
Pacific Journal of
Mathematics

SOCLE CONDITIONS FOR QF − 1 RINGS

CLAUS M. RINGEL

Vol. 44, No. 1 May 1973



PACIFIC JOURNAL OF MATHEMATICS
Vol. 44, No. 1, 1973

SOCLE CONDITIONS FOR QF-1 RINGS

CLAUS MICHAEL RINGEL

Let R be an associative ring with 1. If RM is a left
iϊNmodule, then M can be considered as a right ^-module,
where ^ = Horn (RM, RM) is the centralizer of RM. There
is a canonic ring homomorphism p from R into the double
centralizer 2& = Horn (Λf , M-&) of RM. For a faithful module

RM, the homomorphism /> is injective, and RM is called bal-
anced (or to satisfy the double centralizer condition) if p is
surjective. An artinian ring R is called a QF-1 ring if every
finitely generated faithful ϋί-module is balanced. This defini-
tion was introduced by R. M. Thrall as a generalization of
quasi-Frobenius rings, and he asked for an internal characteri-
zation of QF-1 rings.

The paper establishes three properties of QF-1 rings which
involve the left socle and the right socle of the ring; in
particular, it is shown that QF-1 rings are very similar to
QF-S rings. The socle conditions are necessary and sufficient
for a (finite dimensional) algebra with radical square zero to
be QF-19 and thus give an internal characterization of such
QF-1 algebras. Also, as a consequence of the socle conditions,
D. R. Floyd's conjecture concerning the number of indecom-
posable finitely generated faithful modules over a QF-1 algebra
is verified. In fact, a QF-1 algebra has at most one in-
decomposable finitely generated faithful module, and, in this
case, is a quasi-Frobenius algebra.

An artinian ring R is called a QF-1 ring if every finitely generated
faithful iZ-module is balanced. This definition goes back to R. M.
Thrall [15] who asked for an internal description of QF-1 algebras.
The aim of this paper is to prove the following theorem.

THEOREM. Let R be a QF-1 ring with left socle L and right
socle J. If e and f are primitive idempotents with f(L Π J)e Φ 0,
then

(1) either dxje — 1 or drfL = 1,
(2) we have dtLe x drfj <Ξ 2, and
( 3) dtLe = 2 implies Je £ Le.

Here, dj denotes the length of (a composition series of) the left
ideal /, whereas drK denotes the length of the right ideal K.

The second socle condition shows that QF-1 rings are very similar
to QF-Z rings, because an artinian ring is a QF-3 ring if and only
if for every pair e, f of primitive idempotents with f(L Π J)e Φ 0,
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310 CLAUS MICHAEL RINGEL

we have dxLe = 1 = drfj (c.f. [15], [8]); however it is known [11],
that there are QFΛ rings which are not QF-Z rings.

For a finite dimensional algebra R with radical square zero, the
socle conditions above are necessary and sufficient in order that R is
QFΛ. The proof uses the fact that an algebra with radical square
zero which satisfies the second socle condition is of cyclic-cocyclic
representation type, as H. Tachikawa [13] has shown. As a con-
sequence, an algebra R with radical square zero is QFΛ if and only
if R is of cyclic-cocyclic representation type and coincides both with
its complete ring of left quotient and its complete ring of right quo-
tients.

Besides an internal description of at least the QFΛ algebras with
radical square zero, we can derive from the socle conditions the
verification of a conjecture concerning the number of indecomposable
finitely generated faithful modules over a QFΛ algebra, D. R. Floyd
has conjectured that for a given QFΛ algebra the length of such
modules is bounded. J. P. Jans proved this under a rather technical
condition on the indecomposable finitely generated modules [10]. Here
we show that a QFΛ algebra has at most one indecomposable finitely
generated faithful module, and, if such a module exists, is even a
quasi-Frobenius algebra.

The methods used here are similar to those developed in the joint
work with V. Dlab on balanced rings ([3], [4], [5]) and the author
would like to thank him for various discussions during the prepara-
tion of this paper. Most of it was written while the author was a
member of the summer research institute of the Canadian Mathemati-
cal Congress in Kingston, Ontario.

l Preliminaries* Throughout the paper, R denotes a ring with
unity, iϋ* its opposite. Algebras are always assumed to be defined
over a field and to be finite dimensional. By an i2-module we under-
stand a unital ϋJ-module and the symbols RM of MR will be used to
underline the fact that M is a left or a right 2?-module, respectively.
Usually left JJ-modules will be considered, but it should be noted that
homomorphisms always act from the opposite side as the operators;
in particular, every left iϋ-module M defines a right ^-module, where
^ is the endomorphism ring of RM. The ring ^ is called the cen-
tralizer of M. The double centralizer £& is the endomorphism ring of
M<&. Again, & operates from the opposite side as ^ , that is from
the left. There is a canonic ring homomorphism from R into ^ if
this homomorphism is surjective, then M is called balanced, or to
have the double centralizer property. If every finitely generated
faithful (left or right) jff-module is balanced, then R is called a QFΛ
ring [15].
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Given an iϋ-module M, denote by Rad M the intersection of all
maximal submodules; Radikf is the set of all nongenerators. The
radical of the ring R is by definition Rad^iϋ, it will consistently be
denoted by W (the radical of <if will be denoted by W"). If R/W
is artinian, then WM = Rad M for every left iϋ-module M. If Rad M
is the only (proper) maximal submodule of M, then M is called local;
and, if RR (and equivalently RR) is local, then R is called a local
ring. Corresponding to the notion of a local module is that of a
colocal module. M is called colocal, if M has exactly one minimal
submodule. Generally, the union of all minimal submodules of M is
the socle SocM. If R/W is artinian, then SocΛf = {meM\ Wm = 0}
for every left iϋ-module M. Considering RR, we get the left socle
L = Soc BR of R; considering RRJ we get the right socle J — Soc RR

of R. Also, we denote by S the intersection of left socle and right
socle of the ring i?. The length of a composition series of a left
ideal I will be denoted by dj; similarly, drK denotes the length of
the right ideal K.

If e is an idempotent of R, then Re will be considered as a left
22-module. It is well-known that for two idempotents e and e' the
morphisms Re —> Re' (i.e. the jK-homomorphisms) can be identified with
the elements in eRe'. In particular, the endomorphism ring of Re is
given by eRe. If the idempotent e is primitive, then eRe is a local
ring and eWe its radical. If R is a (left and right) artinian ring, then
1 — Σ?=i Έiί=ι eϋi where the e^'s are primitive and pairwise orthogonal
idempotents and Reiό ~ Rekl if and only if i = k. The ring ERE with
E = Σ?=i £ίi i s called a basis subring of R. The rings iϋ and ERE
are Morita equivalent. An artinian ring R is called a basis ring if
it coincides with a basis subring of itself. This is equivalent to the
assertion that for orthogonal idempotents e and e', Re and Re' are
never isomorphic. Basis rings have several pleasant properties: for
any idempotent e we have eR{ί — e) s W, and, if X is a simple left
i?-module with eX Φ 0, then (1 — e)X = 0; in particular, eL is a two-
sided ideal. Also, the radical of a basis ring R is the set of all
nilpotent elements in R. In the proof of the socle conditions we will
always assume that the ring R is a basis ring. This is possible,
because, on the one hand, the property to be a QF-1 ring is Morita
equivalent [12], whereas, on the other hand, the socle conditions are
true for R if and only if they are true for a basis subring of R.

