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MoRISUKE HasumMmI

In his recent work, K. Yabuta tries to extend the classical
results of deLeeuw and Rudin on extreme points and extremum
problems in the Hardy class H! on the unit disc to the n-
dimensional case. In this paper, it is shown that simple induc-
tion arguments provide some extension of the results as well
as simplification of the arguments in Yabuta’s work.

Let U be the open unit disc and 7T the unit circumference in the
complex plane. Let U” and T" be the mn-dimensional open unit
polydise and the n-dimensional torus, respectively, i.e., the subsets
of the n-dimensional complex Euclidean space C* which are cartesian
products of n copies of U and T, respectively. We shall denote by
H'(U™) the class of all holomorphic functions f in U™ for which

1£1L = sup{| 1w (dm,@): 0 = v < 1} < 4o,

where m, is the normalized Lebesgue measure on the torus 7. It
is well known (cf. [5]) that each f in H'(U") has nontangential
boundary values on 7T+, which determine a well-defined element f* of
the space L'(m,) on T" with respect to the measure m, and that the
mapping f — f* is an isometry of H(U™) onto a subspace of L'(m,).
For simplicity of notations, we use f instead of f* and denote by
the same symbol H'(U™) the corresponding subspace of L'(m,).

In the one-dimensional case, deLeeuw and Rudin [1] showed that
feHY(U) is an extreme point of the unit ball of A'(U) if and only
if Jflli =1 and f is outer, i.e.,

log |(0)] = | log | f(w)| dmiw) > — <o .

For higher dimensions, Rudin [5] called a function fe H'(U™) outer
if

log |£(0)| = | _ log | f(w)| dm(w) > — o .

A simple modification of deLeeuw-Rudin’s arguments shows that every
outer function of norm one in H'(U") is an extreme point of the unit
ball of H'(U™. But the converse is false for » = 2, as was shown
recently by Yabuta [6]. He proved that z(z, + 2,)/4 is not an outer
function but an extreme point of the unit ball of H(U™ for n = 2.
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A proof to this fact was given in our previous paper [2]. On the
other hand, extremum problems for Hardy classes on the unit disc
have a long history (cf. [4] and [1]). Yabuta [7; 8; 9; 10] studies,
among others, unicity of extremum problems in the #%-dimensional
Hardy classes and tries to extend results due to deLeeuw-Rudin [1]
and others. We should note that the unicity problem has not yet
attained to its final solution even in the one-dimensional case.

In this paper, we shall first give a sufficient condition for extreme
points of the unit ball of H'(U™"), which covers the case of outer funec-
tions as well as Yabuta’s example. Our method is to simply extend
the one-dimensional result due to deLeeuw and Rudin by use of the
mathematical induction. The key theorem in our approach is Theorem
2.1, which is an abstract formulation of our induction steps. In this
way we shall arrive at a class of functions which we call separately
outer functions. Separately outer functions defined in §2 may be one
of natural generalizations of outer functions in one dimension. In §3
we discuss the unicity problem by the same method, where the
induetion procedure is furnished by Theorem 3.1. In our approach,
the main problem is to find better one-dimensional results, from
which the corresponding higher dimensional results follow almost
automatically. In this way we can reproduce most n~-dimensional results
obtained so far and even extend them, as we shall see below.

A question naturally arises as to whether there exist results
which cannot be obtained by mere combination of the one-dimensional
results and the induction arguments. For example, we may ask if
the separate outerness can characterize the extreme points of the
unit ball of HY(U"), n = 2. The answer is negative, as Professor
Rudin has suggested to us recently. In fact, he has given a one-
parameter family of extreme points of the unit ball of H'(U? which
are not separately outer. His example will be described in §4. We
thank Professor Rudin for allowing us to include this example in the
present paper.

