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An entire function f(z) is said to have bounded value
distribution (b.v.d.) if there exist constants p, B such that
the equation f(z) = w never has more than p roots in any
disk of radius K. It is shown that this is the case for a
particular » and some R > 0 if and only if there is a constant
C > 0 such that for all z

| feD(z)| = C max |f™(2)],
v=110 p

so that f/(z) has bounded index in the sense of Lepson.

We consider the differential equation

{1.1) Yy +ay" ™+ v,y =0,
in the disk
(1.2) D, = {z||z — #| < R},

where 0 < R < o and the functions a, to a, are supposed to be
regular and bounded in D,. The solutions of (1.1) are regular in D,
and possess there no zeros of order greater than » — 1. This prompted
Tijdeman to ask for a disk depending only on z, R and the coefficients
a, to a,, in which the equation (1.1) is disconjugate, i.e. no solution
has more than % — 1 zeros. He later solved this problem [10] using
a method due to Turan [12]. At about the same time a solution was
given by Kim [5], who obtained sufficient conditions on a, to a, for
(1.1) to be disconjugate in the whole of D,.

An interesting special case occurs when R = «, so that D, is
the open plane. In this case a, to a, must be constant and the solu-
tions take the form

(13 ¥@) = 3y p.)e

where the @, are the roots of the characteristic equation

(1.4) Plw) = w" + Z. a0 =0 .

If w, has multiplicity k&, then p,(2) is a polynomial of degree at most
k, — 1. With his methods Tijdeman [11] has obtained a number of

striking results concerning the distribution of the zeros of (1.3).
Setting
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4 = max |w,]|,

v=110 k

he proved that if N, is the number of zeros of y(2) in D,, then
N, <3(n—1) + 4R4 .

This sharpens considerably an earlier result of Dancs and Turan [2].
He also proved [11, Theorem 2]

THEOREM A. If R4 < min {n~® (24)7%, then N, <n — 1, so that
(1.1) ¢s disconjugate in D,.

We can clearly consider y(z) — w instead of w, where w is a constant,
at the expense of replacing the order » of (1.1) by » + 1. Thus we
deduce at once from Tijdeman’s results

THEOREM B. If Np(w) denotes the nmumber of roots of y(z) = w
wn D, then

(1.5) Ny(w) < 3n + 4R4 ,
and of R4 < min {(n + 1)7% (24)7%}, we have
(1.6) Npy(w) = n.

The bounds in (1.5) and (1.6) are independent of w and z,, We can
restate (1.6) by saying that y(z) is at most =n-valent in any disk of
radius R in the open plane.

We now quote the main result of Kim [5, pp. 721, 722], which
may be stated in the following form

THEOREM C. Suppose that y(z) is regular in D,, and has n zeros
there. Then there exists z, in D, such that

(1.7) ()| < %(R e — a)RB + 12— 2D Y @),
18 YR <R+ - &) ly@), 1S kS0~ 1.
Hence if

19 5 EHEBD 6,p) 4+ ExlzmallBE =), ) <1

wn D, then (1.1) is disconjugate in D,.

Both Kim’s and Tijdeman’s results can also be applied to equations
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(1.1) with polynomial coefficients.

In connection with Theorem B, Turan [3, problem 2.28] considered
functions y(z) which satisfy (1.6) for fixed constants R and % and
every z,. He called such y(2) functions of bounded value distribution
(b.v.d.). Suppose that in the equation (1.1) the coeflicients are integral
functions, and that every solution y%(z) has b.v.d.. Then he asked if
the a, to a, are necessarily constants. This was proved to be the
case by Wittich [13] even under the weaker hypothesis, that for
every solution y(2) there exists at least one w = 0 and a constant R,
such that N,(w) is bounded above for all z,. Turan [3, problem 2.28]
also asked whether a b.v.d. function necessarily has at most mean
type of order one in the plane.