The left ϋJ-module M is called indecomposable, if M cannot be
written as the direct sum of two proper submodules. If M is inde-
composable and of finite length, then the centralizer ^ of M is a
local ring. Moreover, if W~ denotes the radical of ^ , then there
exists a composition series
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0 = MQ c M, c c Mn = M

such that Λfi^"SΛfί-i for all i [1]. Thus,

M, £ Soc Afy and M <W = Rad Afy £

It should be stressed that, for a local ring R with radical W, R/W
is a division ring. Thus, the semisimple modules over a local ring
behave like vector spaces. In particular, applying this to the cen-
tralizer & of an indecomposable module M of finite length, there
exists to every element m e M\MW~ and x e Soc M^ a ̂ -homomorphism
of the form

Mr -ί-> M\MΎr > Soc M*, - U M* ,

(where ε denotes the canonic epimorphism and c the inclusion) mapping
m onto x. This will be used frequently throughout the paper, and
in similar cases, ε and i will always denote the canonic morphisms.

Two other useful tools which are by now well-known shall be
mentioned here. The first is Morita's criterion for faithful modules
to be balanced. Let M and N be two left i?-modules. Then M is
said to generate N, if the images of all morphisms M—>N generate
N; and M is said to cogenerate N, if the intersection of the kernels
of all morphisms N-^M is zero. With there definitions we can for-
mulate:

Morita's criterion [11]: Let M be faithful and balanced, and let
N be indecomposable. Then, MφN is balanced if and only if M
either generates or cogenerates N.

The second method to be mentioned here is the trivial extension
of morphisms. Assume, M and N are left i?-modules, ^ is the
centralizer of M, and Mf and M" are ^-submodules of M. Assume
also, that there is defined a ^-homomorphism ψ of the form

M* —ε-> M\Mf > M" —U Mv .

We want to extend ψ to an element of the double centralizer of

Trivial extension: If the image of every R-homomorphism N-+M
is contained in Mr, and if M" is contained in the kernel of every

R-homomorphism M—>N, then (T Q): i l ί© N—+Mφ N defines an

element of the double centralizer of Λf φ JV.

The proofs are omitted; they may be found in several papers
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dealing with double centralizers. Some other definitions and remarks
which will be needed only in §7, will be given there.

2* Construction of indecomposable modules* An essential tool
in the study of QFΊ rings are indecomposable modules. Here, we
prove that certain amalgamations of two principal indecomposable
modules are indecomposable.

LEMMA. Let R be left artinian with left socle L and right socle
J. Let eu e2 and f be primitive idempotents such that et and e2 are
either equal or orthogonal. Let ax e f(L Π J)e1 and a2 6 fJe2 be nonzero
elements with ajit Π a2R — 0. Then

M= {Re^Re

is an indecomposable left R-module*

Proof. We may suppose that R is a basis ring. For, without
loss of generality, we may assume that e1 = e2, if Rex is isomorphic
to Re2J and, similarly, that / = et or / = e2, if Rf is isomorphic to
Reγ or to Re2, respectively. But then there exists a basis subring Ro

of R, containing all the elements el9 e2, /, a1 and α2. We may apply
the lemma to Ro and the Morita equivalence of RQ and R gives the
result for R.

First, let us assume that et and e2 are orthogonal. The endomor-

phisms of M are induced by matrices ( Tn Tl2) with entries ri3 e βiRβj
\ ^21 ^22 /

for 1 ^ i, j ^ 2. The fact that R is a basis ring implies that both

r12 and r21 belong to W, because e1 and e2 are orthogonal. If (ri5)

induces an endomorphism of M, then there exists λ e R with
12 J = (αirn, α2r22) = (Xalf λα2) .

Here we have used that aι and α2 are elements of J. We want to
show that rn e W if and only if r22 e W. If rn e W, then Xa1 = axrn — 0,
because aι e J. But since aι and α2 both are in fR, we may assume that
λ e Rf. Then, Xaι = 0 implies λ e W. The equation λα2 = a2r22 implies
X">a2 — a2r22 for all natural w. Thus, the nilpotency of λ shows that
a2r2l — 0 for some n, and r22 cannot be a unit in eRe. Conversely,
assume that r22 e W. Then we conclude from λα2 = a2r22 — 0 that
XfeW which in turns implies aιrn — Xaι = 0, because ax e Lf and
thus rn G W. As a consequence, an endomorphism of M is either
nilpotent (if the corresponding matrix has only entries in W) or is
an isomorphism (if the elements rn and r22 of the corresponding matrix
are units in e1Re1 and e2Re2, respectively). This shows that the endo-
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morphism ring of M is a local ring, and therefore, M is indecomposable.
Next, we assume that ex = e2 and denote it simply by e. In the

case where also a2 belongs to L, a length-counting arguement gives
the result. For, if there is a proper direct decomposition of M, then
3Z(M/Rad M) = 2 implies that there are elements x and y in M with
M = Rx 0 Ry. We may assume x — ex and y = ey, because if x +
Rad M and y + Rad M generate M/Rad M, also ex + Rad M and ey +
Rad Λf generate M/Rad Λf; thus e$ and ey generate M, and, of course
Rex n i ? ^ = 0. So Rx and Ry are isomorphic to quotient modules of
Re. In particular, we have either Rx ** Re or Ry & Re, because
dtM = 2 dtRe — 1. Thus, we have an epimorphism M—+ Re. But given
elements s1 and s2 in eRe such that

Re 0 Re -

maps (au a2) into 0, the equality

aιs1 + CL2S2 = 0

implies that α ^ = 0 = α2s2 and both elements s1 and s2 belong to W.
Therefore, no morphism M—>Re is surjective. This contradiction
shows that M is indecomposable.

There only remains the case where e = et = e2 and α2 does not
belong to the left socle L. Let c be a nonzero element in Ra2 f] L.
Of course, c belongs to Wa2, so we find we W with c = wa2.

Again, we will represent the endomorphisms of M by matrices

(I 1 1 I12)> n o w with entries in eRe. First, let us show r21 e Wfor any
\ ' 21 ' 2 2 '

matrix arising in this way. The element (0, c) = (waly wa2) of Re 0 Re
is mapped under (r ί5 ) onto

(0, c)[ = (cr21, cr22) ,
V^i ^22/

and this element has to belong to R(alf α2). That is, we find XeRf
with

(cr21, cr22) — (λα1? λα2) .

If we assume that r21 is a unit in eRe, then λαx = cr21 Φ 0, so fX is
a unit in fRf. But /λα 2 = /cr2 2 belongs to L, and α2 = fa2 g L, so
fX cannot be a unit in fRf.

Next, let us show that r22 g PΓ implies r n ί TF. For, assuming
rne W and applying {τiS) to (α^ α2), we get λ' e Rf with

(α^ α2)
 u 12 = (0, a,r12 + α2r22) = (X'al9 λ'α2) .
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Now λ'α! = 0 implies that λ' e W, so we have the relation

a2r22 = λ'α2 — a,r12 e Wa2 + L .

If r22 is a unit in eRe, then we have

α2 e Wa2R + L .

But then we also have α2 e Wna2R 4- L for all natural w, so α2 G L,
because W is nilpotent. This contradicts the assumption on a2.

Now we want to derive that for any natural n there is rn e eRe
with

I γ

For % = 1, we take rn = r12 and note that a2r2l = 0, because α 2 e J and
r21 G TFo If we assume the equality for n, we get

Jrn r12\
 +1 . /rn r«\

(α 1 ? α 2 ) = ( α ^ , a ^ n + a2r2

TO

2)
V21 ^22/ \̂ *21 *̂22/

= (a^^ 1, a^r^n, + rwr22) + a2r
n

22

+ι) ,

using that both α1? α 2 e J and r21 e W.
Since (α1? α2) is always mapped into R(alf α2), we find for any natural

n an element λn e Rf with

{a^n, a,rn + a2r
%

22) = (\nal9 Xna2) .