1. Quasi-analytic subspaces. Let (X, ) be "a finite measure
space, where X is a set and g is a completely additive positive
measure defined on a given Borel field in X, and let L'(%) be the
complex L'-space on X with respect to ¢. We denote by ||-]||. or
[| ], the usual Banach space norm of L'(¢). Let E be a linear sub-
space of L'(p). FE is said to be quasi-analytic with respect to (X, ),
if a function f in E vanishes g-almost everywhere on X whenever it
vanishes on a set of positive g-measure. It is well known that the
space H'(U") is quasi-analytic with respect to (7", m,). Another
example of quasi-analytic spaces is given by the space H' over the
Bohr compactification of the real line. For this space, quasi-analyt-
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icity was shown by Helson, Lowdenslager and Malliavin (cf. [3]).
First we prove the following

LemmA 1.1. Let (X, ) and (Y, v) be two finite measure spaces,
and let E, F and G be subspaces of L'(y), L'(v) and L'(¢t X v), respec-
tively. Suppose that
(1.1) FE and F are quasi-analytic with respect to (X, ) and (Y, V),
respectively; and

(1.2) For each he @G, h(z, -) belongs to F for almost every xc X and
h(-,y) belongs to E for almost every yc Y.

Then, G is quasi-analytic with respect to (X X Y, pt X v).

Proof. We may suppose without loss of generality that both px
and p are probability measures, i.e., #(X) = v(Y) =1. Given LegG,
let X, (resp. Y,) be the set of points x€ X (resp. ye Y) for which
h(z, -) (resp. h(-, y)) belongs to F (resp. E). Then, (1.2) implies that
(X)) =v(Y,) =1 for each heG. Now suppose that he G vanishes
on a set D of positive (¢ X y)-measure. Then there exists a measur-
able subset D, of X, with p(D,) > 0 such that, for each e D,, the
set {y e Y: (x, ¥) € D} is a measurable subset of Y of positive v-measure.
Since F'is quasi-analytic with respect to (Y, v), we see that Az, .) = 0
a.e.on Y for each x € D,. We put Z(D,, h)={(x, y) € D, X Y: h(z, y)=0}.
Then, Z(D,, h) is measurable and (¢ x vWZ(D,, h)) = p#(D,). Thus there
exists a subset D, of Y, with v(D,) =1 such that, for each ye D,
the intersection Z(D,, k) N (X x {y}) is a measurable set of measure
equal to u(D, > 0. The quasi-analyticity for E now implies that
h(-,y) =0 a.e. on X for each ye D, It follows easily that » =0
a.e. on X x Y, as was to be proved.

By use of the mathematical induction, we can prove the following

COROLLARY 1.2. Let E; (1 <1 £ n) be a subspace of L'(1;) which
18 quasi-analytic with respect to (X, ;) and let J, be a subspace of
L'y, x <<« x p,) which satisfies the following:
(1.3) For each hed, and for each i with 1 <1 < n, the function
%, — h(x;, Yu) belongs to E; for almost every y,e X, X +++ X
X, X «+o X X,, where the circumflex indicates factors which are
omitted.
Then, J, is quasi-analytic with respect to (X, X «++ X X, fty X =+ 8,).

2. Extremal functions. We again consider a linear subspace E
of L'(¢t). A function f in E is called extremal in E if f =0 or if
f# 0 and f/||fll. is an extreme point of the unit ball of E.

THEOREM 2.1. Let E, F and G be as in Lemma 1.1. Let f be
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a function in G such that, for almost every ye Y, f(-, y) is extremal
in E, and, for almost every x e X;, f(x, +) is extremal in F. Then,
f is extremal in G.

Proof. We may assume as before that 2 and v are probability
measures. Clearly we have only to consider the case || f]|l.x, = 1.
Let X/ (resp. Y}) be the set of ze X, (resp. y< Y,) for which f(z, -)
(resp. f(-, ¥)) is extremal in F (resp. E). Then our assumption imply
that #(X}) = »(Y}) = 1. Now we take any %€ G such that

(1) Hf+hlll‘><v:”f—hH/lXu:”f”FXu:1°

We claim h = 0, which will show the theorem.
We start from the following obvious inequality

|f+hl+|f—h —2[f|2Z0 on XxY.

