X \) over to \(F(\mathcal{M}) \) via the isomorphism \(\psi \) (Def. 1 of Sec. 1) and noting that \(\mathcal{M} \) constitutes the set of nontrivial continuous homomorphisms of \(F(\mathcal{M}) \) into \(F \), we see by the previous theorem that the proof is done.

For complex algebras, Warner ([15]) has proved that the "\(\mathcal{M} \)" of Theorem 7 is a \(k \)-space (\(\mathcal{M} \) carries the weak topology generated by a sequence of compact sets). This question as well as an attempt to develop a substitute for concept of "\(Q \)-space" ([5, p. 271]) is investigated in subsequent papers ([16]).

References

As shown here, the hypothesis of Theorem 6 implies \(T \) to be Lindelöf. \(T \) being Lindelöf however implies that all homomorphisms of \(F(T) \) into \(F \) are given by points of \(T \) ([16]).

Received June 7, 1971.

St. John's University
Notre Dame College
Staten Island, New York
and
Polytechnic Institute of Brooklyn
and
St. John's University
Jamaica, New York 11439
Jimmy T. Arnold, *Power series rings over Prüfer domains* ... 1
Maynard G. Arsove, *On the behavior of Pincherle basis functions* 13
Jan William Auer, *Fiber integration in smooth bundles* ... 33
George Bachman, Edward Beckenstein and Lawrence Narici, *Function algebras over valued fields* .. 45
Gerald A. Beer, *The index of convexity and the visibility function* 59
James Robert Boone, *A note on mesocompact and sequentially mesocompact spaces* ... 69
Selwyn Ross Caradus, *Semiclosed operators* ... 75
John H. E. Cohn, *Two primary factor inequalities* ... 81
Mani Gagrat and Somashekhar Amrith Naimpally, *Proximity approach to semi-metric and developable spaces* .. 93
John Grant, *Automorphisms definable by formulas* .. 107
Walter Kurt Hayman, *Differential inequalities and local valency* 117
Wolfgang H. Heil, *Testing 3-manifolds for projective planes* 139
Melvin Hochster and Louis Jackson Ratliff, Jr., *Five theorems on Macaulay rings* ... 147
Thomas Benton Hoover, *Operator algebras with reducing invariant subspaces* 173
James Edgar Keesling, *Topological groups whose underlying spaces are separable Fréchet manifolds* .. 181
Frank Leroy Knowles, *Idempotents in the boundary of a Lie group* 191
George Edward Lang, *The evaluation map and EHP sequences* 201
Everette Lee May, Jr, *Localizing the spectrum* ... 211
Frank Belsley Miles, *Existence of special K-sets in certain locally compact abelian groups* .. 219
Susan Montgomery, *A generalization of a theorem of Jacobson. II* 233
T. S. Motzkin and J. L. Walsh, *Equilibrium of inverse-distance forces in three-dimensions* ... 241
Arunava Mukherjea and Nicolas A. Tserpes, *Invariant measures and the converse of Haar's theorem on semitopological semigroups* .. 251
James Waring Noonan, *On close-to-convex functions of order β* 263
Donald Steven Passman, *The Jacobian of a growth transformation* 281
Dean Blackburn Priest, *A mean Stieltjes type integral* .. 291
Joe Bill Rhodes, *Decomposition of semilattices with applications to topological lattices* .. 299
Claus M. Ringel, *Socle conditions for QF − 1 rings* .. 309
Richard Rochberg, *Linear maps of the disk algebra* .. 337
Roy W. Ryden, *Groups of arithmetic functions under Dirichlet convolution* 355
Michael J. Sharpe, *A class of operators on excessive functions* 361
Erling Stormer, *Automorphisms and equivalence in von Neumann algebras* 371
Philip C. Tonne, *Matrix representations for linear transformations on series analytic in the unit disc* .. 385