A related question was raised by Lepson [6]. Let f(z) be an
entire function and for each z let N(z) be the least integer such
that

fP@ | _ 1@

(1.10) sup 7 N

0£j<o0

If N(z) is bounded above for varying 2z, then f(z) is said to be of
bounded indexr, and the least upper bound N of N(z) is called the
index of f(z). It was shown by Shah [7] that the solutions of equa-
tions (1.1) have bounded index if the a,(2) are constants. More
generally if the a,(2) are rational functions which remain bounded
at oo, then any solution of (1.1) which is an entire function has
bounded index [8]. Shah also showed that any function of bounded
index has order 1, type N + 1 at most [7]. This result is sharp as
shown by f(2) = exp {(IV + 1)z}. It is evident that if f'(2) has bounded
index N, then f(2) has bounded index at most N + 1. The converse
is however false, as an example at the end of the paper will show.
Another example has just been given by Shah [9].

Lepson in conversation with me raised the question as to whether
the functions of bounded index and b.v.d. were related. This problem
was the basis of the present paper. We can settle the question in
one direction very simply by quoting the following form of a classical
result on p-valent functions. We denote as usual positive absolute
constants by A, constants depending on p, ¢ ete. by A(p), A(p, q),
particular constants by A, A4,, --- ete.

THEOREM D. Suppose that f(2) is p-valent in D,, i.e. that f(z) is
regular in D, and assumes mo value more than p times there; then
for j>p

(1.11) _Lf_‘“gz'_o)lfﬂ < A,(p)j* max LSU@IE" M(j;’”R" .

v=1to p



120 W. K. HAYMAN

The result (with 7' instead of j**) is due to Biernacki [1]. The
best known numerical value of A,(p) is due to Jenkins and Oikawa
[4], who proved a bound for the maximum modulus of p-valent
functions from which Theorem D follows with A, (p) = (4.,/p)>.
If R=2 we shall deduce from (1.11) that f’(z) has index at most
Ap. If R <2, simple geometrical considerations show that f(z) is
at most p,-valent in |z — z,|] < 2, for every z,, where p, < A,p/R*.
Thus in this case f(z) has index at most A4,p/R*. Thus we have the
following

THEOREM 1. If f(2) ts p-valent tn |z — z,| < R, for every z, and
a fized R, then f'(z) has index at most' Apmax (1, R, If R = A},
then f'(z) has index at most p — 1. In particular if f(z) has b.v.d.
then f'(z) has bounded index.

2. Statement of further results. We ghall in this paper prove
a local converse to Theorem D, i.e. we shall show that if f(z) satisfies
an inequality such as (1.11) in a disk, then f(2) is p-valent in a
suitable smaller disk. The result will also enable us to improve the
Theorems of Tijdeman and Kim in certain cases. It is convenient to
define

(2.1) faulz) = max | f¥(z) .
Our first result is
THEOREM 2. If f(2) ts regular in D, and satisfies

(2.2) MR ] = Ful?)

there, then we have in D,
(2°3) f’ﬂ(z) g fn(zo) eXp (!z - ZO]) *

COROLLARY 1. If f(z) is an integral fumnction satisfying (2.2)
in the whole open plane, then

(2.4) @] = fu0)e!

there, so that f(z) has at most order 1, type one.

COROLLARY 2. If f(z) 1s an integral function of bounded index
N, then

t It will follow at once from (2.8), that this estimate can be replaced by
Apmax (1, R~Y).
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(N+1) |2 If(y)(o)‘ (N+1 >z
(2.5) @] < o max o < Fra @

The Corollary 2 sharpens the theorem of Shah [7] previously
referred to. The function f(2) = e¢¥*Y2, which has index N, shows
that (2.5) cannot be further sharpened except possibly for the constant
Swv+:1(0). On the other hand the inequality (2.3) is sharp, as f(z) = ¢°
shows. Thig is the reason why (2.2) is more convenient as a normalisa-
tion than (1.10) for the purpose of this paper. Our main result is an
analogue of Theorem C. This is

THEOREM 3. Suppose that f(z) is regular in |z| < 2n and satisfies
(2.2) there. Then f(z) possesses at most m — 1 zeros in

|z] < n'?(eV/20) < n'?/12.2.

Let us compare this result with the conclusion to be drawn from
Theorem C.