Integrating this over X x Y, we get

LJV+hH%f—M—MfMWu
- ”f + k”yx,, + ”‘f - h'HFXV - 2”f”/t><u =0.

By Fubini’s theorem, there exists a subset Y; of Y/ N Y, with v(Y,))=1
such that, for each ye Y,

(2) SX{If(é, Y) + & |+ 1FE v — hE 9| — 2[fE, v)idpu@ =0.

For the sake of simplicity, we use the notations A4,, B, and C, for
the quantities [If(-, ¥) + h(-, ¥) llw 1/(-, ¥) — AC, W) |la and ([ F(-, 9) [l
respectively. So we have 4, + B, — 2C, = 0 for each y ¢ Y,. Fubini’s
theorem also shows that the functions ¥y — A,, y — B, and y — C, are
measurable on Y.

We fix ye€ Y, for a moment. If C, = 0, then A(-,%) =0 = f(-, ¥)
ae.on X. IfC,s 0and A, = 0 (resp. B, = 0), then h(-,y) = —f(-, %)
a.e. on X (resp. h(+, ¥)=S(-, y) a.e. on X). Suppose finally that 4,0,
B, 0 and C, =+ 0. In this case, we put

5= SCo0) + 1, 1)
4,

and

fo— f('; y) + h('; y)
Y= By .

Then, both ¢ and + belong to the unit ball of E, and (4,/2C)¢ +
(B,/2C )y = f(+, y)/C,. Since f(-,¥)/C, is an extreme point of the
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unit ball of E, we have ¢ = 4 = f(-, »)/C, a.e. on X. It follows that
h(-,y) = (4, — C)/C) X f(~,y) a.e. on X. Summing up, we have
shown that there exists a bounded measurable function K(y) on Y
such that, for each ye€ Y:, A(, %) = K(w)f(-,y) a.e. on X and more-
over K(y) = 0if C, = 0. Similarly, there exist a subset X, of X; N X,
with (X)) =1 and a bounded measurable function K'(x) on X having
the following properties: for each x ¢ X,

(3) Sy{lf(x, n) + ki, D] + |f@, 1) — ki, )| — 2| f@, 7)}dv@) =0,

h(, ) = K'(x)f(z, -) a.e. on Y, and K'(x) = 0 if || f(z, )|, = O.

Now we define k(x, y) by putting k(x,y) = 0 if f(z,y) = 0 and
=h(x, ¥)/f(x, y) if f(z,y) = 0. Then it follows from (2) and (3) that
—1=Zk(-,9) £1 a.e. on X for each ye Y, and —1 < k(z, -) <1 a.e.
on Y for each v ¢ X,. Clearly k(x, y) is measurable. Let y¢ Y,. Then,
the quasi-analyticity of E implies that || f(-, ¥){l. = 0if f(-, y) vanishes
on a set of positive p-measure. So we have, for each fixed y€ Y,
k(-,y) = K(y) a.e. on X and, for each fixed ze X, k(z, -) = K'(z) a.e.
on Y. Weput ki(z,y) = K(y) forallze X and all ye Y, and k.(z, ) =
K'(x) for all xe X, and all ye Y. Then, both %k, and %k, are bounded
and measurable on X x Y. We have

I te=kldeds = | s 1k, 1) - ki, ) 1dew
= [, )] ke v - Kw)ldee =0,

so that £t =k, a.e. on X x Y. Similarly, we have k =k, a.e. on
X x Y. Consequently, k, =k, a.e. on X X Y. From this follows
immediately that k, %k, and also %k ‘are equal to a constant ¢ with
—1=c¢ <1 almost everywhere on X x Y. Thus, we have h =cf
a.e. on X X Y and, in view of (1), ¢ = 0. Hence h = 0, as was to be
proved.

