THE JACOBIAN OF A GROWTH TRANSFORMATION

Donald Steven Passman
THE JACOBIAN OF A GROWTH TRANSFORMATION

D. S. PASSMAN

The transformation T, described in a paper of Baum and Eagon, is frequently a growth transformation which affords an iterative technique for maximizing certain functions. In this paper, the Jacobian matrix J of T is studied. It is shown, for example, that the eigenvalues of J are real and nonnegative in a large number of cases. In addition, these eigenvalues are considered at critical points of T. One necessary assumption used throughout is that the function P to be maximized is homogeneous in the variables involved.

The author would like to thank P. Stebe for a number of stimulating conversations and useful suggestions.

1. Notation. Let P be a function of the variables x_{ij} with domain of definition D given by

$$x_{ij} > 0 \quad \text{and} \quad \sum_j x_{ij} = 1.$$

Assume that on this domain both P and all its partial derivatives $\partial P/\partial x_{ij}$ are positive. Moreover we assume that the second partial derivatives of P exist and are continuous. Then the particular transformation T of P which we study here is given by (see [1])

$$T(x_{ij}) = \frac{x_{ij} \partial P/\partial x_{ij}}{\sum_k x_{ik} \partial P/\partial x_{ik}}.$$

Clearly T maps D into D.

We say that P is row homogeneous if for each i P is homogeneous of degree $w_i > 0$ in the variables x_{i1}, x_{i2}, \ldots. In this case (1.1) simplifies by means of Euler's formula and we obtain

$$T(x_{ij}) = \frac{x_{ij} \partial P/\partial x_{ij}}{w_i P}.$$

Let us assume now that P is row homogeneous. While the double subscript on the symbol x_{ij} makes the domain D easier to visualize, it turns out that a single subscript makes our later computations neater. Therefore we make the following notational change. Observe that the variables $\{x_{ij}\}$ are not all independent because of the constraints $\sum_j x_{ij} = 1$. Thus in each row of the array (x_{ij}) there is one variable which is dependent upon the others. Let us suppose now
that there are a total of \(n' \) variables of which \(n \) are independent. We can then write the variables \(\{x_{ij}\} \) as

\[
x_1, x_2, \ldots, x_n, x_{n+1}, \ldots, x_{n'}
\]

where \(x_1, x_2, \ldots, x_n \) are independent and the remaining ones are dependent. Now the set \(\{x_{n+1}, x_{n+2}, \ldots, x_{n'}\} \) clearly contains precisely one variable from each row so we can certainly use the subscripts \(n+1, n+2, \ldots, n' \) to designate these rows. Finally we introduce the function

\[
f: \{1, 2, \ldots, n\} \rightarrow \{n+1, n+2, \ldots, n'\}
\]

so that \(f(i) \) indicates the row containing \(x_i \).

In this single subscripted notation we see that for \(i, j \leq n, x_i \) and \(x_j \) are in the same row if and only if \(f(i) = f(j) \). Thus the fact that the sum of the variables in the row containing \(x_i \) is 1 becomes

\[
1 - x_{f(i)} = \sum_{j=1}^{n} \delta_{f(i)f(j)} x_j \quad \text{for } i \leq n.
\]

Also setting \(y_i = T(x_i) \) equation (1.2) now reads

\[
y_i = \frac{x_i \partial P/\partial x_i}{w_{f(i)} p} \quad \text{for } i \leq n.
\]

Now suppose that \(Q \) is a function of \(x_1, \ldots, x_n \). Then we use as above \(\partial Q/\partial x_i \) to denote the partial derivative of \(Q \) with respect to \(x_i \). On the other hand, \(Q \) can be viewed as a function of the independent variables \(x_1, \ldots, x_n \). If we do this, then we use \(dQ/dx_i \) to denote the partial derivative of \(Q \) with respect to \(x_i \) for \(i \leq n \). It follows from (1.3) and the chain rule that

\[
\frac{dQ}{dx_i} = \frac{\partial Q}{\partial x_i} - \frac{\partial Q}{\partial x_{f(i)}} \quad \text{for } i \leq n.
\]

The Jacobian of the growth transformation \(T \) is the \(n \times n \) matrix

\[
J = \left[\begin{array}{cccc}
\frac{dy_1}{dx_1} & & & \\
& \ddots & & \\
& & \ddots & \\
& & & \frac{dy_n}{dx_n}
\end{array} \right] \quad i, j \leq n.
\]

It is the matrix which we plan to study.