As a consequence, if r u ί W", then also r22 g WΓ. For, λΛαx = a^ Φ 0
implies that Xn does not belong to W, so /λΛ is a unit in fRf. But
if r22 6 TF, then r22 is nilpotent, and thus, for some n, we have atrn =
Xna2 and also aλτn = /λwα2. Since α! belongs to the left socle L, and
α2 g L, we conclude that f\n cannot be a unit in fRf.

So we have shown that r u G TF if and only if r22 e W. Consequently,
an endomorphism of M induces on M/Rad M = βe/ TFe 0 Re/ We either
a nilpotent endomorphism (if the elements rn, r21 and r22 of the cor-
responding matrix are in W) or an isomorphism (if for the correspond-
ing matrix, r21 e W but r n and r22 both are units in eRe). Thus, the
endomorphism of M itself is either nilpotent or an isomorphism. This
proves the lemma in the remaining case,

3* The third socle condition* We assume throughout § 3, 4 and
5 that R is a basis ring with left socle L, right socle J and that e
and / are primitive idempotents with f(L {\J)eΦ 0 We denote by S
the intersection S = L Π J of left socle and right socle. Also we will
assume that R is a QF-1 ring.
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Our first aim is to prove the third socle condition, or formally
more general, we show that dxhe ^ 2 implies Je S Le. This we will
use in the proof of the second socle condition, from which it then
follows that always dtLe ^ 2. Also it should be noted that in this
section the assumption of the existence of / with f(L dJ)e^0 is
irrelevant; if f(L Π J)e = 0 for all primitive idempotents /, then,
trivially, Je^Le.

Let us now assume 3zLβ ^ 2. We distinguish two cases (which
are not mutually exclusive).

Case 1. There is a minimal left ideal C contained in Se with
CeRe §=Ξ C. Thus, we find an element r e eRe with Cr §£ C, and r is
a unit of eRe, because C is contained in S. Also, R/C is a faithful
left ίJ-module.

The elements of the centralizer of R/C can be lifted to elements
of the ring

T = {teR Ct^C} .

Because C §Ξ Se, the radical W is contained in T. Also, if tx and t2

are elements of eRe with tjt2 = e, then tλ belongs to T if and only if
O £2 —- C/

Let us verify the following inclusion

(e + C)eTe Π (r + C)βΓeg TFe .

Since β and C both belong to T, we have (e + C)T^T. So let us
assume that Σ(r + c^^ e Γ, with c<eC and ί< e eTe. Now, ^(r + c^U =
r(ΣU) + ΣCiU together with CST implies that r{Σt%) e T. We want
to show that t = I7^ belongs to TΓ. If not, then Ct = C and also
CV = C for ί' with ίί' = e; but since rt e T, we conclude from Crt s C
that Cr £ Cf = C. This contradiction shows that teW. Together
with the fact ^e W for all i, this implies that Σ(r + c î* = rί +
-ScA G FT.

Let us denote by ^ the centralizer of Re/C and by 5 ^ the radical
of ^. The elements of ^ can be lifted to elements of eTe and, in
this way, the elements of W" correspond to those in eWe. In par-
ticular, both We/C and Je/C are ^-submodules of (Re/C)# and We/C
contains the radical {RejC)<W of the ^-module (Re/C)ύ, whereas Je/C
is contained in the socle of the ^-module (Re/C)^. We may, for
arbitrary x e Je, define a ^-homomorphism ψ of the form

(Re/C)^ -i-> Re/We > Je/C —U (12e/C)y

which maps β + C onto 0 and r + C onto α? + C. This is possible,
because e + We and r + We are ^-independent, according to the
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inclusion (e + C)eTe f] (r + C)eTeQ We proved above. Now, the image
of every JB~homomorphism R(l — e) —> Re/C is contained in We/C,
whereas the kernel of every .β-homomorphism Re/C —* R(l — e) contains
Je/C. This follows from the fact that such morphisms are given by
elements in (1 — e)Re and eR(l — e), respectively, and both (1 — e)Re
and eR(l — e) are contained in W. As a consequence, the trivial ex-
tension of ψ to Re/C 0 R(l — e) belongs to the double centralizer of
Re/C 0 R(l — e). Because R is a QF-1 ring, we find an element p e R
which induces this element of the double centralizerβ In particular,

peeC a n d pr — xeC .

Taking into account that r = er, we see that

xeC + CrξΞ Le .

This proves the inclusion Je g Le in the first case.

Case 2. There is a minimal left ideal A contained in Re with
AeRe g Ao Let B be a minimal left ideal contained in Re, different
from A. It is easy to see that an element r e eRe with ATg5 or
with BrgA belongs to PΓ. For, in the first case, A r g i Π - β = 0,
thus r cannot be a unit of ei2e; similarly, in the second case, r cannot
be a unit of eRe, because otherwise the element rf e eRe with rrr — e
would satisfy Ar' = B*

Now let ^ be the centralizer of Re/A, and Ύ^ the radical of ^ .
Both We/A and Je + A/A are ^-submodules of Re/A, and l̂ Fβ/A
contains the radical (Re/A)W of the '^-module (RefA)^9 whereas
Je + A/A is contained in the socle of (Re/A)z,a This follows from the
fact that the elements of W can be lifted to certain elements in
eWe. As a consequence, we may for arbitrary xeJe define a <£p-
homomorphism

(Re/A)v — ^ Re/We > Je + A/A -i-> (ife/AV

mapping e + A onto x + Ao
Let us consider the trivial extension of ψ to Re/A@Re/B@R(l — e).

Since every r e βi2e with Br g A belongs to W, we know that the
image of every i2-homomorpliism Re/B —> iSe/A is contained in We/A.
Also, the image of every jβ-homomorphism R(l — e)—»Re/A is contained
in We/A, because we may lift the morphism to get an element in
(1 — e)ReξΞ: W* On the other hand, Je + A/A is contained in the
kernel of every i2-homomorphism Re/A—>Re/B and Re/A—+R{l — e);
for3 these morphisms correspond to elements in e¥/e or eR\l — e),
respectively. Thus, the trivial extension of ψ to Re/A 0 Re/B 0
Rll - e) belongs to the double centralizer of Re/A 0 Re/B@ R(l - e).
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By assumption, R is a QF-1 ring, therefore we find an element p e R
inducing this element of the double centralizer. In particular,

pe — x 6 A and peeB ,

where the last relation follows from the fact that p(Re/B) = 0. This
implies that

So we proved the inclusion JeQLe also in the second case.

4% The first socle condition* We assume, as we have mentioned
before, that the basis ring R is a QF-1 ring with left socle L, right
socle J and that e and / are primitive idempotents with fSe Φ 0,
where S = L ΓiJ We want to show that either dtje = 1 or drfL = 1;
thus, for the contrary, let us assume both dtje > 1 and drfL > 1.
First, we prove

(1) 3rfSe = l.

If we assume drfSe > 1, then we find elements a and b in fSe
such that aR and bR are independent right ideals. We consider the
indecomposable left jβ-module

M = (Re φ Re)/R(a, b) .

Let ^ be its centralizer, and "W the radical of <&.
The radical MW of the ^-module iWV is contained in (We φ

R(a, b). Otherwise, either (e, 0) + R(a, b) or (0, e) + ίJ(α, 6) would be
mapped under some φ e "W" onto an element m e M\( We φ We)/R(a, b).

Now m = em, thus the natural map Re —̂ -> i2m is surjective. The
element m together with either (e, 0) + i2(α, 6) or with (0, e) + R(a, b)
generate M. Using the fact that M is indecomposable, we see by a
length counting argument that η has to be an isomorphism. Let us set

M* = MW + (We φ We)/R(a, b) .