THEOREM E. Suppose that f(z) is regular and satisfies (2.2) in
2] < R, where R < 1/2. Then f(2) has at most n — 1 zeros there.

Theorem E is stronger than Theorem 3 for » < 37, and we only
have to assume that f(z) satisfies the hypotheses in |z| < R. On the
other hand for n = 38, Theorem 3 yieds a larger disk in which there
are at most » — 1 zeros, at the cost of assuming that f(z) satisfies
the hypotheses in a still larger disk.

The order of magnitude in Theorem 3 is the correct one for large
n. We set

flz) = -1—,(22 — 8(n — 1)) | if 5 is even ;
n!

@) = Lo — 3wymen, it w s odd .
n.

Then f(z) has n zeros in [2z] <1/(8%). On the other hand

PR =1, Feg =z, o = Lo 3

so that we have for all 2
1 =[f"@)]| =max ("R, [ ")) = fu?) .

Thus we cannot replace #'?/(12.2), by #“*V/3 in Theorem 3, even if
(2.2) is satisfied in the whole plane.
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By applying Theorem 8 to f(z) — w, we obtain the desired converse
to Theorem D. This is

THEOREM 4. Suppose that f(2) is regular in D, and satisfies there

Ry | L2202 max Ry LA

( -+ 1 ! igvsp
with C =< 1/2. Then f(2) is p-valent in |z — z,| < CR/{12-2(p + 1)%.

COROLLARY. An integral function f(z) has b.v.d. if and only if
f'(z) has bounded index. More particularly if p(R) is the upper bound
of the valencies of f(z) in |z — z,] < R, for varying 2, and N is the
index of f'(z) we have

ﬁ??N+mwﬂ<N+1<pmw

We can also prove

THEOREM 5. Suppose that f'(z) is a function of bounded index
N and let p(R) be defined as above. Then

(2.6) AN+ 1) =p(1) = A(N +1).
Furthermore for R =1, we have

2.7) p(R) < (N + De(R + 2) .

COROLLARY. If 0 < R, < R, < oo then we have

p(Ry) p(R)
(2.8) B <A9R1'

We now turn to applications to the disconjugacy problem of the
equation (1.1). We write

(2.9) o, = supa ®|, a, = sup allv

isv=sn

and let ¢, be the positive root of the equation
(2.10) Sat=1.
Then we have evidently

L <1,
&,
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We suppose that y(z) is a solution of (1.1) and set f(z) = y(z, + ¢2)
where t < t,. Then

Y@ =ty +tz), v=0ton,

so that f(2) satisfies for |2| < R/t the differential equation
FO@) = —3 a,(@ + 2 F )

In view of (2.9), (2.10) this leads to (2.2). Thus by applying Theorem
3 to f(2), with t = ¢, = min {¢,, B/2n} we obtain

THEOREM 6. If y(z) is a solution of the equation (1.1) in D,, then
Y(z) has at most m — 1 zeros in
|z — 2,| £ R, = min {t,n"*/(ev/20), R/[4e(5m)""]}
i.e. the equation is disconjugate in |z — z,| < Ri.
To compare Theorem C and Theorem 6, we take {a,| constant in (1.1)
and B, = 1. Then the condition for Theorem C is certainly satisfied if

2% |, |

= 1,

Ma

A

b

while the condition for Theorem 6 is that

(12.2)* _
n(llz)k -

kﬁﬂlakl

Thus Kim’s condition is weaker and so his Theorem is stronger unless
n is very large, and the a, for small %k relatively large compared
with the others, when Theorem 6 gives a better result.

Finally we return to the exponential polynomials (1.3). We shall
prove

THEOREM 7. If y(z) is the exponential polynomial (1.3) then y(z)
has at most n — 1 zeros in |z — z,| < 47 max {0.025, 0.15%7/2}.

The result with # > 36 will be deduced from Therem 6 and when
7 < 86 from Theorem E. Both the results are somewhat sharper
than the conclusion of Tijdeman’s Theorem A.