2. Real eigenvalues. Let \(N \) denote the \(n \times n \) symmetric matrix
\[N = \left[\frac{x_i}{w_{f(i)}} (\delta_{ij} - \delta_{f(i)f(j)}x_j) \right]. \]

The interplay of this matrix with \(J \) will prove to be of fundamental importance.

Lemma 1. \(N \) is a positive definite matrix.

Proof. Since the ordering of the variables \(x_1, x_2, \ldots, x_n \) does not effect the nature of \(N \), we may assume that the variables are grouped together according to the row of the array \((x_{ij}) \) they are contained in. Then \(N \) clearly becomes a block diagonal matrix with each block corresponding to a row of \((x_{ij}) \). Since it clearly suffices to show that each of these blocks is a positive definite matrix, it therefore suffices to consider the case in which \((x_{ij}) \) has only one row. Thus \(n' = n + 1 \) and

\[w_{n+1}N = [\delta_{ij}x_i - x_ix_j]. \]

Let \(z \) be the real row vector \(z = [z_1, z_2, \ldots, z_n] \neq 0 \) and set

\[
\begin{align*}
 u &= [\sqrt{x_1}, \sqrt{x_2}, \ldots, \sqrt{x_n}] \\
 v &= [\sqrt{x_1z_1}, \sqrt{x_2z_2}, \ldots, \sqrt{x_nz_n}].
\end{align*}
\]

Then using \((,\)\) for the usual inner product of vectors we have

\[
z(w_{n+1}N)z^T = \sum_{i=1}^{n} x_i z_i^2 - \left(\sum_{i=1}^{n} x_i z_i \right)^2 \\
= (v, v) - (u, v)^2 > (u, u)(v, v) - (u, v)^2 \geq 0
\]

by Cauchy's inequality and the fact that \((u, u) = x_1 + x_2 + \cdots + x_n = 1 - x_{n+1} < 1\).

The lemma is proved.

Theorem 2. Let \(P \) be a row homogeneous function. Then

\[JN = \left[\frac{x_i}{w_{f(j)}} \frac{\partial y_j}{\partial x_j} \right] \]

is a symmetric matrix.

Proof. From (1.4) it is clear that \(y_i \) is row homogeneous of degree zero. Thus Euler's equation yields

\[x_{f(j)} \frac{\partial y_j}{\partial x_{f(j)}} + \sum_{k=1}^{n} \delta_{f(j)f(k)} x_k \frac{\partial y_j}{\partial x_k} = 0. \]

Let \(JN = [h_{ij}] \). Then by (1.5) and the symmetry of \(N \) we have
Thus (2.2) and (1.3) yield
\[w_{f(j)}h_{ij} = \sum_{k=1}^{n} \frac{dy_i}{dx_k} \cdot x_k (\delta_{kj} - \delta_{f(k)f(j)x_j}) \]
\[= x_j \frac{dy_i}{dx_j} - x_j \sum_{k=0}^{n} \delta_{f(k)f(j)x_k} \frac{dy_i}{dx_k} \]
\[= x_j \left(\frac{\partial y_i}{\partial x_j} - \frac{\partial y_i}{\partial x_{f(j)}} \right) - x_j \sum_{k=1}^{n} \delta_{f(k)f(j)x_k} \frac{\partial y_i}{\partial x_k} \]
\[+ x_j \frac{\partial y_i}{\partial x_{f(j)}} \sum_{k=1}^{n} \delta_{f(k)f(j)x_k} \cdot \]

Therefore we have
\[h_{ij} = x_j/w_{f(j)} \frac{\partial y_i}{\partial x_j} . \]

It remains to show that \(h_{ij} = h_{ji} \) and to do this we may assume that \(i \neq j \). Then by (1.4)
\[h_{ij} = \frac{x_i x_j}{w_{f(i)} w_{f(j)} P^2} (\delta^2 P/\partial x_i \partial x_j - (\partial P/\partial x_i)(\partial P/\partial x_j)) \]
so the result clearly follows.

