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P. F. Conrad has obtained some properties of archimedean
extensions (α-extensions) of lattice ordered groups (l-groups).
In particular, Conrad proved that every abelian ί-group has
an J^-closure (an abelian α-extension which has no proper
abelian α-extension). D. Khuon proved that every ί-group
has an α-closure (an α-extension which has no proper α-exten-
sion). Using a slightly different definition, Conrad and
Bleier defined an α*-extension of an ί-group and proved that
every abelian Z-group has an α*-closure and every archimedean
Z-group has a unique α*-closure. These results have been
extended to another class of Z-groups by Glass and Holland
(unpublished).

The purpose of this paper is to extend the Z-group results
to the class of directed interpolation groups. The obvious
definitions give rise to some negative results; the situation
for abelian ^-groups is πiore propitious and it is proved that
any such group has an J^-closure in this class. However,
taking less direct definitions of α*extensions and α*-extensions
gives J^-closures and J^"*-closures in restricted classes of
abelian directed interpolation groups.

It is assumed that the reader is familiar with [1], [2], [3], [4],
and [5]

1. Definitions and notation* Throughout this paper, additive
notation will be used for all groups, abelian or not. c will denote
strict containment and g will denote strict containment or equality.
On will denote the collection of all ordinals.

If A is a p.o. set and a, βeA, then a\\β will stand for a S β
and β g£ a.

If G is a group and X S G, <X> will denote the subgroup of G
generated by X If G and H are groups G 0 H will denote the car-
tesian sum of G and H. If G and H are p.o. groups, then G φ H,
the lexicographic sum of G over H, is the group G © H ordered by:
(g, h) > 0 if and only if g > 0 (in G) or g = 0 and h > 0 (in H). If
{Ga:azA} is a family of p.o. groups, then Π{Ga: a e A}{Σ{Ga: a e A})
will denote the cartesian product (sum) of the family of groups
{Ga: a e A} ordered by: g ^ 0 if ga ^ 0 (in Ga) for all a e A; Π*{Ga: aeA}
is the same group as above but ordered by: g > 0 if and only if ga> 0
(in Ga) for all aeA.
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If G is a p.o. group, G+ will denote the positive cone of G =
{g eG: g ^> 0} and G* will denote the strictly positive cone ofG =
{geG: g > 0}. R(Z) will denote the additive o-group of reals (integers)
but R+(Z+) will denote the strictly positive reals (integers).

Let G be a p.o. group. The partial order is said to be dense if
and only if for all g, heG, if g < h there exists f eG such that
g <f < h. The partial order satisfies the interpolation property if
whenever g, h, f,keG and g, h ^ / , k, there exists xeG such that
g, h ^x ^ / , k. A p.o. group satisfying the interpolation property is
called an interpolation group. A directed interpolation group G in which
/ V g (or / Λ g) exists only when / ^ g or g fg / is said to be an
antilattice. A directed group G such that for all f,g,h,keG whenever
9> h < f> k, there exists xeG such that g, h < x < / , k is called a
£ΐ#/z,£ JKesz group. Let P = {geG: g eG+ or # is pseudo-positive} and
let the cone of ^ be P. If G has no pseudo-identities, then <* is said
to be a compatible tight Riesz order for (G, ̂ ) .

Let A be a partially ordered set. For each aeA. Let Ra be a
partially ordered abelian group. Let K be the cartesian product of
{Ra: aeA}. The set of all k e K such that {a eA:kaΦ 0} satisfies the
ascending chain condition (in A) forms abelian group which is denoted
by V(A, Ra). For each v e V(A, Ra)f let M(v) = {a e A: va Φ 0 and
^ = 0 for all βeA such that β > a}. V(A, Ra) is a partially ordered
abelian group under the ordering: v > 0 if and only if va > 0 for all

2* A naive approach to α-extensions of directed interpolation
groups* Let H be a directed interpolation group and let G be a sub-
group of H. G is said to be an interpolation subgroup of H if and
only if for all xyyeG and z,teH,x,y^zyt implies there exists ge
G such that x,y^g^zft. Note that this condition is equivalent to:
x,yeG and z,teH and x,y^z,t imply there exists geG such that
x, y ^ g ^ z, t.