3. Proof of Theorem 2. Suppose that f(z) is regular in D, and
satisfies (2.2) there. We set for a fixed real 6

gt) = max [f“(z, + te”)|, 0Zt< R.
0svEn—1
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The interval [0, RB) can be divided into a finite number of subintervals
in which one of the derivatives | f*(z, + t¢’)| is maximal. Thus g(z)
is continuous and except for a finite number of points we have in
(0, R) for some v, 0 =v=<mn—1

g'(t) = [f*0 (@ + te¥) | = 9(t)

in view of (2.2). Thus e¢~‘g(tf) is nonincreasing in [0, B) and this
yields (2.8), when we set z = z, + te?’. We deduce (2.4), on setting
2, = 0.

Finally to deduce Corollary 2, we suppose that f(z) has index
bounded by N in the whole plane, so that in view of (1.10) we have
£OH@)] o [ FOR)

!

(N + 1! 7 osesv
We set ¢g(z) = f(tz), where ¢ = (N + 1), and deduce that

N41—v) !
9@ < max S+ Dl

0SvSN v!

Y@ = max 19> ()] .

Thus g(?) satisfies (2.2), with n = N + 1, and we deduce from (2.4)
that

19(®) [ = gy+1(0)e” = max [¢¥(0) e = max ¢*[ f*(0) e = [y (0)e' .
Since f(z) = g[(IN + 1)z], we deduce (2.5).

4. Proof of Theorem 3. To prove Theorem 3 we need, apart
from Theorem 2, two subsidiary results.

LEMMA 1. Let z,v=1 to n be complex wnumbers such that
maxlévé’n lzul - po- If fuTthe’r‘

66 = {111 - 22} =S,
where b, =0, and ¢ =1 or —1, then
[, | < n"*05, k> 1.

The Lemma is false, without the hypothesis b, = 0. Thus if
#(z) = (z + 1), then

pozl,bk:n(n—l)~-~(n—lc+1)/lc!~%’-l;,

as n— oo for fixed k.
With the hypotheses of Lemma 1, we can set
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“/'(z)zglog< 1 ):i Skz’“,

1— 22 =1 k

where S, = 0 and

18] =

n
I
yv=1

s noe = ()", kz2.

Since ¢(z) = exp {F+(2)}, we deduce that the coefficents of $(z) cannot
exceed those of exp {3.° (| S;|/k)z*} which are smaller than those of

S (0R) ) 1 pizp )
exp {21‘ 7 }-— 1 — n'o)" .

This prove Lemma 1.
We have next

LEMMA 2. Suppose that 9(z) = 3= g.2° is regular in |z| < 0, and
that

(4.1) S lg.Fo* < 5l Fo™ .
Further let z,,1 < v < n be zeros of g(z) in |z| < o, such that
(4.2) e, =0.

Here multiple zeros may be counted according to their multiplicity.
Then

(4.3) 0, = max |z,| > p(5n)* .
I1SvEn

Here also the condition (4.2) is essential. For without this we
may take
92 = (z + a)",
which has % zeros at z = —a, and certainly satisfies (4.1) if
o < ntlaffo?, ie. 0= nlal.

Thus without (4.2) we can certainly not assert o, > p/n instead of
(4.3).

To prove (4.3) we assume without loss of generality that p =1,
since otherwise we may consider g(oz) instead of g(z). We now set

h(z) ﬁ 2% =°:hyz”.

1—22

It follows from Lemma 1 that
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i1 1 : i b2k, where b =0,[b] < (o), k> 1.
y=1 — zu ¢

Similarly if
MGe—z2) = ca™
v=1 k=0

then

ﬁ (1_ &> :ickz_k’ ﬁ(l“’ 2,%) :ickz’“,
v=1 0 v=1 k=0

2
and now Lemma 1 shows that

e =0l <(on™®, kz2.
We set oon* =t, 1 — )™ = 7. Thus we have for £ =1

tk
1-¢

= 7tk .

lh’n—kl = ’Sn: cpbp—-k < i k<
=k =k

‘We now set
9(z) = GRA(R) ,
and assume that p, < o, since otherwise there is nothing to prove.
Then G(z) is regularin |z| £ 1, and |G(z)| = |g(z)| for [z| = 1. Thus
if
G@) =3, Gz,
we have