Let us consider a finite number of finite measure spaces (X;, (),
1 <4< mn. Then we have the following

COROLLARY 2.2. Let E;, (1 <1 < n) be a subspace of L'(y;) which
18 quast-analytic with respect to (X, p,), and let J, be a subspace of
Li(gt, X+« X p,) which satisfies the condition (1.8). Let f be a func-
tion in J, which satisfies the following conditions for all © with 1 <
1< e
(2.1); For almost every gy € X, X ++++ X X; X +++ X X,, the function

x; — f(@;, y.)) belongs to E; and is extremal in E..

Then f is extremal in J,.
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Proof. We use induction to prove the assertion. We may assume
as before that all p; are probability measures. We know that the
assertion is true for n = 2. We now suppose that it is true for n =
k(= 2).

Let g be a generic element in J,,, and put

Dol = W e Xy X o+ X Xy X vo0 X Xpii2 g+, Yo) € B}
for 1 <47 < k. The hypothesis (1.3) for » = k£ + 1 then says that
(X ove X i X ooe X ) (Dilg]) =1 for1<i<k.

We denote by yx;[g] the characteristic function of the set D,[g], and
by D, ...[g] the set of points z,., € X;., such that

g(s, Tpr) € LM, X =o0 X ),

1:[9](-, 2,1) is measurable, and
oo, s +-v i ee x p(w) =1

Putting Dlg] = N{D;,nl[g]: 1 <7 <k}, we have p,,,(D[g]) = 1.

Let J’ be the (not necessarily closed) subspace of L'(f, X +++ x )
which is generated by all g(-, %,.,) with geJ,,, and z,.,€ D[g]. We
claim that J' satisfies the condition (1.3) for # = k. To see this, take
any function h from J’. Then, there exist a finite number of ele-
ments g, +++, g, in J,,, such that » = 3}i_, g;(-, z{,) where z{?}, € D[g;].
We take any ¢ with 1 <7 < k. Since 2, is in the set D, ,..[g;] for
each 7, we have

1o, syde, x +ox fx oe x ) = 1.

So, putting W,; ={we X, X «++ X sz X eee X Xt palgil(w, ) =1},
we see that (u X «+o X [ X «oo X ) (W) =1 and g,(-, w, zfi),
belongs to E; for each we W,;. We set W, = N{W,,;:1 =7 < s}
Then (g, X <+« X f; X +oo X p)(W) =1 and

B, w) = 3 gi(e, w, 2l € B

for each we W,. As ¢ is arbitrary, this proves that J’ satisfies (1.3)
for n = k. ‘
Now let f be any function in J,,, satisfying the conditions (2.1),
with 1 <7<k + 1. Let Di[f] 1 =<4 £ k) be the set of points y; €
X, X »+o X X; X +++ X X,., for which f(-, y.) belongs to E; and is
extremal in E;. Then, D[f] S D,[f] and (g, X <+« X Iy X +++ X 1) X
(Di[f]) = 1. We denote by yxi[f] the characteristic function of D;[f],
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and by D [f] the set of points .., € D;,;..[f] such that xi[f](-, €).1)
is measurable and

107160, duddlan x +ev i eee X @) = 1.

Set D'[f1 = N{Dipulf1:1= 7 £ k}. Then g, (D'[f]) = 1.

Let #,.,eD'[f] and take any ¢ with 1 <7< %k. Then, z,.,¢
D...lf]- Thus, putting Vi@, = {weX, X «+« X X; X «++ X X
HLF1(w, B) = 1), we see that (s X ++ X f X +++ X (Vi) = 1
and, for each we Vy®,.), f(-, w, x,,,) is extremal in E,. As x,.,€
D[f], we see that f(-, x,.,)€J’ and f(-, x,,,) satisfies the conditions
(2.1); for 1 <7<k with n = k. By the induction hypothesis, the
assertion is true for J’ and therefore f(-, x,.,) is extremal in J’. This
is true for almost every z,,,€ X,.,, because p,. . (D'[f]) =1. On the
other hand, Corollary 1.2 shows that the space J’ is quasi-analytic with
respect to (X, X «++ X X, ty X «++ X ;). Thus, we can apply Theorem
2.1 to the case E=J',F =FE,,, G=J,, and conclude that f is
extremal in J,,,. This completes the proof.