It should be observed that if H is an Z-group and G an inter-
polation subgroup of H, then G is an ϊ-subgroup of H. However,
let_-ff= V(A±Ra)_ and G =_ F(£, Λ,) where A = {ϊ,"2,~3} ordered by:
1, 2 > 3 and 1| |2, J5 = {1, 2} and Ra = R for all α e A. if is a directed
interpolation group and G is an Z-group under the induced order-
ing. However, G is not an interpolation subgroup of H as
(0, 0,1) ^ (1, 0, 0), (0,1, 0) but there is no geG such that
(0, 0,1) ^ g ^ (1, 0, 0), (0,1, 0).

hίy h2e H+ are said to be a-equivalent if and only if there exist
n19 n2 e Z+ such that K <; n2h2 and h2 ^ njfiγ. H is an a-extension of G
if and only if every he H+ is α-equivalent to some g eG+ and G is
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an interpolation subgroup of H. This coincides with the definition
given in [2] for ^-groups and is a natural extension to directed inter-
polation groups. Notice that if K is an α-extension of H and H is
an α-extension of G, then K is an α-extension of G. Using the method
of [2] and the results of [4] and [5] it is easy to see that H is an
α-extension of G if and only if there is α (1:1) map of the convex
d-subgroups of G onto those of H which preserves inclusion and maps
prime subgroups of G (polars of G) to prime subgroups of H (polars
of H).

G is a-closed if and only if G has no proper α-extension. In view
of [2] and [6], we cannot hope for there to be a unique α-closure of
a directed interpolation group but we can try to prove that any path
of proper α-extensions eventually terminates. The next two theo-
rems shatter this dream—the second gives a path of proper α-exten-
sions of a certain class of abelian directed interpolation groups which
cannot be closed up; the first, more dramatically, proves that no path
of α-extensions of R can ever be closed up.

THEOREM A. Any a-extension (in the class of directed interpolation
groups) of a dense antilattice is a dense antilattice. Consequently,
no dense antilattice other than {0} has an a-closure and no abelian dense
antilattice other than {0} has an a-closure in the class of abelian directed
interpolation groups.

Proof. It is easy to see that any α-extension of an antilattice is
an antilattice. Suppose G is a dense directed interpolation group and
that H is an α-extension of G. We prove that H is dense.

Assume that 0 < he H and that there is no ke H such that
0 < k < h. Since G is dense, h £ G. We first show that, under these
hypotheses, some multiple of h belongs to G. Let g be α-equivalent
to h and assume that m e Z+-is the least such that mg ^ h. Then
g, h ^ 0, h — (m — ϊ)g. Since H is an interpolation group, there exists
k e H such that g, h ^ k ^ 0, h — (m - l)g. Thus h ^ k ^ 0 and so
h = k by the hypothesis and the choice of m. Consequently, g ^ h.
Let neZ+ be least such that nh^ g and let peZ+ be greatest
such that g >̂ ph. Now p <^ n and, by hypothesis, p Φ n. Hence
0, g — (n — 1) <; g — gh, h and, as before, h^g— ph, a contradiction. Thus
nh = g for some neZ+ and g e G+. Choose g e G+ so that n is minimal.
Since G is dense, there exists g' eG such that 0 < g' < g = nh. Let
p G Z+ be least such that gf ^ ph. Then p ^ n and gf — (p — l)h, 0 ̂  g\ h.
Hence there exists ke H such that g' — (p — l)h, 0 ^ k ^ g', h.
By hypothesis, k = h and so h ^ g'. Let q e Z+ be greatest such that
qh <̂  g'. Thus q ^ p. If q < p, then q' — (p — ϊ)h, 0 ^ g' — qh, h
and, as before, h ^ g' — qh. It follows that (q 4- T)h ̂  g', a contradic-
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tion. Consequently, q = p and gf = ph. By the choice of n, p = n.
Hence gr = ph = nh = g, a contradiction.

Finally suppose K is an α-cloure of a dense antilattice G Φ {0}.
Then K is a dense antilattice. Let L be any abelian trivially ordered
group. It is immediate that K 0 L is a dense antilattice which is a
proper α-extension of if, a contradiction.

COROLLARY A.I. ]? has no a-closure in either the class of directed
interpolation groups or the class of abelian directed interpolation
groups.

THEOREM B. Suppose A is a p.o. set and for each aeA,RaΦ
{0} is a subgroup of either R or the trivially ordered additive group
of reals. If V{A, Ra) is a directed interpolation group, then there
exist {Gβ: β e On} such that G$ = V{A, Ra) and if λ, μ eOn and λ < μ,
then Gμ is a proper a-extension of Gλ in the class of abelian directed
interpolation groups.