This is a ^-submodule of M and it follows from M Φ MW~ that we
also have M Φ M'. Similarly, we form

M" = Soc Mv ΓΊ (Se φ Se)/R(a, b) .

It is easy to see that (Se φ Se)/R(a, b) is a nonzero ^-submodule of
M, thus it has a nontrivial intersection with SocM^. Because both
M\MT and ikf" are nonzero semisimple ^-modules, there exists a
nonzero ^-homomorphism ψ of the form

ikZV - ^ M/M' > M" - U M*. .
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Every iMiomomorphism R(l — e)—*M maps into (We© We)/R(a, b)QM',
and every i?-homomorphism M —> R(l — e) vanishes on M" £ (Se 0 Se)/
R(a, 6). Thus the trivial extension f of ψ vanishes on Rm 0 R(l — e),
because meMW QM'. The module Rm 0 R(l — e) is isomorphic to
Re 0 iϋ(l — e) = ̂ .B; thus, if ψ*' is induced by multiplication, then *f
has to be zero. This contradiction proves that J l ί ^ Λ g ( ^ 0 We)/
R(a, b).

As a consequence, (Je@Je)/R(a, b) is contained in SocM^. This
follows from the fact that, if we lift the elements of ^ to 2 x 2-
matrices with entries in eRe, we get for the elements of Ύ/^ just the
matrices with entries in eWe.

Both {We® We)/R(a, b) and (Je(&Je)/R(a,b) are <Sf-submodules
of M&. Thus given an element x e Je, we may define a ^-homomor-
phism ψ of the form

M* — (Re 0 Λe)/( TFe 0 We) > (Je 0 Je)/R(a, b) -^-> Afy ,

mapping (0, e) + i2(α, b) onto (a?, 0) + R(a, b). Using the fact that
the image of every J?-homomorphism R(l — e) ~> M is contained in
(We 0 We)/R(a, b) and that (Je 0 Je)/R(a, b) is contained in the kernel
of every i?-homomorphism M—>R(1 — e), we see that the trivial ex-
tension of ψ to M 0 R(l — e) belongs to the double centralizer of
Λfφl2(l — e). Therefore, we find an element peR with

(0,pe)-(x,0)eR(afb),

in particular, x e Ra. As a consequence, Je g Ra. But this contradicts
the assumption dxje > 1. Thus we have proved (1).

(2) fSe = fS.

Assume that we find a primitive idempotent β' orthogonal to e,
such that fSe' Φ 0. Let a be a nonzero element in fSe, and α' a
nonzero element in fSe'. We form R/R(a + α') It is easy to see
that R(a + α') is a minimal left ideal which is not twosided For,
a Λ- ar — f(a + α') implies that R(a + a') ̂  Rfj Wf, so R(a + α') is a
minimal left ideal, and if it is twosided, it would contain (a + a')e = a
as well as (a + a')ef = af. Thus, i2/i?(α + a') is a faithful left R-
module. The elements of the centralizer of R/R(a + α') can be lifted
to elements in R, and in this way we just get the elements of the
ring

T = {t 6 R; (a + a')t e R(a + α')} .

The right ideals aR and α'i? are independent, thus M = R(e + e')j
R(a + af) is an indecomposable left ϋJ-module. The elements of the
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centralizer £T of M can be lifted to the form t = (e + e')t(e + e') e T.
In this way, the elements of the radical W of ^ correspond to
elements in T Π W. For, if ί = (e + e')t(e + ef) e T induces a nilpotent
endomorphism of i?(e + e')/R(a + α'), then

(e + e')t* e R(a + α')

for some w, but then t2n = (e + e')£*(e + e')£w = 0 and ί e W. This
implies that

+ α')

and

J(β + e')/R(a + α') S Soc M* .

Now let α? be an element in Je. We may define a ΐf-homomor-
phism ψ of the form

M^ - U JB(e + e')/TΓ(e + e') — > J(e + e')/R(a + α') ~^ikf^ ,

mapping e' + i2(α + a') onto a? + i2(α + a'). Every β-homomorphism
jβ(l — e — e')—>M maps into W(e + e')/R(a + α'), and every i2-homomor-
phism M —• i2(l — β — β') vanishes on J(e + e')/R(a + α'); thus, the
trivial extension of ψ to iί/.β(α + α') = R(e + e')/Λ(α + α') 0 iί(l -

'β — e') belongs to the double centralizer of R/R(a + α') This implies
that there is an element p e R with

pef — x e R(a + α') .

Multiplication from the right by e gives x e Ra. This shows that
Je Q Ra. But a e Je, so we have proved that Je = Ra is a minimal
left ideal. This contradicts the assumption dtje > 1. Thus we have
proved (2).

(3 ) Je = fSe .

According to (1) and (2), we know that drfS = 1. The assump-
tion drfL > 1 therefore implies the existence of an element c e fL\fS.

We may choose such an element c e fL\fS which satisfies more-
over cWQfS and either c = ce or c = c(l — e), also we find we We
with 0 Φ yw. The first assertion is easy to see: if we have chosen
c'efL\fS and c'Wξ^fS, then there is a largest integer n such that
d Wn ξ£ fS, because W is nilpotent. But then every element cec' Wn\fS
belongs to fL\fS and satisfies cW^c' Wn+1 S fS. One of the elements
ce and c(l — e) has the same properties. For the second assertion,
take wr e W with 0 Φ cwr. Such an element exists, because c does
not belong to /. Now cw' ecW^fS — fSe, thus cw' — cw'e, and we
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may take w — w'e.
Let d be a complement of fSe Π RcRe in the left jβ-module RcRe

that, in the case c = ce, contains c, and let C2 = i?ci?(l — e). Then
C = CΊ 0 C2 contains c and has the following two properties

Ce s C and C 0 (/Se Π iZcϋte) = RcR .

Also, C does not contain a nonzero twosided ideal, because the fact
C ϋ / L implies

Consequently, R/C is a faithful left .R-module.
The elements of the centralizer of R/C can be lifted to the ele-

ments of

T= {teR CtsC]

We have the following inclusion

R(Tf]W)QT.

For, assume r e R and te T f] W. If d is an arbitrary element of C,
then dr e RcR = C φ (fSe Π RcRe) can be written in the form dr =
c£' + s for some d' eC and s e S. Now d't e C, because ί e Γ ; and st = 0,
because seS and ί e T7. Therefore, drt = (d' + s)ί = d' ίeC This
shows that rt e Γ.

Both e and w are elements of R\R(T Π TΓ) and

eTf)wTQR(Tr) W) .

For, the element β does not belong to W, and R(T f] W) £ W. On
the other side, w has the property 0 ̂  cw e fSe and /Se ίlC = 0;
thus w does not belong to T, but, as we have seen above, R(T f] W) £ Γ.
Because CβgC, according to the construction of C, we have that
e e T. This implies that β Γ n ^ g T n T^gi?(T D TΓ).

As an iϋ-module,

R/C = Λe/d 0 JB(1 - e)/Ca ,

and Re/d is indecomposable. Let ̂  be the centralizer of Re/d and
"W" the radical of <if Then J?(Tn TΓJβ/d contains {RejC^Ψ/^, and
Je + Cχ/Ci is contained in the socle of (Re/C^^. Thus we may define
for any xeJe a ^-homomorphism ψ of the form

(Re/Cdv — Re/R(T f] W)e > Je + CJC, -i-> (i2e/CL)^ ,

mapping e + C1 onto 0 and w + d onto x + Clβ Here we used that
the elements e + R(T Π TΓ)β and w + i?(Γ Π W)e are right independent.
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Because every iMiomomorphism R(l — e)/C2—> Re/Cί maps into R{T Π
W)e/Cι, and every ίMiomomorphism Re/Cι —> R(l — e)C2 vanishes on
Je + CJClf we may conclude that the trivial extension of ψ to ReCy φ
R(l - e)/C2 belongs to the double centralizer of Re/C, φ R(l - e)/C2.
Thus, we find an element p e R with

pe e d , pw — xeCι and ^(1 — e) eC2 .