Corollary 3. Let \(P \) be a row homogeneous function. Then \(J \) is diagonalizable and all eigenvalues of \(J \) are real.

Proof. Write \(JN = A \). Since \(N \) is positive definite we have \(N = QQ^T \) for some real nonsingular matrix \(Q \). Set \(R = Q^{-1} \). Then we have easily
\[RJR^{-1} = RAR^T . \]

Since \(RAR^T \) is real and symmetric by Theorem 2, it is diagonalizable with all real eigenvalues. Thus (2.3) yields the result.

3. **Critical points.** In this section we study in more detail the nature of \(J \) at a critical point. It follows from (1.4) and (1.5) that at such a point we have \(x_i = y_i \) and \(\partial P/\partial x_i = w_{f(i)} P \). Recall that a critical point is a point at which
\[\frac{dP}{dx_i} = 0 \quad \text{for } i \leq n . \]
Theorem 4. At a critical point we have

\[J = I + \frac{N}{P} \left[\frac{d^2P}{dx_i dx_j} \right] \]

where \(I \) is the \(n \times n \) identity matrix.

Proof. We start with Euler's equation for the row homogeneity of \(P \). For \(i \leq n \) we have

\[w_{f(i)} P = x_{f(i)} \partial P / \partial x_{f(i)} + \sum_{k=1}^{n} \delta_{f(i),f(k)} x_k \partial P / \partial x_k \]

and differentiating this identity with respect to \(x_j \) yields

\[w_{f(i)} \frac{dP}{dx_j} = x_{f(i)} \frac{d}{dx_j} \partial P / \partial x_{f(i)} + \sum_{k=1}^{n} \delta_{f(i),f(k)} x_k \frac{d}{dx_j} \partial P / \partial x_k \]

\[+ \delta_{f(i),f(j)} (\partial P / \partial x_j - \partial P / \partial x_{f(i)}) . \]

Observe that the last term is just \(\delta_{f(i),f(j)} dP/dx_j \) so the above becomes

\[(w_{f(i)} - \delta_{f(i),f(j)}) \frac{dP}{dx_j} = x_{f(i)} \frac{d}{dx_j} \partial P / \partial x_{f(i)} \]

\[+ \sum_{k=1}^{n} \delta_{f(i),f(k)} x_k \frac{d}{dx_j} \partial P / \partial x_k . \]

Now at a critical point \(dP/dx_j = 0 \) so

\[0 = x_{f(i)} \frac{d}{dx_j} \partial P / \partial x_{f(i)} + \sum_{k=1}^{n} \delta_{f(i),f(k)} x_k \frac{d}{dx_j} \partial P / \partial x_k . \]

By (1.5) for \(i, j \leq n \)

\[\frac{d^2P}{dx_i dx_j} = \frac{d}{dx_j} \frac{\partial P}{\partial x_i} - \frac{d}{dx_j} \frac{\partial P}{\partial x_{f(i)}} \]

and substituting

\[\frac{d}{dx_j} \frac{\partial P}{\partial x_k} = \frac{d^2P}{dx_k dx_j} + \frac{d}{dx_j} \frac{\partial P}{\partial x_{f(k)}} \]

into (3.2) yields

\[0 = x_{f(i)} \frac{d}{dx_j} \frac{\partial P}{\partial x_{f(i)}} + \sum_{k=1}^{n} \delta_{f(i),f(k)} x_k \frac{d}{dx_j} \frac{\partial P}{\partial x_{f(k)}} \]

\[+ \sum_{k=1}^{n} \delta_{f(i),f(k)} x_k \frac{d^2P}{dx_k dx_j} . \]