For the space H'(U") we get the following

COROLLARY 2.3. Let f be a function in H (U™ and let k, k' be
natural numbers with k + k' = n. Suppose that, for almost every
w, € Tk, f(w,, +) is extremal in H'(U¥) and, for almost every w,e T",
S, w,) is extremal in HY(UY. Then, f is extremal in H'(U™).

This is just a restatement of Theorem 2.1 for the space H'(U™),
because the hypotheses (1.1) and (1.2) are clearly satisfied with X =
T, Y=T%" t=my v=m,, E=H (U, F=H(U*) and G=H'(U".

In order to state the next corollary, we use the following nota-
tions: U; (resp. T;) (1 £1 =< n) denote n copies of U (resp. T), so
that U= U, X «++« x U, (resp. T" =T, X «+++« X T,).

COROLLARY 2.4. Suppose that a function f in H'(U™) satisfies
the following conditions for all © with 1 £ 1 < n:
(2.2); For almost every w,ye€ T, X «++ X T, X «oe X T,, the Junction
2, — f(z;, w) belongs to HY(U;) and is an outer function.
Then, f is extremal in H'(U™).

This follows readily from Corollary 2.2, since deLeeuw and Rudin
[1] showed that the outer functions of norm one are just the extreme
points of the unit ball of H'(U). Using this corollary, we can con-
struct some extremal functions in H'(U") (rn = 2) which are not outer
functions:

(1) Yabuta’s function 2z, + z,. For each fixed real 4, ¢ + z is
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easily seen to be an outer function. So the above corollary implies
that z, + 2, is extremal in H*(U™) for » = 2.

(ii) More generally, we see that a function of the form
Sz, »++, 2) + 9(Zpyy, »*+, 2,) is extremal in H'(U") if f and g are inner
funetions in HY(U" and H'(U"*), respectively. We may have more
complicated examples, e.g., (2, + #7,)% etec.

Here we add a simple remark concerning functions that are des-
cribed in Corollary 2.4. We say that a function f in H' (U™ is
separately outer if it satisfies the conditions (2.2); for all 7 with 1 <
1 < n. Thus we have shown that every separately outer function is
extremal in H'(U™). It may be natural to have the following

ProPOSITION 2.5. FEwvery outer function in H'(U™) s separately
outer.

Proof. Suppose that fe H'(U™ is not separately outer. Then
it does not satisfy (2.2); for some 4, say ¢ =1. So there exists a
measurable subset 4 of T, x --- x T, of positive measure such that

log |0, )| < | log | f(w,, &) | dm((uw)
for every £c€ A. Integrating both sides over T, x .- X T,, we have

log |A0)] < | log |/w) | dm,(w) .

Hence, f is not outer, as was to be proved.

3. Unicity of extremum problems. Let (X, ¢) be a finite
measure space and E a linear subspace of L'(#). Given a bounded
linear functional @ on E, we denote by S? the set of functions fe E
such that || f|l,=1 and &(f) =||®||. By Hahn-Banach’s theorem, there
exists a function ¢ € L=(#) such that ||?|| = ||4]|. and

O(f) = Squsdy for all feE.

Then f € S? implies

(4) f@)o(x) =0 a.e. on X,
and
(5) [p@)| = |||l for every x€S(f),

where S(f) denotes the support of f and is determined up to a set
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of measure zero. Conversely, if fe€ E with || f|l, =1 satisfies both
(4) and (5), then f belongs to S°.