The first and the last condition together imply that p belongs to
CΊ φ C2 S fL; consequently, the second condition shows that

xeC, + fLw^/L .

Thus, Je £ /L, and therefore Je = /Se.
This proves (3).,
But applying (1) to the opposite ring jβ* of R, we get the equality

(1)* dιfSe = l,

and therefore, (3) implies dxje — 1, This contradiction proves the first
socle condition.

5* The second socle condition* As in the previous sections,
we assume that the basis ring R is a QF-1 ring with left socle L,
right socle J, and that e and / are primitive idempotents with fSe Φ 0,
where S = L Π / . The aim of this section is to establish the inequality

dιLe X dJJ ^ 2 .

First, we are going to show

(1) 3ιLe ^ 2 .

Assume for the contrary that there are three independent minimal
left ideals A, B and C in Re. Because Je Φ 0, we may assume that
A^Je.

There is an element reeRe\W with Br = C. If not, then all
elements r e eRe with Br^C or with Cr^B belong to W. As a
consequence, the image of every J?-homomorphism Re/C φ R(l — e) —>
RejB is contained in We/B, and the kernel of every i?-homomorphism
Re/B -> Re/C φ R(l - e) contains Je + B/B. Let i f denote the cen-
tralizer of the i?-module Re/B. The radical elements of cέ? are induced
by elements of W, thus, We/B contains the radical of (Re/B), and
Je + B/B is contained in the socle of (Re/B)^. This shows that exists
a ^-homomorphism ψ of the form

^ > Je + ^
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mapping e + B onto an element a + B with O ^ α e A . The trivial
extension of ψ onto Re/B φ Re/C φ R(l — e) is an element of its double
centralizes Because Re/B φ Re/C φ R(l - e) is a faithful left R-
module, we get an element pe R with

pe — aeB and peeC .

This implies that α e JB + C, a contradiction to the independence of
A, B and C. Thus, we have shown that there is r e eRe\ W with
Br — C, and, in particular, the left i?-module Re/B is faithful.

Let us consider T = {te R\Bt^B}. Of course, e belongs to T,
whereas r does not belong to T. The radical of T is just T Π W,
because if te T\W, then also t~ι belongs to T. The elements of T
induce by right multiplication just the endomorphisms of B(Re/B); thus
we may define a ^-homomorphism ψ of the form

(Re/B)*. — Re/We > Je + B/B-^ (Re/B)v ,

mapping r + B onto an element a + B with O ^ α e i and e + B onto
5. Here we use, that the elements e + We and r + We are independ-
ent in (Re/We)^. The trivial extension of ψ onto Re/B®R(1 - e)
belongs to its double centralizer, because all morphisms between Re/B
and R(l — e) are induced by elements of W. Thus, we get an element
pf e R with

p'r — a6 B and p'eeB .

But r = er, so a belongs to Br + B = C + B, a contradiction. This
concludes the proof of (1).

Applying (1) to the opposite ring ϋί* of R, we get

(1*) KfJ ^ 2 .

Thus, it remains to show that dxhe — 2 yields drfj = 1. So let us
assume that dxLe — 2. Our first aim is to prove

(2) fJ^Le.

Accoding to §3, we know that Je^Le, and we have to verify
that for every primitive idempotent ef which is orthogonal to e, we
have fJe' = 0. So let us assume fJef Φ 0. We distinguish two cases.

Case 1. The socle he of Re contains a minimal left ideal Re that
is not twosided. Thus, R/Rc is a faithful left iϋ-module. Also fSe^Rc,
because fSe is nonzero and a twosided ideal. Let a be an element
of fSe\Rc, let 6 be a nonzero element in fJe'. Let us consider

M = (Re φ Re')/R(a, b) .
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This is an indecomposable left jβ-module and, according to Morita's
criterion, M is either generated or cogenerated by R/Rc.

First, let us show that the image of every morphism R/Rc—>M
is contained in (We 0 Re')/R(a, δ). Such a morphism maps R(l — e)
into (We®Re')/R(a, δ), so it is enough to consider morphisms Re I Re—^M.
Thus, let us assume there are given two elements rx e eRe and r2 e eRef

such that

maps c into R(a, δ), that is

(crly cr2) = (λα, λδ)

for some Xe R. Because a and b belong to fj, we may assume that
XeRf. If uί J, then τx is not a unit of eRe, because crx — XaeJ.
Thus, in this case, rte W. If c e J, then λδ = cr2 = 0, because r2 e
βi?β' g W. Therefore also /λδ = 0 and fx is not a unit in /J?/; so
λ = /λ + (1 — /)λ has to belong to TF. But this implies that er1 =
λα = 0, because aeS. Again, rγ is not a unit of eiϋe and therefore
belongs to W. This shows that R/Rc does not generate M.

Secondly, we prove that every morphism M —> RjRc maps (α, 0) +
R(a, b) into 0. We may restrict to morphisms M-* Re/Re, because
every morphism M —> R(l — e) maps (α, 0) + R(a, b) into 0 for trivial
reasons. Thus we have given two elements s1 e eRe and s2 e eτRe such
that

()
Re © Re'-^U Re

maps (α, δ) into i?c, that is

as1 + δs2 e -Re .

But δ G J and s2 e ei2e' g TF, therefore δs2 = 0 and asλ e Re. Since ast

is also the image of (α, 0) under(Sl), we conclude that (α, 0) is mapped

into Re. This shows that M is not cogenerated by R/Re.

Case 2. The minimal left ideals contained in Re are twosided
ideals. In particular, this implies that Le — Se. Let a be a nonzero
element in fSe, b a nonzero element in fJe\ and c an element in
Le\Ra. Again, we consider the left i?-module

M = (Be 0 Re')jR{a, b) ,

but this time we form If 0 R(l — e). This is a faithful left ϋJ-module,
and, according to Morita's criterion, has to generate or to cogenerate
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the indecomposable iϋ-module Re/Rc.
First, let us show that If 0 72(1 — e) does not generate Re/Rc.

Trivially, any morphism R(l — e) —* Re/Rc maps into We/Re; thus as-
sume there are elements rλ e eRe and r2 e efRe such that

( n )
Re® Re' -^U Re

maps (a, b) into Re. Thus, there is λ e R with

ar1 + 6r2 — λc .

But 6 6 J and r2 e β'ϋte g T7, thus an — λc. According to our assump-
tion, Ra is a twosided ideal, and Ra f) Re = 0, thus arx = 0 and rx

is not a unit in eRe. This shows that n e W. As a consequence,
the image of every morphism M 0 R(l — e) —+ Re/Rc is contained in
We/Re.

Secondly, Λf0i ί ( l — e) does not cogenerate Re/Rc. It is enough
to show that every morphism Re/Rc —* M and every morphism Re/Rc —*
ϋ?(l — e) maps Le/Rc into 0. This is obvious in the second case,
because Le — Se. Thus, assume there are given elements sx e
and s2 e eRef such that

maps c into R(a, b). That means, we find an element μeR with

(csl9 cs2) = (μa, μb) .

Because Re is a twosided ideal and Re Π Ra — 0, we conclude that
C8ί = 0. But this implies that sx e W. Trivially, also s2 e W; thus
Le = Sβ is mapped under (su s2) into 0.