SIGF=3gk =0

say. Now for p < n, we have

? 2 P ?
|gp[2 = |2 Gihper| =20 1GF X Vhps P
=0 =0 k=0
<0 é ALY oTH = g,
k=0 1-¢

This yields in turn

nz_l lg,? < ot® S—]l ' < ot < la ,
p=0 =0 2

if ¢# <1/5, so that = <5/4. This contradicts (4.1). Thus ¢ > 573,
and Lemma 2 is proved.
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4.1. We can now complete the proof of Theorem 3. We assume
that f(z) has n zeros, z, to z,, in [z]| < 0,, and set

zv! 2, =2, + 2,

uM=

zoz_];_
n v

F{R) =f(z, + 2) .

Then F(z) has the n zeros z, with |z]| < 20, and > 2, = 0. Further
F(2) satisfies (2.2) in |z2] < 2n — 0, From this we proceed to obtain
a lower bound for p,. We assume o, < (1/2)n, since otherwise there is
nothing to prove, set

¢ =F,0) =  ax [F )],

sn—1
and write
F@) =S F2.
Then it follows from (2.3) that
M, (R) = 1’121}:11% [F™ ()| S pne®, 0SR=<=mn.

Further

o

F®@) = 3 ———x o n)' ——Fz.

Hence Cauchy’s inequality yields for 0 < R < n

4.4 _ Vg < MaB) gt

( . n) 1 - Ry-—n Rv—n

n .

We now set y=n + ¢, R =inf(t,n — 1) in (4.4) and take o = n/e in
Lemma 2. Then (4.4) may be written as

it < 10" mltl (O o _ po
(*.5) Fulo s B B0 (L) o = LT,
say, where
U, =1,
AN EAYEAY i<
Ut—(,n_{_t)Y(_e_)(?) » 1=t " 1
_ _nl! <ﬁ>‘ er! >
T+ 9! \e/ m—1¢" T

We proceed to prove that
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(4.6) U <tt, t=1.
Suppose first that 1 <¢ <% — 1. Then
g _mn L1 2 t _1
4t Tt ot t Tt

as required. Next for n» = 2, ¢t > 1 we have

:7;:§;;54%Y§Q%YE%E<%‘

If n>2, t=mn, we have

t

1 N\ _ (nl)? n 1.2.--n
U, = (1 )
<+n—1 e A iiDmt2-om
- 1.2 1 < 1
“n—-120@n—-1 2n—1 ¢~
Finally if n > 2, ¢ > n, then
1¢! R
U, = n n—1—t
('n+t)!<n~l> ¢
It! b1 nlt! { n— 2
< n ¢/ (n—1) +n—1—t __ —1—1t }
=wmro’ TR n—1
< nlt! < 1 < 1 )
nm+d!  n+t
Thus (4.6) holds in all cases.
We deduce from (4.5) and (4.6) that
i“ ]F 1‘02n+2t < #102’” i Ut
= (nl)?
4.1 = L0 (14 ) = A0 O (14 T
.7 - (n!)2< +t§=ji ((n—1)NH* nz( - 6>

:ﬁ@+§xifﬁf{df;$'
On the other hand

Z’FJZ 2,4> maX jFlZ 2y

— 2 2” ‘02”
4 - max IR At
_ 20— '
((n — 1)h*

In fact for o > 1, p*/v! first increases and then decreases, as v
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increases from vy = 0, and for o <1, p*/v! is steadily decreasing in
this range. In either case p*/v! attains its minimum in the range
0<yv=<mn—1eitherat y=0or vy=n—1. Since

=) e

decreases with increasing » and is equal to 1 for n =1, we deduce
that the minimum of ©*/v! is attained at ¥ = » — 1, and (4.8) follows.
Combining (4.7) and (4.8) we deduce that

S IF.Fo” > 3 |F, e .
Thus we can apply Lemma 2. Since F(2) has the n zeros z, with
lz,] <20, and >z, = 0 we deduce from Lemma 2 that
20, > p(5Bn)™"* = n'Pe'57Y% o, > nM?/(20"%) .