If the space E is quasi-analytic with respect to (X, p), then S(f) =
X for every nonzero element f in E, so that the set S° is determined
by any of its elements. In fact, let feS° Then, g E belongs to
S° if and only if arg g(x) = arg f(z) a.e. on X and ||g||, = 1. In this
case, we may write S’ instead of S° whenever f is in S°. We say
that an element fe E is said to have the wunicity property in E if
f # 0 and S’ = {g} with g = f/|| fl]..

THEOREM 3.1. Let E, F and G be as in Lemma 1.1, and let
f€G be a nonzero function. Suppose that for almost every xe X,
flx, <) has the umnicity property in F and, for almost every yc Yy,

f(+, ¥) has the unicity property in E. Then, f has the unicity pro-
perty in G.

Proof. We may suppose without loss of generality that f(z, -)
(resp. f(-, y)) has the unicity property for every x e X, (resp. y€ Y,).
Let g e G be any element in S’. Since G is quasi-analytic by Lemma
1.1, we see that argg = arg f a.e. on X x Y. 8o, for almost every
rxe X,N X,, we have g(x, -) # 0 a.e. on Y and

(6) arg g(x, -) = arg f(x, -) a.e.on Y.

We may assume that (6) is true for all x e X, N X,. Since f(z, -) has
the unicity property in G, we have for 2 ¢ X, N X,

f@, ) _ 9@ )
f@, ) o, )l

Putting K(x) = ||g(x, <) ||/|| f(x, +)||, we get a measurable function K(x)
which is finite almost everywhere on X and g¢g(x, -) = K()f(x, ) a.e.
on Y for every x e X;N X,. Similarly, we have a measurable func-
tion K'(y) on Y which is finite almost everywhere and g(-,y) =
K'y5(-, y) a.e. on X for every ye Y,N Y,.

Since f # 0 a.e.on X x Y, we can define k(z, v) = g(x, v)/f(x, ¥),
which is measurable and finite a.e. on X x Y. It follows that, for
every € X, N X,, k(x, +) = K(x) a.e. on Y and for every ye Y,NY,,
k(-,y) = K(y) a.e. on X. Thus, k is equal to a constant ¢ almost
everywhere on X x Y; so g =c¢f a.e. on X x Y. Since both f and
g are of norm one, we have ¢ = 1. Hence, S" = {f}, as was to be
proved.

a.e.on Y.

COROLLARY 3.2. Let E; 1 =i n) and J, be as in Corollary

2.2. Let f be a function in J, which satisfies the following conditions
3.1); for all 1 with 1 <1 < n:
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(8.1); For almost every y, € X, X +++ X )AQ X oo X X,, the function
2, — [, yu) on X; belongs to E; and has the unicity property
Then f has the unicity property in J,.

The proof is similar to that of Corollary 2.2 and so omitted.
Applying these facts to the spaces H (U™ (n = 2), we can formulate
results similar to Corollaries 2.3 and 2.4. Here we state only the
latter one.

COROLLARY 3.3. Suppose that a nonzero function f in H'(U™)

satisfies the following conditions for all + with 1 £ 1 < n:

(8.2); For almost every wye T, X -+ X Ti X «++ X T,, the function
2, — f(z;, wy) (@€ U;) belongs to HY(U;) and has the unicity
property in H'(U,).

Then f has the unicity property in H'(U™).

We thus obtain results for H(U") by combining Corollary 3.3
with one-dimensional results. For example, we look at the following.

THEOREM 3.4 (Yabuta [7]). Let fe H(U". Suppose that f is
outer and 1/f € L*(m,). Then f has the unicity property in H'(U").

We can extend this by combining its one-dimensional form with
Corollary 3.3. Namely we have

COROLLARY 3.5. Let fe H(U"™. Suppose that f 1is separately
outer and satisfies the following conditions for all © with 1 £ 1 < n:
(3.3); For almost every wy e T, X «+« X T, x «++ X T,, the function

w; — 1/f(w;, w,) (w; € T;) is integrable on T;.
Then f has the unicity property in H'(U™).