In Case 1 as well as in Case 2, the assumption fje' Φ 0 for a
primitive idempotent e' orthogonal to e, leads to a contradiction. This
proves statement (2). Using this assertion, we are able to prove

(3) drfj = l.

We know from (2) that fj = fSe. If Se = Le, then

3zJe ^ 3zSe = 2 ,

and the first socle condition implies drfL — 1. But / J = fSeQfL,
thus also 3 r/J — 1. Therefore, we may assume that Se is a proper
submodule of Le. Let c be an element in Le\Se. Then Re f] Se = 0,
and J?c is not a twosided ideal, because otherwise it must intersect
Se nontrivial. As a consequence, R/Rc is a faithful left iϋ-module.

Let us assume drfj > 1. Then we find elements a and b in fj =
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fSe, such that aR and bR are independent right ideals of R. Let us
form the indecomposable left iϋ-module

M = {Re® Re)/R(a, b) .

Morita's criterion implies again, that R/Rc either generates or cogen-
erates M.

First, the image of every morphism R/Rc—>M is contained in
(We φ Re')/R(a, b). Of course, it is enough to consider morphisms

Re (Hl^ Re 0 Re

with

(crl9 cr2) = (λα, λδ)

for some λ e R, where rι and r2 both belong to eRe. But c £ Se, whereas
cτγ = Xa G Se. This shows that rL is not a unit in eRe and thus belongs
to W. As a consequence, R/Rc does not generate M.

Secondly, every morphism M —>i?(l — e) and every morphism
M—>Re/Rc maps (α, 0) + i2(α, b) into 0. We only have to consider
the latter; thus there are two elements sΊ and s2 in eRe such that

Re 0 Re — Re

maps (α, 6) into Re. That is,

αSi + bs2 e Re Π Se = 0 .

Now the fact, that αJ2 Π 6i? = 0 implies that both τ1 and r2 belong to
W. Therefore, Se φ Se belongs to the kernel of (sl9 s2); in particular,
(α, 0) is mapped into 0. This proves that Re/Re does not cogenerate
M.

The assumption drfj > 1 has led to a contradiction. This estab-
lishes statement (3) and completes the proof of the second socle con-
dition.

6* Indecomposable faithful modules* The first application of
the socle conditions gives the solution to a problem raised by D. R.
Floyd ([6], [10]): whether a QF-1 algebra can have many types of
indecomposable finitely generated faithful modules. He conjectured
that, for a given QF-1 algebra, the length of all such modules is
bounded. J. P. Jans [10] proved the conjecture under the assumption
that the algebra has "large kernels", this is however, a rather tech-
nical condition concerning all indecomposable finitely generated modules.
Here we are going to prove a stronger version of Floyd's conjecture:
not only is the length of all indecomposable finitely generated faithful
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modules of a QF-1 algebra bounded, but there is at most one isomor-
phism class of such modules. And, proper QF-1 algebras (QF-1
algebras which are not quasi-Frobenius algebras) don't have any such
modules.

THEOREM. Let Rbe a QF-1 algebra with an indecomposable finitely
generated faithful module. Then R is Morita equivalent to a local
quasi-Frobenius algebra.

Proof. We may assume that R is a basis ring. Also we may
assume that there is a primitive idempotent e with Je Φ 0 and 3tLe — 1,
where L is the left socle and J the right socle of R. This is a con-
sequence of the second socle condition; for, L Π J Φ 0, so we find
primitive idempotents e and / with f(L Π J)e Φ 0, and the second
socle condition now implies that either dtLe = 1 or drfj = 1. In the
second case, the opposite ring ϋί* of R satisfies the assumption. But
an algebra R has an indecomposable finitely generated faithful modules
if and only if 22* has one; also the opposite ring of a local quasi-
Frobenius algebra is again a local quasi-Frobenius algebra.

Let M be an indecomposable finitely generated faithful left R-
module. Let ^ be its centralizer and W the radical of &. First,
let us show that there is an element m = em in M\MW~ such that
Sem Φ 0, where S = L n J The elements of the form ex and (1 — e)x
generate the module M additively, so we may take a minimal gener-
ating set {x^iel} of the ^-module M^, consisting of elements of
the form xt — eXi or xt — (1 — e)xi9 The minimality implies that no
element xt belongs to the radical MW* of M^. Every element of M
has the form Σx&i with ψ^^. Therefore, if we assume Sext — 0
for all i e /, we get

Se(IXi<pt) = ΣSex&t = 0 .

But because M is faithful, we have SeM Φ 0. This contradiction
implies the existence of some x{ with SeXi Φ 0. According to our
construction, we have either xt = exi or xi — (1 — e)xi9 Since the latter
is impossible, the element m = xt satisfies all requirements.

The submodule Rm of M is isomorphic to Re. For, the obvious
homomorphism Re -* Rem = Rm has trivial kernel; otherwise, the
kernel would contain Le, since we have dtLe = 1. But m satisfies
Sem Φ 0, therefore Se is not contained in the kernel.

Now, let / be a primitive idempotent with fSφO. Because M
is faithful, we also have fSM Φ 0. The submodule SM of M is con-
tained in the socle Soc^ M of BM, so we have / Soc^ M Φ 0. It is
easy to see that / Socβ M is a ^-submodule of M&, thus we have
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f - SocR M Γ) Soc M^, Φ 0 .

Let s — fs be a nonzero element of / • SocRM Π Soc Mv. We may
define a ^-homomorphism ψ of the form

M^ ~ M/MW~ > Soc M* —U Mr ,

mapping m onto s. The ^-homomorphism -f belongs to the double
centralizer of M, and is induced by multiplication by some p e R, since
R is QF-1. Thus, we have s = pm, that is s e Rm. But s also belongs
to Soc^Λf, so

s e Rm Π Socβ ilί = Soc Rm .

Using the fact that s = fs and using the isomorphism of Rm and Re,
we see that fSe Φ 0. We therefore have proved that a primitive
idempotent / with fSφO also satisfies fSe Φ 0. If 1 = Σfi9 where
the fifs are primitive and orthogonal, then there is only one of the
fi8 with fSe Φ 0, since dxSe — 1 and R is a basis ring. For this
idempotent, we have f$ Φ 0, whereas fβ = 0 for j Φ i. As a con-
sequence, S — fiS* In the following, we will denote this /* simply

b y /
Using again the second socle condition, we conclude that drfS rg 2.

We distinguish two cases.

Case 1. There is a primitive idempotent e with fS = /Se, so αiso
fS = Se. According to the first socle condition, either drfL = 1 or
5z/β = 1, a fortori we have either fL = fS or Je = Se.

If we assume fL = /S, then we have

Z, = fL = fS = Se s ^ ,

where we use that S — /S implies L = fL.
Similar, if we assume Je — Se, we have

J = Je = Se = / S £ / Λ ,

where we use that S = Se implies J — Je.
In the first case, the whole left socle is contained in Re, thus

\R = Re; in the second case, the whole right socle is contained in fR,
thus R — fR. Always we conclude that R is a local ring.

Case 2. There are two primitive idempotents eι and e2 with fS =
fSeιφfSe2, and so also fS = S^ φ Se2. Since in this case drfL > 1,
the first socle condition implies dxjei = 1, for i = 1, 2. In particular,
we have J ^ = Se*. It follows from S = S^ 0 £te2 that J = / ^ © Je2,
thus
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j = j e i 0 Je2 = Sex 0 Se2 = fSsfR

Again, we conclude from the fact that the whole right socle is con-
tained in fR that R = fR. Consequently, R is a local ring.

It is known that a local QF-l algebra is a quasi-Frobenius algebra
([2], [3]), but this is also a consequence of the second socle condition.
For, in this case, it shows that either the left socle is simple or the
right socle is simple.