Proof. Let B be a maximal totally ordered subset of A. If a0

is a minimal element of B and Rao = Z, let Sa = Ra if a Φ a0 and
Sao = R. Then W = V(A, Sa) is a directed interpolation group by
Teller's conditions (see [8]) and is an α-extension of 7 = V(A9 Ra)
so we may assume that if B has a minimal element a0, Rao is a dense
o-group or a subgroup of the trivially ordered additive group of reals.
Let Γ — A U {7} where Ί $ A. Γ is a p.o. set under the ordering:
7i < 72 if and only if 7i < 72 in A or 7i = 7 and 72 e J5. Let Rδ = Ra

if δ e A and J?r be the trivially ordered additive group of reals. Then
U = Fί/7, i?5) is a directed interpolation group (by Teller's conditions)
and an α-extension of V. Continuing in this fashion, the theorem is
proved.

Even removing pseudo-identities does not help since R EB * R is an
α-extension of {(a, a): a e R} ~ R in the class of directed interpolation
groups without pseudo-identities.

3* α-extensions of abelian ^-groups* Using the results of
[3] and the methods of [2], the following generalizations of theorems
of [2] are obtained:

THEOREM C. 1. If G is an abelian ^-group, then G has an a-
closure in the class of abelian ^-groups. If H is any such a-closure
of G and A is a plenary subset of C^G), then there exists an "ϊ"-
isomorphism of H into V = V(A, Rδ).

THEOREM C. 2 If A is a p.o. set and Ra~R for all as A, then
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V(A, Ra) and F(A, Ra) are a-closed in the class of abelian ^-groups.
Moreover, F(A, Ra) is an a-closure of Σ(A, Ra) in this class.

A p.o. group G is said to be archimedean if and only if for all
f,geG,nf<^g for all neZ implies / = 0.

THEOREM D. If G is an archimedean abelian ^-group, then so
is any a-extension of G in the class of abelian ^-groups.

Proof. Suppose that an abelian ^-group H is an α-extension of
the archimedean abelian ^-group G and nh ^ k for all n e Z(h, ke H).
If h, k Ξ> 0, then there exist f,geG which are α-equivalent to h and
k respectively. It is easy to see that ng' <̂  / ' for all neZ where
/', g' are fixed multiples of /, g respectively. Hence g' — 0 and so
g — 0. Thus h = 0. Since H is directed, it may be assumed that
k ^ 0. If h ̂  0, the proof is the same as above so assume h\\0. There
exist hlf h2e H such that h = h1 — h2 and hlf h2 are pseudo-disjoint. There
exist gu g2eG such that gt is α-equivalent to h^i = 1, 2); say m&i ̂  hi
and njii ^ gj^i = 1, 2). Now ng1 ^ nnjfix = ^^(A + h2) <^ k + nn1m2g2

for all w € Z and there exists f eG α-equivalent to k; say, k ^ p/, peZ+.
Now %(#! — w1m2̂ 2) ^ p/ for all W G Z and hence gt = nxm2g2. It follows
that hx g m^! = m1n1m2g2 <̂  m^^n^ which is impossible since Ai and
A2 are pseudo-disjoint. Thus H is archimedean.

In [2], Conrad proved that every archimedean abelian ^-group
(and hence every integrally closed abelian ^-group) is an i-group.
Hence we have shown:

COROLLARY D. 1. Every a-extension of an archimedean l-group in
the class of abelian ^-groups is an archimedean l-group.

In [2], the result was proved in the class of all ϊ-groups not only
abelian Z-groups. Consequently, that result cannot be captured by the
above proof. In view of Example 6.4 of [2], α-closures of archimedean
abelian ^-groups are not unique.

K. M. van Meter has proved that every archimedean ^-group
is an archimedean Z-group and has proved that any α-extension of an
archimedean ^-group in the class of ^-groups is an archimedean
^-group (see [9]) and so has proved a stronger theorem then Theorem
D. The proof given here is more direct and was discovered independ-
ently and at the same time.

