Vol. 44, No. 2, 1973

Download this article
Download this article. For screen
For printing
Recent Issues
Vol. 332: 1  2
Vol. 331: 1  2
Vol. 330: 1  2
Vol. 329: 1  2
Vol. 328: 1  2
Vol. 327: 1  2
Vol. 326: 1  2
Vol. 325: 1  2
Online Archive
Volume:
Issue:
     
The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
Officers
 
Subscriptions
 
ISSN 1945-5844 (electronic)
ISSN 0030-8730 (print)
 
Special Issues
Author index
To appear
 
Other MSP journals
A two sided approximation theorem for 2-spheres

William Thomas Eaton

Vol. 44 (1973), No. 2, 461–485
Abstract

The side approximation theorem proved by R. H. Bing and later improved by F. M. Lister states that a sphere S topologically embedded in Euclidean three space can be 𝜖 approximated with polyhedral spheres g(S) and h(S) such that g(S −∪Gi) Int S,g(Gi) S Gi,h(S −∪Hi) ExtS, and h(Hi) S Hi where {Gi} and {Hi} are respectively finite collections of disjoint 𝜖-disks in S. In this article the theorem is strengthened by showing that the sets Gi and Hi may also be taken to be disjoint.

Mathematical Subject Classification
Primary: 55A35
Milestones
Received: 28 September 1971
Revised: 28 June 1972
Published: 1 February 1973
Authors
William Thomas Eaton