7* QFΊ algebras with radical square zero* As a second applica-
tion of the socle conditions we give an internal characterization of
QF-l algebras with radical square zero. This answers partly the
question of R. M. Thrall [15] to determine the class of QF-l algebras
"in the language of ideal theory". Until now, only for two other
classes of algebras a characterization of those algebras which are
QF-l seems to be known: for serial (or "generalized uniserial") algebras
[7] and for algebras which are direct sums of full matrix rings over
local rings ([2], [3]). In what follows, let us assume that R is a
finite dimensional algebra with the radical W and that W2 = 0.

The algebra R is said to be of local-colocal representation type
(or of "cyclic-cocyclic" representation type) if every finitely generated
module is either local or colocal (a module is colocal if its socle is a
minimal submodule). H. Tachikawa [13] has characterized these
algebras. Under the assumption W2 = 0 we get that R is of local-
colocal representation type if and only if for every pair e, f of primi-
tive idempotents with / We Φ 0, we have

dtWe x

and that, in this case, every indecomposable module is of length ^ 3
and either simple, or projective, or injective. Now let us again
denote by L the left socle and by J the right socle of R. The as-
sumption W2 — 0 implies

W^LnJ .

Thus, if R satisfies the second socle condition
(2) for primitive idempotents e and / with f(L Π /) Φ 0 we have

dtLe x drfj ^ 2 ,

then R is of local-colocal representation type.
In the theory of rings, certain double centralizers are of particular

interest. If M is an i?-module, let us denote by EM the injective
envelop of M. The double centralizer of the left module ERR is called
the complete ring of left quotients, and R is said to coincide with
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its complete ring of left quotients if ERR is balanced. Similarly, R
is its complete ring of right quotients if the right module ERR is
balanced.

With these definitions we can formulate the theorem that charac-
terizes the QF-l algebras with W2 — 0. Besides the second socle
condition we will also need the other two conditions

(1) for primitive idempotents e and / with f(L Π J)e Φ 0, we
have either

dje = 1 or dJL = 1 ,

(3) for every primitive idempotent e with dxhe — 2, we have

and the condition dual to (3), namely

(3*) for every primitive idempotent / with drfj = 2, we have

fLS/J.

It should be noted that the conditions (1) and (2) are self-dual.

THEOREM. Let R be a finite dimensional algebra with the radical
W. Assume W2 = 0. Then the following conditions are equivalent:

( i ) R is a QFΛ algebra;
(ii) R satisfies (1), (2), (3) and (3*);
(iii) R is of local-colocal representation type and coincides both

with its complete ring of left quotients and its complete ring of right
quotients.

Proof. The main theorem of this paper shows that (i) implies
(ii). So let us assume (ii). As we have seen above, R is of local-
colocal representation type. If we prove that R coincides with its
complete ring of left quotients, then the same result holds for the
opposite ring of R and R also coincide with its complete ring of right
quotients. It is well-known that R coincides with its complete ring
of left quotients if and only if ERRjRR (that means, of course, (ERR)/RR)
is cogenerated by ERR. The assumption W2 = 0 implies that ERR
is semisimple. Thus, we have to show that ERR/RR is cogenerated
by RR. Equivalently, we have to show that for every primitive
idempotent e with e{ERR/RR) Φ 0, we have eh Φ 0»

So let us assume that e is a primitive idempotent with e(ERR/RR) Φ
0. If 1 = Σfi where the//s are primitive and orthogonal idempotents,
then ERR/RR = © ERfJRU

Therefore we find a primitive idempotent / with
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e(ERflRf) Φ 0 .

We want to show e $ J. If Rf is a minimal left ideal, then Rf must
be isomorphic to a proper submodule of Re, thus / We Φ 0. Now fL
contains both / and fWe, thus drfL > 1. So the socle condition (1)
yields dxje — 1. Since We Φ 0, we conclude e $ J. Now let us consider
the case where Wf Φ 0. Because of (2) we have dι Wf ^ 2, and if
dt Wf = 2 then ERf = 22//A 0 i2//£ where A and 5 are minimal
left ideals. So, in the case BtWf = 2, we may assume e = / . But
δjffly = 2 has, according to (3), the consequence Jf^Lf, thus e =
f &J. Finally, in the case dt Wf = 1 take a primitive idempotent / '
with / ' Wf Φ 0. The injective envelop ERf can be considered as an
amalgamation Rf 0 Re/R(a9 b) with elements aef'Wf, bef'We. In
particular, we have drf'L > 1. This together with f'We Φ 0 yields
according to (1) that dtje — 1, thus eg J. But e£ J, obviously, implies
eWΦ 0 and thus eL ^ 0. This concludes the proof (ii)—•(iii).

It remains to show that (iii) implies (i). First, it is obvious that
we may assume that R is a basis ring since both assertions (iii) and
(i) are Morita-invariant. Also, we may restrict to rings which are
twosided-indecomposable, he. rings which cannot be written as the
direct sum of two proper twosided ideals. To avoid trivial cases we
further assume that R is not a division ring. Thus, in particular,
if / is a primitive idempotent with Wf — 0 we have fWφO.

We assume that R is of local-colocal representation type. So let
us mention some consequences of Tachikawa's characterization which
we will need in the sequel. If e is a primitive idempotent, then
3tRe ^ 3 . If dtRe = 3, and A is a minimal left ideal contained in
Re, then Re/A is indecomposable and not protective, thus injective;
as a consequence, ERe = Re/A 0 Re/B where A and B are different
minimal left ideals in Re. If dtRe = 2, and we assume that Re is
not injective, let / be a primitive idempotent with fWe Φ 0. Then
drf W — 2 and we find right independent elements ae f We and be
fWef, where e' is a primitive idempotent not necessarily distinct from
e. Since {Re 0 Re')/R{a, b) is indecomposable and not projective, it
has to be the injective envelop of ERe.

Let us show that, given two primitive idempotents e and / with
Wf = 0 and fWeφO, we may conclude that Re is injective. Because
Wf = 0, the simple right module fR/fW does not occur as a sub-
module of WR, and, since fWφO, fR/fW is also not projective.
Thus, fR/f W does not occur as a submodule of the right socle of R.
Again using the result that a ring R coincides with its complete ring
of right quotients if and only if ERR/RR is cogenerated by ERR, we
see that fR/fW does not occur as a submodule of ERJRR. Now
dtRe = 2. For, otherwise dJUe = 3 and we find left independent ele-
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ments a e fWe and b e f We, with / ' a primitive idempotent not neces-
sarily distinct from / . Then {fR 0 f'R)/(a, b)R is injective and, in
fact, the injective envelop of fR. Thus Ef'Rjf'R p* fRjf W would
occur as a submodule of ERRjRR. Also, drfW= 1. For, otherwise
drfR = 3 and EfR = /#/A 0 /i2/# for some minimal right ideals A
and B. But this implies that EfR/fR ^ fR/f W occurs as a sub-
module of ERRIRR. This shows that Re is injective.

Since W2 = 0, we know that ERR/RR is semisimple. Now a simi-
simple module is called square-free if two isomorphic submodules
always coincide, or equivalently, if the homogenious components are
of length 1. We claim that EBR/RR is square-free. In order to prove
this, we will embed ERR/RR into RR/RW, since for a basis ring R
the module RR/RW is obviously square-free. So let 1 = Σei9 where
the e/s are primitive and orthogonal idempotents. If 3,22^ — 1, then
Wei = 0 implies that there is some j Φ i with βiWβj Φ 0. Then, as
we have seen above, Re3 is injective. Thus Rβj is the injective hull
of Re, and

(*) EReJRe, 0 ERe3/Re3 & Re,-/ We3 0 0 = Re3/ We,- .