In view of Theorem D and Theorem 3.1 of [1]:

COROLLARY D. 2. Every archimedean {abelian) ^-group has a
unique a*-closure in the class of (abelian) ^-groups.
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4* Archimedean extensions of compatible tight Riesz groups*
It is easy to see that G is a tight Riesz group if and only if G is a
dense antilattice By Theorem A, any α-extension of a tight Riesz
group is a tight Riesz group. We will restrict our attention to the
class of directed interpolation groups without pseudo-identities and
confine ourselves to those tight Riesz groups compatible with an l-
group. Such partially ordered groups will be called acceptable tight
Riesz groups. If (G, :g) is an acceptable tight Riesz group, then
(G, ^) will be the Z-group whose positive cone is the positive cone of
(G, ^ ) together with its pseudo-positive elements. Let T— {g e G: g>0}.
Then there exists {Ma: aeA} a collection of prime Z-subgroups
of (G, ̂ ) such that Γ = G+\ U {Ma: a e A} (see Theorem 2.6 of [7]).
Recall that if (H, ^ ) is an Z-group which is an α-extension of the
Z-group (G, ̂ ) , then there is a (1:1) map φ of the prime Z-subgroups
of (G, ̂ ) onto the prime Z-subgroups of (H, ^ ) which preserves con-
tainment. Let G be an abelian group and X £ G. Let G be the
divisible closure of G and X= {yeGinyeX for some n e Z+). If (G, ^ )
is an Z-group, then (G, ̂ ) is an Z-group where heG+ if and only if
nh 6 G+ for some neZ+ (i.e., G = G+). Then T= G+\\J{Ma: a e A) is the
strict positive cone of a compatible tight Riesz group (G, ^ ) . Moreover,
(G, ^0 is an α-extension of (G, ̂ ) and there is a (1:1) map of the
prime subgroups of (G, ̂ ) onto those of (G, ̂ ) which preserves
containment. Using these facts, we define what is meant by an J^-
extension of an abelian acceptable tight Riesz group. In view of the
above remarks, we need only concern ourselves with divisible abelian
acceptable tight Riesz groups. If (K, ^ ) is an abelian acceptable
tight Riesz group and {K, ^) the corresponding Z-group, let K+ =
{k e K: k ^ 0} and Tκ = {keK:k> 0}.

Let (G, ίg) and (H, <£) be divisible abelian acceptable tight Riesz
groups. (H, 50 is an s*f-extension of (G, <£) if and only if {H, ^) is
an j^-extension of (G, ̂ ) and if TG = G+\ (J {Λfβ: α e i } where each
ikία is a prime Z-subgroup of (G, ̂ ) , then TΉ = H+\ \J {Na: aeA} where
Na is the prime Z-subgroup of (H, ^ ) corresponding to Ma. It follows
at once from the facts concerning j^-extensions of Z-groups that:

THEOREM E. Every abelian acceptable tight Riesz group has an
^f-closure {in the class of abelian acceptable tight Riesz groups) which
is not necessarily unique. Moreover, any J^f-extension of an archi-
medean abelian acceptable tight Riesz group is archimedean.

The last fact follows because (G, <0 is archimedean if and only
if (G, ̂ ) is. The same is not true for integrally closed since if (G, ^)
is R EB* R, then (G, ̂ ) = R ES R is integrally closed whereas (G, <0
is not. It should be observed that if (H, ^ ) is an j^-extension of
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(G, <g) where (H, <0 and (G, <£) are abelian divisible acceptable tight
Riesz groups, then there is a (1:1) map of the convex d-subgroups
of (G, ^0 onto the convex d-subgroups of (H, ^ ) which preserves
containment and for every h ^ 0, there exists a g e G such that g ^
0 and g ^ nh and h ^ mg for some m, ne Z+.

An abelian acceptable tight Riesz group (G, <£) will be called a
good tight Riesz group if and only if TG = G+\ \J {Ma: aeA} where
each Ma is a closed prime subgroup of ((?, ΞQ. As before, we need
only consider divisible good tight Riesz groups.

Let (H, ^ ) and (G, <£) be divisible good tight Riesz groups. (H, ^ )
is an α*-extension of (G, rg) if and only if (H, ^ ) is an α*-extension
of (G, ^ ) and if TG = G+\\J {Ma: a e A}, then TH = H*\\J {Na: aeA}
where Na is the closed prime ϊ-subgroup of (H, ^ ) corresponding to
the closed prime ϊ-subgroup Ma of ((?, ̂ ) .

THEOREM P. 1. Every good tight Riesz group has an a*-closure
(in the class of good tight Riesz groups).

2. Every Ssf-extension (in the class of divisible abelian acceptable
tight Riesz groups) of a good tight Riesz group ((?, ^ ) is a good tight
Riesz group which is an a*-extension of (G, ίg).

3 Every archimedean good tight Riesz group has a unique α*-
closure (in the class of good tight Riesz groups).
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