This proves Theorem 3.

5. Exponential polynomials. We have already seen how to
deduce Theorem 6 from Theorem 3. We proceed now to deduce
Theorem 7. Let

k

Y(R) = le p.(z)e*>
be an exponential polynomial (1.3), and set

1 & ,

W, ==2> 0,0 =0,— 0,

n 1
where each ®, is counted with multiplicity k,, and %k, — 1 is the degree
of p,(2). Then f(z) = y(z)e " satisfies the differential equation

PD)f =0,
where
PD) =1 (D~ @) = D" + bD"" + - b,

say. Also if

4 =max|w,|, then 4" = max|w]| < 24

1SvEn 1svEn
and since Yw! = 0, we deduce from Lemma 1 that

(b < 4"*n0P% . k=25 =0.
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We choose

15 -1

t, = a/(24n'?) , where « = 5 , sothat &®+a=1,

and consider g(z) = f(t,2). Then g{z) satisfies differential equation

<D” + ﬁz t‘sb.,D”“">g(Z) =0,

(.1) SUt]b) = Y @tdntr < Yot = Tz =1
2 2 2 —

It now follows from Theorem 6 that f(z) and so y(z) has at most
n — 1 zeros in

2] < n'%,/e1/20 = a/(4eV/5d) = (39-34)~

This proves one of the inequalities of Theorem 7.

To obtain the other we first note that Theorem E follows at once
from Theorem C. For if f(z) has n zeros in |z| < R, where R <1/2,
let 2, be a point such that (1.7), (1.8) hold with f(2) instead of y(z).
Then

o) < BBE pog) < poe) ), 15k,

and this contradicts (2.2). Thus Theorem E is proved. It follows
from (5.1) that ¢g(z) satisfies (2.2) and so has at most » — 1 zeros in
|z] < 1/2, so that f(z) has at most n — 1 zeros in [z] < (1/2)t,. This
completes the proof of Theorem 7.

6. Index and local valency. It remains to prove Theorems
1,4 and 5 and to this we now turn. We start by applying Theorem
D with

A(p) = (A/p)™ .

To see how this result follows from the Theorem of Jenkins and
Oikawa [4] we assume that z, = 0, R = 1. Then the above authors
proved that if f(z) = 37 a,2” is p-valent in |z| <1, and 0 < <1,
we have

M, f(z) — a,) = p, A(p)(1 — 7)™,
where

#P = maXx Iau]; Ao(p) - 44—(7)J .
ISvEp



DIFFERENTIAL INEQUALITIES AND LOCAL VALENCY 131

Now Cauchy’s inequality yields for » > »
(a'nl = Ao(p)#zo’rwn(l - r)~2p ’
and choosing » =1 — p/(2n), we deduce that
. 2% p p A 3. 2p
< Ap &n _. b < AP p .
ol = A Z)7 (1= 2 = armar o
This proves (1.11) with A,(p) = (84,/p)?, when R =12, =0. We

deduce the general case of Theorem D, by considering f(z, + Ez)

instead of f(2).
Suppose now that R = 2. Then (1.11) shows that for 5 > p

(6.1) _l_ngzO)_f < fo‘;,f (8 A%/ p)* R (f(':.fzo)’ .

We write F(z) = f'(2), and deduce that for R= 2, n > p

| F ") |« pax £ @)
(m— 1! " osvse1 Wl
provided that
6.2) @) < pax LS @)

(n — 1! ~ s (0 — D
In view of (6.1) this condition is satisfied for n > 2p if
n(8AmM p%)P2~ A L 1,

i.e. provided that » = Ap. Thus if the hypotheses of Theorem 1 hold
with a fixed R =2, and n = Ap then (6.2) holds for all z, and so
F(2) = f'(?) has index at most Ap. If R < 2, then disks of radius
2 can be covered by almost AR~ disks of radius R, so that f(2) is
p~-valent in disks of radius 2, where p, < ApR™2. Thus we obtain
the first statement of Theorem 1 also in this case.

