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If / is an arithmetic function, let T(f) = {(α, b)\f(ab) =
f(β)f(fi)}. If S is a set of pairs of positive integers, let
feM(S) if T(f) Ώ S. In this paper we determine all sets S
such that M(S) is a group under Dirichlet convolution.

1* Introduction* An arithmetic function f is a complex-valued
function whose domain is the set N = {1, 2, 3, •}. The multiplicative
set belonging to / is the set T(f) = {(a, b)\f(ab) = /(α)/(δ)} If S is
any nonempty subset of N x N, then we say that fe M(S) if / Φ 0
and Γ(jf) 3 S. We shall let ^p denote the set {(α, 6)|GCD(α, 6) = 1}.
Furthermore, for convenience we shall assume that all of our sets
S ξί N x N are symmetric (α, 6) e S if and only if (6, α) e S.

It is well-known (see [1]) that M(&), the set of all multiplicative
functions, forms an Abelian group under the Dirichlet convolution

[f*9] {n) = Σ f(d)g(n/d) .
d I n

In this paper we intend to characterize completely all those sets S
such that M(S) is a group under*. It is not hard to show that all of
our results carry through for the generalized convolution defined by
Goldsmith [2]. We shall work with* for simplicity.

Some of the contents of this paper appeared in the author's Ph.D
thesis written at the University of Oregon under the direction of
Professor Ivan Niven.

2* The multiplicative closure of a set* It is convenient for
us to introduce a closure operation on subsets of N x N. Properties
of this operation which are not necessary for this paper will be
discussed by the author elsewhere.

If S g N x N, then the transformation

is said

( i )

(ϋ)

and

(iii)

(α,, α2, , an) <-

to be an S-step if

a5 =

an =

(K,l

bj

κκ+ι

i.+i) 6 S ,

•, bn, bn+ι)

for j = 1, 2, , n — 1
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where all ^-tuples for n ^ 3 are to be considered as unordered. It
should be emphasized that an S-step is a transformation which can
go either from (α1? α2, , an) to (δ^ b2, , bn, bn+1), or from (δly 62, ,
bn, bn+1) to (α1? α2, , απ). An S-chain is any sequence of S-steps.
We say that a pair (a, b) is in S*9 the multiplicative closure of S,
if there exists a finite S-chain leading from the 1-tuple (ab) to the
pair (a, δ). A set S is closed if S = S*.

THEOREM 2.1. ( i ) Ss-S*, αwd 4 g ΰ implies A * g ΰ * ;
(ii) S** = S*;
(iii) JΓ(/) is closed for all functions /.

Proof. ( i ) Notice that (α^) —> (α1? α2) is cm S-chain if (α, b) e S.
To see that (ii) holds, let (aly ,αn) ̂  (δ1? , δ%, δn+1) be an S*-step
where α< = δ; for i = 1, 2, , n — 1, &%&%+i = αn and (6%, δn+1) e S*.
Then there exists a finite S-chain:

(KK+i) > (A, c2) > > (du d2, ds) > {bnj bn+1) .

Notice that the following is a finite S-chain:

(al9 - , an) > (au , an_u cu c2)

> (δi, , 6W_L, 6W, δn+1) .

Hence any finite S*-chain can be represented as a finite S-chain and
(ii) follows.

To prove (iii), if (nm) —> (nl9 n2) —> —• (bu b2, m) —• (n, m) is a
Γ(/)-chain, then

= f(n)f(m) ,

so that (w, m) eT(f)* implies that (n, m) e Γ(/).
If ^ is Euler's totient function, then it is not hard to see that

T(φ) — &. Hence we can conclude from 2.1 that the set & is
closed.

A set S is divisible if (α, δ) e S implies that {d, dr) e S whenever
d I a and d' \ b. Notice that & is a divisible set.

THEOREM 2.2. If S is a divisible subset of &, then S* is also
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a divisible subset of &.

Proof. The fact that S* £ & is immediate because & is closed.
If (α, δ) € S* and p α | | α and qβ\\b where p and q are primes, then
(pa, qβ) e S. If not, then (pax, qβy) £ S by the divisibility of S so that
if (ab) —> (u, v) —• —> (α, δ) is an S-chain then one and only one
"co-ordinate" of each-tuple involved must be divisible by paqβ. But
this is a contradiction because pa \ a and qβ \ b. Therefore (p\ qι) e S
for all i ^ a,j ^ β, by the divisibility of S.

Assume that d\a, d'\b, and (δ,δ')eS* for all δ\d, δ'|ώ', and
(δ,δ')Φ (d,d'). Since (α,5)eS* let (ab)-+(u,v) be a first S-step
where (u, v)e S, u = dxd[d", v = d2d

f

2d
f

2\ dxd2 = d> and d[d2 = d'. By the
divisibility of S we have {dγd'u d2d2) e S,(dl9 d2) e S, and (d[, d'2)eS.
By the choice of (cϋ, df) we have (du d[) and (d2, d2)eS*. Hence the
following S-chain obtains:

(ddf) - (d&dj® > &&, d2d
r

2)

> (dlf d[, d2d2)

> (du d[, d2, c©

i, d2d
f

2)

so that {d,df)eS*.

3. The main results* A set £ is said to have property P if
f*geM(S) whenever / and g are in M(S). The main theorem of
this paper is the following characterization.