Now clearly
\[\delta_{f(i)f(k)} x_k \frac{d}{dx_j} \frac{\partial P}{\partial x_{f(k)}} = \delta_{f(i)f(k)} x_k \frac{d}{dx_j} \frac{\partial P}{\partial x_{f(i)}} \]

so (3.4) becomes

\[0 = \frac{d}{dx_j} \frac{\partial P}{\partial x_{f(i)}} \left(x_{f(i)} + \sum_{k=1}^{n} \delta_{f(i)f(k)} x_k \right) + \sum_{k=1}^{n} \delta_{f(i)f(k)} x_k \frac{d^2 P}{dx_k dx_j}. \]

Hence by (1.3) we have

\[(3.5) \]

\[\frac{d}{dx_j} \frac{\partial P}{\partial x_{f(i)}} = - \sum_{k=1}^{n} \delta_{f(i)f(k)} x_k \frac{d^2 P}{dx_k dx_j}. \]

We now compute \(J \) at the critical point. By (1.4) and (3.1)

\[\frac{dy_i}{dx_j} = \delta_{ij} \frac{\partial P}{\partial x_i} + \frac{x_i}{w_{f(i)} P} \frac{d}{dx_j} \frac{\partial P}{\partial x_i} \]

\[= \delta_{ij} + \frac{x_i}{w_{f(i)} P} \frac{d}{dx_j} \frac{\partial P}{\partial x_i} \]

since at a critical point \(\partial P/\partial x_i = w_{f(i)} P \). Thus

\[(3.6) \]

\[J = I + \frac{1}{P} \left[\frac{x_i}{w_{f(i)}} \frac{d}{dx_j} \frac{\partial P}{\partial x_i} \right]. \]

Let \(E = [e_{ij}] \) denote the latter matrix. Then using (3.3) and (3.5) we have

\[e_{ij} = \frac{x_i}{w_{f(i)}} \left(\frac{d^2 P}{dx_i dx_j} + \frac{d}{dx_j} \frac{\partial P}{\partial x_{f(i)}} \right) \]

\[= \frac{x_i}{w_{f(i)}} \sum_{k=1}^{n} \left(\delta_{ik} - \delta_{f(i)f(k)} x_k \right) \frac{d^2 P}{dx_k dx_j} \]

and this is the \((i, j)\)th entry in the matrix product

\[\left[\frac{x_i}{w_{f(i)}} \left(\delta_{ij} - \delta_{f(i)f(j)} x_j \right) \right] \left[\frac{d^2 P}{dx_i dx_j} \right]. \]

In view of (3.6), the result follows.

Let \(B \) denote the matrix

\[(3.7) \]

\[B = \left[\frac{d^2 P}{dx_i dx_j} \right]. \]

COROLLARY 5. Suppose that at a critical point we have \(\det B \neq 0 \) and let \(\lambda \) be an eigenvalue of \(J \). Then
(i) at a minimum, $\lambda > 1$
(ii) at a maximum, $\lambda < 1$.

Proof. By Theorem 4, $\lambda = 1 + \mu/P$ where μ is an eigenvalue of NB and by Corollary 3, λ is real. Thus it suffices to show that μ is positive at a minimum and negative at a maximum.

Let v be a real column eigenvector for μ. Then $NBv = \mu v$ yields easily

\[v^T Bv = \mu (u^T Nu) \]

where $v = Nu$. Since N is positive definite by Lemma 1 we have $u^T Nu > 0$.

Now at a minimum, since $\det B \neq 0$, we see that B is a positive definite matrix. Thus $v^T Bv > 0$ and $\mu > 0$ by (3.8). Similarly at a maximum, B is negative definite so $\mu < 0$. This completes the proof.