Next we deduce similarly from (6.1) that F(z) has index less than
p, provided that (6.2) holds for »n > p, i.e. provided that

JBAJ PR <1, j>p.
This is equivalent to
(J — p) log B > 2p{(log j/p) + A} + logyj,

which is satisfied provided that log R > Ap. This proves the second
part of Theorem 1, and completes the proof of that Theorem.

6.1. We next prove Theorem 4. For this purpose we apply Theo-
rem 3 to F'(z) = f(tz) — w, where w is any complex number, f(z) is the
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function of Theorem 4, and ¢t = CR/(p +1). Our hypotheses imply that

CRY™* F™'(2) CRY |F" ()|
(6.3) (t) (p+1)z=§25";§(t) V!

for |tz —2z| <R, ie. |z2—1t"2|<t'R, and since C=<1/2,
t7"R=2(p + 1). Also (6.3) shows that

: N 0+ D po
(p+1) < (v)
For@l S max(gg) )

< max [F¥(z)| < max [F¥(z)]
1Sv<p 0sv=p

since CR = (p + 1)t. Thus F(2) satisfies the hypothesis of Theorem

3, with 'R instead of R, and n = p + 1, and we deduce that F(z)

has at most p zeros in [z — t7'2,| < (p + 1)"*/12.2, so that the equa-

tion f(2) = w has at most p roots in

[z — 2| < t(p + 1)"*/12.2 = CR/{12-2(p + 1)'%},

i.e. f(z) is p-valent in this disk. This proves Theorem 4.

We next prove the Corollary. Suppose first that f(z) is an integral
function, which has b.v.d., so that for some R, f(z) assumes no value
more than p times in any disk of radius R. Then it follows from
Theorem 1, that f’(z) has bounded index. Furthermore if R = Az,
then the index N of f’(z) is at most » — 1. Suppose now that with
R = A}, where N is the index of f(2), we have p(R) < N, so that
f(z) assumes no value more than N times in any disk of radius R.
Then Theorem 1 shows that f’(2) has index at most N — 1, which
gives a contradiction. This proves the second inequality of the Corol-
lary.

Next if f’(z) has bounded index N, it follows that we have for
all z

£ )]

(N + D! T svsva (v — 1)!

and hence a fortiori

£ 0@ o LY@

(N + 2)! ~ izmvsver ]

Thus we may apply Theorem 4, with p = N+ 1, C =1/2, R =2, and
deduce that f(2) is (N + 1)-valent in every disk of radius

r =1/{12-2(N + 2)"*} .

Thus f(2) has b.v.d. and p(r) < N + 1. This completes the proof of
the Corollary of Theorem 4.
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6.2. It remains to prove Theorem 5. The first inequality in
(2.6) follows at once from Theorem 1. The other inequality in (2.6)
will follow at once from (2.7), which we now proceed to prove. The
method is similar to that employed by Tijdeman [10]. We write

@) = Sae,

and suppose, as we may do without loss of generality, that

(6.4) 1§3N)illa”! =1.
Thus
(v+1) '
15\7+<f))j = ‘“V&‘i’: "1*)})' <1, 0<v=N.
Thus, applying (2.5) to f’(z), we obtain for [2| < R
(6.5) | f'(2)| = 7,

We deduce that for [z] = R> 0
@) = ] < | et < ever

We proceed to estimate the number n(o) of zeros of f(z) in |z]| < p.
Suppose first that

[ag| > e®+ie
Then for |z| = 0
[ fR)] > lay| — | f(&) — ay| > e e — e¥+e = 0,
so that is this case n(0) = 0. Thus we may assume that
la,| < eWtoe
and we deduce that
| f(R)] = 2e¥*F, R=p.

It now follows from the normalisation (6.4) and Cauchy’s inequality
that

M1, /)21, where M(r,f)=max|f@)! .

Thus there exists z,, such that |z, =1, and [f(z) = 1. We apply
Jensen’s inequality to

#(2) = f(2, + 2)



134 W. K. HAYMAN

in the circle [z] =< R, and deduce that the number =,, of zeros of $(z)
in |z| < o + 1, satisfies

log {M(E, 9)/16OO)} - N+ (B + 1) + log 2

log (B/(0 + 1)) — log {R/(0 + 1)}

AN

b

ny

since
M(R’ ¢) = max ]¢(z)| < QpWHDIRAL
{z|=R

Choosing R = e(p + 1), we deduce that
o) = n = (N+ Do+ 1) + 1) + log2 < (N + De(o + 2) .