THEOREM 3 1. A set S has property P if, and only if S* is a
divisible subset of &. In particular, all divisible subsets of & have
property P.

The proof of Theorem 3,1 will follow from a sequence of lemmas.
A set S has property P ' if f*leM(S) whenever feM(S) where 1
is the function with constant value 1.

LEMMA 3.2. If S has property P, then S has property P \

LEMMA 3.3. If S has property P', then S £ ^ .

Proof. 1*1 is the number of divisors function τ, and it is easy
to see that T{τ) = &. Therefore τeM(S) implies & = T(τ) a S.

LEMMA 3.4. // S has property P', then (1,1) e S.
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Proof. If (1,1) £ S, define /(I) - 2, f(n) = 0 for all w, > 1. Then
feM(S) but f*l$M(S).

LEMMA 3.5. Let S be closed and have property P'. If (α, b) e S,
then (1, d)eS for all d\a and (1, d') e S for all d! \ b.

Proof. Assume (l,d)&S for d \ a and d is the smallest divisor
of a with this property. We may assume that (δ, δ') £ S where
δδ' = d and δ Φ 1 Φ δ', because, by the minimality of d, the following
Sf-chain obtains:

{d) > {dydΊ , {lf δy s>} , ( i ? d) .

Since S is closed, (1, d) e S.
Define / via /(I) = 0, f(d) = 1, f(x) = 0 otherwise. It is easy

to see that feM(S) by the previous remarks, but

a contradiction.
Let k be fixed and let g be defined via g(l) = 1, g(k) = 1, and

g(m) = 0 otherwise. It is easy to check that T(g) contains all co-
prime pairs except those of the form (d, k/d) where d Φ 1 or k.

LEMMA 3.6. If S is closed and has property P', then S must be
divisible.

Proof. Suppose that the set

{{a, b)eS\ (d, d') $ S f o r s o m e d\a, d'\b, d Φ 1 Φ d'}

is nonempty, and let (α, b) be an element of this set which is minimal
with respect to the product ab = n. Also pick an appropriate {d, d')
to be minimal with respect to its product ddf — k.

(1) If δ I d a n d δ ' | d' a n d δδ' < ddf, t h e n δ\a,δ'\b, and so (δ, δ') e S.
(2) I f (dl9 d[) e S w h e r e dLd[ = k,dιΦlΦ d[, t h e n (5, £') e S fo r

all δ I d1 and δ' \ d[ by the minimality of ab = n.
We may assume, however, that {du d

ι) £ S whenever

dyd[ = k, d1 Φ 1 Φ d[ .

F o r if (dl9d[)eS, let d1 = d2d
t

2 a n d d[ = d3d'B w h e r e d2d3 = d and dr

2d'3 = d'.
Then the following chain obtains:

{dd') > (dl9 d[) > (d2, d'2, d[) > (d2, dif d» d$

— > (dA, dίdD = (d, d>) .
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Since S is a closed set, it follows from this that (d, d') e S, which is
contrary to our assumption.

It follows that g e M(S) where g is the function defined above.
It is not hard to see that [g*l](ab) ^ 2 but |>*l](α) = 1 = \g*l](b), a
contradiction.

THEOREM 3.7. Let S be a closed set. Then the following state-
ments are equivalent.

( i ) S has property P,
(ii) S has property P',

and
(iii) S £ & and S is divisible.

Proof. We have shown (1) =* (2) => (3). Let f,geM(S) and
(α, b) e S. Then

[f*g](ab)= Σ f(dd')g{a\db\d')
d\a,d'\b

= V
/ i f(d)f(d')g(a/d)g(b/d')

d\a,d'\b

= Σ f(d)g(a/d) Σ f(d')g(b/d')
d\a d'\b

= [f*g](a) lf*g](b)

Proof of Theorem 3.1. If feM(S), then feM(S*). Hence, if
S has property P, then S* has property P. Therefore S has property
P if and only if S* is a divisible subset of ^ . In particular all
divisible subsets of & have property P. It should be noted, however,
that there exist examples of sets S £ & which are not divisible but
whose closures are divisible.

The function E which has value 1 at 1 and 0 elsewhere is the
identity under Dirichlet convolution. Therefore it is easy to see that
a function / has an inverse / if and only if /(I) Φ 0, in which case,
/(I) = 1//(1), and f(n) = (-l/f(l))(Σ*dM*«f(d)f(n/d)).

THEOREM 3.8. Let S § iV x N. Then M(S) is a group if and
only if S g ^ {(1, w)}~=i S S, and S* is a divisible set.

Proof. All that remains to show is that given S £ ̂ ?,
{(1, n)}~=1 £ S, and S* divisible, then fe M(S) implies that fe M(S).
First, /(I) = 1 so that / exists and f(n) = f(ΐ)f(n). Let (a, b)eS
and assume that (d, d') e T(/) for all d \ a, d' \b and dd' < ab.
Then
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- f{ab) = Σ f(dd')f(ab/dd')
d\a.,df\b
dd'φab

= Xf(d)f(d')f(a/d)f(b/d')
= Σ f(d)f(a/d) Σ f(d')f(W)

d\atdφa d'\b,d'=£b

+ Σ f(d)f(a!d)f(b)+ Σ f(d')f(b/d')f(a)
d\a,d^a d'\b,d'^b

= ~f{a)fφ) .

This completes the proof.
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