4. Polynomials. We assume here that P is a row homogeneous function and use the notation of the preceding sections. In addition, we assume that P is a polynomial with positive coefficients so that (in single subscripted variables)

\[P = \sum_a m_a \]

where

\[m_a = e_a x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n'}, \quad e_a > 0 \]

Here, of course, a designates the n'-tuple. $a = (a_1, a_2, \cdots, a_n')$. Let \mathcal{A} denote the set of all such a's which occur in P.

Fix some ordering of the a's and let α denote a subset $\{a, b\}$ of \mathcal{A} with $b > a$. For each such α set

\[m_\alpha = m_a m_b, \quad \alpha_i = b_i - a_i. \]

Since P is row homogeneous we have for $i \leq n$

\[\alpha_{f(i)} + \sum_{j=1}^n \delta_{f(i),f(j)} a_j = w_{f(i)} \]

and hence (4.3) yields

\[\alpha_{f(i)} + \sum_{j=1}^n \delta_{f(i),f(j)} \alpha_j = 0. \]

For the row homogeneous polynomial P we define the vector subspace $V(P) \subseteq R^{n'}$ to be the subspace of $R^{n'}$ spanned by all n'-tuples $(\alpha_1, \alpha_2, \cdots, \alpha_n')$ with $\alpha = (a, b), a, b \in \mathcal{A}$. In view of (4.4) we
have certainly

$$\dim V(P) \leq n.$$

Theorem 6. Let P be a row homogeneous polynomial. Then JN is a positive semi-definite symmetric matrix with

$$\text{rank } JN = \dim V(P).$$

Proof. Let P be given by (4.1) and (4.2). Then by (1.4)

$$w_{f(i)}y_i = \frac{\sum a_i m_a}{\sum m_a}$$

and we have

$$w_{f(i)}P^z x_j \frac{\partial y_i}{\partial x_j} = (\sum a_i m_a) (\sum b_i b_j m_b) - (\sum a_i m_a) (\sum b_i m_b)$$

$$= \sum_{a,b} m_a m_b (b_i b_j - b_i a_j).$$

Observe that the inner summand vanishes at $a = b$. Thus if we sum over $a < b$ then we obtain

$$w_{f(i)}P^z x_j \frac{\partial y_i}{\partial x_j} = \sum_{a,b} m_a m_b (b_i b_j - b_i a_j + a_i a_j - a_i b_j)$$

$$= \sum_a m_a \alpha_i \alpha_j$$

in the notation of (4.3). Thus by Theorem 2

$$(4.5)\quad P^z JN = \left[\sum_a m_a \alpha_i \alpha_j / w_{f(i)} w_{f(j)} \right].$$

Let $z = [z_1, z_2, \ldots, z_n]$ be a row vector of real entries. Then

$$(4.6)\quad z(P^z JN)z = \sum_{i,j} \sum_a m_a \alpha_i \alpha_j z_i z_j / w_{f(i)} w_{f(j)}$$

$$= \sum_a m_a (\sum_i \alpha_i z_i / w_{f(i)})^2.$$

Thus clearly $P^z JN$ and hence JN is positive semi-definite.

It remains to compute the rank of JN. Let $W(P) \subseteq \mathbb{R}^n$ be the subspace of \mathbb{R}^n spanned by all n-tuples $\bar{\alpha} = (\alpha_1, \alpha_2, \ldots, \alpha_n)$. In view of (4.4) we have clearly

$$(4.7)\quad \dim W(P) = \dim V(P).$$

Let $[,]$ be the inner product on \mathbb{R}^n defined by

$$[u_1, u_2, \ldots, u_n], (v_1, v_2, \ldots, v_n] = \sum_{i=1}^n u_i v_i / w_{f(i)}.$$
Then (4.6) becomes
\[z(P^2JN)z^T = \sum_m a_m [\tilde{a}, z]^2. \]
Thus \(z(P^2JN)z^T = 0 \) if and only if \(z \in W(P)^\perp \), the orthogonal complement of \(W(P) \). Finally since \(P^2JN \) is positive semi-definite we have
\[\text{rank } P^2JN = n - \text{dim } W(P)^\perp = \text{dim } W(P) \]
and the result follows from (4.7).