The same argument can be applied to f(z) — w, whose derivative is
the same as that of f(2) and we deduce that the equation f(2) = w
has at most (N + 1l)e(p + 2) roots in any disk of radius p = 1.
This proves (2.7). In particular setting R =1 we deduce the right
hand inequality of (2.6) with A, = 3e.

6.3. It remains to prove the Corollary. We first take R, =1,
and assume that f’(z) has index N. Then it follows from (2.6) that
p(1) =2 A(N + 1) .

On the other hand in view of (2.7) we have for R, > 1

3e

P(R) =3e(N+ DR, = 1 R,p() ,

7

so that (2.8) holds if R, = 1. The general case now follows, since
we may apply this result to f(R.2).

The result of the Corollary shows in particular that for any b.v.d.
funetion f(2), p(R) = O(R) as R — o, and also by Theorem 2, Corollary
2, f'(z) and so f(2) has at most exponential type. These two result
answer affirmatively a previous conjecture [3, problem 2.28]. In con-
clusion it is worth pointing out that since the index is rather easy
to deal with we can obtain various applications for funections of
bounded value distribution. One example of such an application is
(2.8). Also if f'(2) has index N, f(z) has index at most N + 1, as
we have already pointed out. Thus if f(z) has b.v.d. the same is
true of successive integrals of f(z). The converse is false in general.

However we can prove

THEOREM 8. If f(2) is p-valent in |z — 2,| < R, then f'(z) has
at most p — 1 zeros in |z — 2| < A(p)R.
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To see this we note that Theorem D, with 7 =9p+1,
A,(p) = (Ay/p)*, shows that for |z — 2z,| = 1/2)R

N\ v—=(p+1)
SR) @)

y!

£*@)| S (@ + D! (Aup + 1)/p)* max

If R=R, = 2(p + 1! {A,(p + 1)/p}*® < A3, this yields

|75@) | < max| fU@), 1z - m| S TR

It now follows from Theorem 3, that f’(z) has at most p — 1
zeros in |z — z,| < p?/12-2. Thus we deduce the desired conclusion
with A(p) = A7, where A, is a small absolute constant. If R+ R,
we obtain our conclusion by considering f(R,2/R) instead of f(z).

6.4. We complete the paper by giving an example of a function
f(2) such that f(z) has bounded index but f’(z) does not.
Let

— T 2\
F(z)_eﬂl;[l(l—l- 2
Then F(z)e™* is an integral function of order zero with zeros of
arbitrarily high order. Thus F'(z) cannot have bounded index. Also
(6.6) F(z) = O{e=°""} and so F'(g) — 0, as |2]|— oo,

for 7/2 + 6 < arg z < 3w/2— 9, where C is a positive constant depending
on 4.
Next

6.7) —l-;;(%)—= 1 glszn—»l, as |g| — o, for |argz|<m—0.

We now set
f@) = B+ S:F(z)dz )

It follows from (6.6) that by a suitable choice of B we can make sure
that

|f®)| =1, for %g[argzg%

so that
[F'?)| = Al f(2)]
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in this range in view of (6.6). Also for |arg z| < 87z/4, we have
[F'(@)| = A|F(2)|

in view of (6.7). Thus we have in the whole plane

|f"(@) | = Amax {| f(z), | f"(2) ]}

where A is a suitable constant, and so by Theorem 4
g f(2)dz

has b.v.d. in the plane and so by the Corollary of Theorem 4 f(z)
has bounded index, and in fact if ¢ is a sufficiently small positive
number f(ez) has index one. However the derivatives of f(ez) do not
have bounded index.

I am grateful to the referee for a number of minor corrections
and for having drawn my attention to Shah [9], where the author
gives an example different from mine of a function with bounded
index, whose derivatives do not have bounded index.
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