If azRei = 2 and 2?^ is not injective, then for a primitive idempotent
/ with fWi Φ 0 we have drfW= 2. Now in the case where fW =
fWeiy we have

(**) EReJRe^ReJWet,

whereas otherwise we find j Φ i with fW= f Wt 0 / TF^ and since
^ Re3'/We3' and ERβj/Rej e& EeJWei9 we have

(* * *) EReJRβt 0 ERβj/Rej ^ ReJ We, 0 i ^

Finally, for 3zi2βί = 3 we have ERβi — ReJAi 0 ReJBt for minimal
left ideals At and £ 4 , thus we get again (**). But the three cases
(*), (**) and (***) together define the embedding of ERR/RR™ ®EReJ
Re, into 0 ReJ We, ̂  RR/RW.

In [14], Corollary 3.4, Tachikawa has shown that for a ring R
for which ERR/RR is semisimple and square-free with ERR also every
module M satisfying RRQMQERR is balanced. Since we assume
that R coincides with its complete ring of left quotients and since
we have proved that ERR/RR is semisimple and square-free, we may
use this result.

Let us call two left iϋ-modules M and N equivalent if there are
decompositions M = 0 M, and N = 0 N3- such that for every i there
is some j> and conversely, for every j there is some i, with M, ^ N3 .
If M and N are equivalent, then M is balanced if and only if N is
balanced [9]. An jR-module X is called minimal faithful, if X is
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faithful but no proper direct summand of X is faithful. We want
to show that every finitely generated, minimal faithful left iϋ-module
is equivalent to a module M with RR^M^ERR.

Let X be a finitely generated, minimal faithful left ϋί-module. Let
X = 0 J^ be a decomposition of X into indecomposable modules. Let
1 = Σβi, where the e<'s are primitive and orthogonal idempotents. For
every ί, we will construct a module Mt with Rβi £ Mi £ ERβi such that
Mi is either isomorphic to one of the modules X, or to the direct sum
Xό@XΓ of two such modules. Since M= ©M, satisfies RR^MaERR,
we see that M is faithful. Thus we may conclude that every Xj was
used in the formation of some Mif and thus is a direct summand of
M in the given decomposition; for otherwise we would get a contra-
diction to the minimality of X. As a consequence, X and M are
equivalent.

So, let us construct for a given i the module Mt. If δ^e^ — 2,
we find some j with WβtX,- Φ 0 since X is faithful. As a consequence,
we may embed Re^ into X,. But X,- is indecomposable, thus either
isomorphic to Re{ or to ERe^ So either Mi = Rβt or Mt = ERe{ fulfills
the requirements. If dtRei — 1, then we find some if with e{We^ Φ 0.
As we have seen above, Rev is injective and one of the modules Xj
is isomorphic to Rev. So let us take Mi = ERe{ (^ Reif & Xj). Finally,
for dtRβi — 3, we look again for j with WβtXj Φ 0. If X3 is of length,
3, then X5 has to be projective and isomorphic to Re^ In this case,
take Mi = Rei9 If every module X3 with We^ Φ 0 is of length 2,
then all these modules are injective, and either Rβi is embeddable in
Xι 0 Xi for some ί, or else we find two different i and i' with Rβi
embeddable in ^ 0 J ^ . This means that we take Λf4 = uZBê  So
we have shown that any finitely generated, minimal faithful left R-
module is equivalent to a module M with BRQMQERR and thus is
balanced.

To complete the proof, take an arbitrary finitely generated faithful
left iϋ-module Y. Let

where X is minimal faithful and the modules Y{ are indecomposable.
We know that X is balanced. In order to apply Morita's criterion,
we have to show that every module Yi is either generated or cogen-
erated by X. But it can easily be verified that every projective
module is cogenerated by X, whereas every injective module, and also
every simple, but not projective, module is generated by X. This
proves that R is QF-1.

8* Remarks and examples* The following remarks try to shed
some light on the possibility to improve the socle conditions. It will
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be shown that the three conditions—or rather the four conditions (1),
(2), (3) and (3*)-are independent,

(a) It should be noted that condition (1) cannot be brought in
a form similar to (2); this follows from the fact that there are QF-l
rings with dtje > 2. Indeed, a serial (or "generalized uniserial")
algebra with the Kupisch series

1, 2, 3, 3, 3

has a primitive idempotent e with dtje = 3 (namely e = ββ), and also
a primitive idempotent / with drfL — 3 (namely/ = e^ On the other
hand, it follows from K. R. Fuller's characterization of serial QF-l
rings [7], that this algebra is QF-l. Similarly, for every natural n
we may consider a serial algebra with the Kupisch series

1, 2, n — 1, n, n, n

with n primitive and orthogonal idempotents ei such that d^e, = n.
Such an algebra is QF-l and has idempotents e and / with dxje = n
and drfL = n.

(b) In order to show that the different socle conditions studied
in this paper are independent, let us consider the following examples.

First, any QF-3 algebra satisfies the conditions (2), (3) and (3*).
The ring of all upper-triangular 2 x 2-matrices over a field is a QF-3
algebra, but does not satisfy condition (1).

Then, let us start with a field and a subfield of index 2, say
with the complex numbers C and the reells R, and consider the ring
Ro of all triangular matrices with entries in C or in R according to

Let Wo be its radical, and define R as R — RJWl It is easy to
verify that R satisfies the conditions (1), (2) and (3), but not (3*).
Let us remark that it is also an example of an algebra of local-colocal
representation type which coincides with its complete ring of left
quotients but not with the complete ring of right quotients.

Finally, let R be the subalgebra of the ring of all 8 x 8—matrices
over some field, generated by the elements

01 — #11 + #88> e2 — #22 + #77, 63 = #33 + #66, #4 = #44 + #55^

#21, #31) #41, #85, #86? #87

This algebra satisfies the condition (1), (3) and (3*), but not condition
(2). Also, this is the example of an algebra R which is not of local-
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colocal representation type but which coincides both with its complete
ring of left quotients as well as its complete ring of right quotients.
A simple example for the latter is of course any local algebra with
radical W and W2 = 0 which has two different minimal left ideals
which are twosided ideals.

Since all examples mentioned here are algebras with W2 = 0, we
see that the conditions in the theorem of §7 are independent.

(c) We have shown that the three socle conditions characterize
the QF-l algebras with radical square zero. However, if we drop the
assumption on the radical, the assertion does not remain valid. In
fact, a serial algebra with the Kupisch series

1, 2, 3, 3

satisfies all the properties (1), (2), (3) and (3*), but is, according to
[7], not a QF-l algebra.

On the other hand, for algebras which are direct sums of full
matrix rings over local rings, even the socle condition (2) alone charac-
terizes those which are QF-l.

(d) It is well-known that for a quasi-Frobenius ring the left
length and the right length coincide. Also, the previously published
examples of QF-l algebras were either serial or had the property that
every simple module was one dimensional over the ground field; thus,
again, the left and the right length of the corresponding basis ring
had to coincide. Using the characterization of QF-l algebra with
radical square zero, we show that in general the left length and the
right length of a basis QF-l algebra need not to be equal.

Let Ro be the ring of all matrices with entries in C and R ac-
cording to

c c c c\
0 C C C

0 0 R R

0 0 0 R)

and let Wo be the radical of Ro. Ro is an algebra over R and R = R
satisfies all the conditions (1), (2), (3) and (3*), thus R is a QF-l ring.
But we have dzR = 7, whereas 3rR — 8.

Of course, the exceptional rings studies in [4] and [5] are also
QF-l rings (but not algebras) for which left length and right length
does not coincide.
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