COROLLARY 7. Let \(P \) be a row homogeneous polynomial. Then all eigenvalues of \(J \) are non-negative real numbers and hence \(\det J \geq 0 \).

Proof. This follows immediately from (2.3) and Theorem 6.

Observe that Theorem 6 implies that \(\det J > 0 \) if \(\text{dim } V(P) = n \) and \(\det J = 0 \) otherwise. This fact is an unpublished result of L. Baum.

5. Examples. In this section, we consider a number of examples with \(P \) not homogeneous. Suppose \(y_1 \) is given by

\[y_1 = \frac{x_i \partial P/\partial x_i}{x_i \partial P/\partial x_1 + x_2 \partial P/\partial x_2}. \]

Then

\[\frac{1}{1 - y_1} = 1 + \frac{x_i \partial P/\partial x_i}{x_2 \partial P/\partial x_2}. \]

Differentiating with respect to some variable \(x \) then yields

\[\frac{dy_1}{dx} = (1 - y_1)^2 \frac{d}{dx} \left(\frac{x_i \partial P/\partial x_i}{x_2 \partial P/\partial x_2} \right). \]

This formula enables the following computations to be done easily.

Let \(P(x_1, x_2) = x_1 + x_2^2. \) Then

\[\det J = \frac{dy_1}{dx_1} = \frac{(1 - y_1)^2}{(x_1 x_2)^2} (2x_1 - 1) \]

and this changes sign at \(x_1 = 1/2. \) Thus Corollary 7 requires that \(P \) be homogeneous.

Now let

\[P(x_1, x_2, x_3, x_4) = x_1 x_2^2 + x_3^2 x_4 + x_4^2 x_1 \]
subject to the constraints $x_1 + x_3 = 1$, $x_2 + x_4 = 1$. Then

$$J = \begin{bmatrix}
\frac{(1 - y_1)^2 x_2^2}{x_1 x_3^2} (2x_1 - 1) & \frac{(1 - y_1)^2 2x_2}{x_1 x_3} \\
\frac{(1 - y_2)^2 2}{x_4} & \frac{(1 - y_2)^2 2x_1}{x_4^2}
\end{bmatrix}.$$

Thus

$$\frac{x_4^2}{(1 - y_1)^2 (1 - y_2)^2} \det J = \begin{vmatrix}
x_2^2 & 2x_3 \\
\frac{2x_1}{x_1 x_3} & (2x_1 - 1)
\end{vmatrix}.$$

Finally let $x_2 \sim 1$ so $x_4 \sim 0$ and the right hand determinant is approximately equal to

$$\frac{2(2x_1 - 1)}{x_1 x_3^2},$$

which changes sign at $x_1 = 1/2$. Thus we see that even though P is homogeneous, Corollary 7 can still fail unless P is row homogeneous.

REFERENCES

Received August 31, 1971.

Institute for Defense Analyses
PRINCETON, NEW JERSEY
AND
UNIVERSITY OF WISCONSIN, MADISON
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jimmy T. Arnold</td>
<td>Power series rings over Prüfer domains</td>
<td>1</td>
</tr>
<tr>
<td>Maynard G. Arsove</td>
<td>On the behavior of Pincherle basis functions</td>
<td>13</td>
</tr>
<tr>
<td>Jan William Auer</td>
<td>Fiber integration in smooth bundles</td>
<td>33</td>
</tr>
<tr>
<td>George Bachman et al.</td>
<td>Function algebras over valued fields</td>
<td>45</td>
</tr>
<tr>
<td>Gerald A. Beer</td>
<td>The index of convexity and the visibility function</td>
<td>59</td>
</tr>
<tr>
<td>James Robert Boone</td>
<td>A note on mesocompact and sequentially mesocompact spaces</td>
<td>69</td>
</tr>
<tr>
<td>Selwyn Ross Caradus</td>
<td>Semiclosed operators</td>
<td>75</td>
</tr>
<tr>
<td>John H. E. Cohn</td>
<td>Two primary factor inequalities</td>
<td>81</td>
</tr>
<tr>
<td>Mani Gagrat et al.</td>
<td>Proximity approach to semi-metric and developable spaces</td>
<td>93</td>
</tr>
<tr>
<td>John Grant</td>
<td>Automorphisms definable by formulas</td>
<td>107</td>
</tr>
<tr>
<td>Walter Kurt Hayman</td>
<td>Differential inequalities and local valency</td>
<td>117</td>
</tr>
<tr>
<td>Wolfgang H. Heil</td>
<td>Testing 3-manifolds for projective planes</td>
<td>139</td>
</tr>
<tr>
<td>Melvin Hochster et al.</td>
<td>Five theorems on Macaulay rings</td>
<td>147</td>
</tr>
<tr>
<td>Thomas Benton Hoover</td>
<td>Operator algebras with reducing invariant subspaces</td>
<td>173</td>
</tr>
<tr>
<td>James Edgar Keesling</td>
<td>Topological algebras whose underlying spaces are separable Fréchet manifolds</td>
<td>181</td>
</tr>
<tr>
<td>Frank Leroy Knowles</td>
<td>Idempotents in the boundary of a Lie group</td>
<td>191</td>
</tr>
<tr>
<td>George Edward Lang</td>
<td>The evaluation map and EHP sequences</td>
<td>201</td>
</tr>
<tr>
<td>Everette Lee May, Jr.</td>
<td>Localizing the spectrum</td>
<td>211</td>
</tr>
<tr>
<td>Frank Belsley Miles</td>
<td>Existence of special K-sets in certain locally compact abelian groups</td>
<td>219</td>
</tr>
<tr>
<td>Susan Montgomery</td>
<td>A generalization of a theorem of Jacobson. II</td>
<td>233</td>
</tr>
<tr>
<td>T. S. Motzkin et al.</td>
<td>Equilibrium of inverse-distance forces in three-dimensions</td>
<td>241</td>
</tr>
<tr>
<td>Arunava Mukherjea et al.</td>
<td>Invariant measures and the converse of Haar's theorem on semitopological semigroups</td>
<td>251</td>
</tr>
<tr>
<td>James Waring Noonan</td>
<td>On close-to-convex functions of order β</td>
<td>263</td>
</tr>
<tr>
<td>Donald Steven Passman</td>
<td>The Jacobian of a growth transformation</td>
<td>281</td>
</tr>
<tr>
<td>Dean Blackburn Priest</td>
<td>A mean Stieltjes type integral</td>
<td>291</td>
</tr>
<tr>
<td>Joe Bill Rhodes</td>
<td>Decomposition of semilattices with applications to topological lattices</td>
<td>299</td>
</tr>
<tr>
<td>Claus M. Ringel</td>
<td>Socle conditions for QF – 1 rings</td>
<td>309</td>
</tr>
<tr>
<td>Richard Rochberg</td>
<td>Linear maps of the disk algebra</td>
<td>337</td>
</tr>
<tr>
<td>Roy W. Ryden</td>
<td>Groups of arithmetic functions under Dirichlet convolution</td>
<td>355</td>
</tr>
<tr>
<td>Michael J. Sharpe</td>
<td>A class of operators on excessive functions</td>
<td>361</td>
</tr>
<tr>
<td>Erling Stormer</td>
<td>Automorphisms and equivalence in von Neumann algebras</td>
<td>371</td>
</tr>
<tr>
<td>Philip C. Tonne</td>
<td>Matrix representations for linear transformations on series analytic in the unit disc</td>
<td>385</td>
</tr>
</tbody>
</table>