Yabuta [9] also showed the following

THEOREM 3.6 (Yabuta). Let fe H (U™ and suppose that [ is
not identically zero and Re f = 0 a.e. on T". Then f has the unicity
property in H'(U™).

Yabuta proved this by using certain properties of n-harmonic
funetions and others. But, in view of Corollary 3.3, it is enough for
us to prove the case n = 1. Thus, let fe H(U) be not identically
zero and satisfy Re f = 0 a.e. on T. Take any ge H'(U) such that
arg g = arg f a.e. on T. If Re f vanishes at some point in U, then
the minimum principle for harmonic functions shows that it vanishes
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identically in U. It follows at once that f is a pure imaginary con-
stant b % 0. Therefore argg = arg b (=+£7/2) a.e. on T, so that g/b
is an H* function with real boundary values a. e. on 7. Hence g/b
is a constant, which is turned out to be positive. Next, suppose
that Re f > 0 in U. That argg = arg f a.e. on T implies Reg > 0
in U. Thus, by restricting the arguments of f and ¢ to [—7/2, +7/2],
we see that |arg (g/f)| < m in U and therefore that arg (g/f) is a
well-defined harmonic function in U. Since arg (g/f) is bounded and
equals zero a.e. on 7T, it vanishes identically on U. Thus log (g9/f)
is a real-valued holomorphic function on U, so that it is a constant.
Hece ¢g/f is a positive constant, as was to be proved.
As before, we can improve Theorem 3.6 in the following way.

COROLLARY 3.7. Let fe H(U™ and suppose that it is not identi-
cally zero and satisfies the following conditions for all 1 with1 <1< n:
(8.4); For almost every w,e T, X «++ X Ti X «o» X T,, there exisis

a real number 6, depending on wy, and f, such that

g — g < arg f(w;, we) < 60 + g (mod. 2r)

for almost all w;e T;.
Then f has the unicity property in HY(U™).

One of very special consequences of this is a theorem of Yabuta [8]
which states that the function 2, + 2, has the unicity property. More
generally, we have the following:

COROLLARY 3.8. FEwery function of the form

f(zh ) zk) + g(zk+1y M} zn)

has the unicity property if f and g are inner functions in H'(UF®) and
HY(U™*), respectively.

We may have more complicated sufficient conditions. Anyway, as
we already said in the introduction, the main problem in our approach
is to find better one-dimensional results. As far as we are aware,
the characterization of functions in the space H' having the unicity
property is an open problem even in the one-dimensional case. Here
we add a few more remarks.

PROPOSITION 3.9. Let ge H'(U) have the unicity property and let
f be an outer fuction in H'(U) such that g/f € L=(m,). Then f has
the unicity property.
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The proof is simple. Yabuta [8] proved this in the case g(z) =
TI)-.(a; — 2) where {a,;} denote any N distinct points on the unit cir-
cumference T. By using Corollary 3.3, the proposition can be extended
to H (U™, which we do not state explicitly. In connection with this,
we ask the following

Problem. Let f and g be outer functions in HY(U) such that
fg is also in H'(U). Under what conditions on f and g, does fg
have the unicity property?

4. Rudin’s example. Let a be a complex number with |a| >
1 and put
fla, 2) =z, — 2, .

We claim that the function f is not separately outer but extremal
in H(U%.

If |w,| =1, then |w,/a| <1 and f(w,/a, w,) = 0. Thus f(-, w,) is
not outer and so f is not separately outer. To prove that f is
extremal in H'(U?), it is enough to show that the constants are the
only real functions & on T* such that fhe H'(U?.

The Fourier coefficients of g = fh are
(7) G(m, n) = ah(m — 1, 0) — h(m,n — 1) .

Since g ¢ HY(U?, this implies that
him + 1,n — 1) = ah(m, n) if n<0.
By induction, we have

hm + k,n — k) = a*h(m, n) for k=1,2+-;n<0.

Letting %k — o, we know h(m + k, n — k) — 0. Hence h(m, n) = 0 if
n < 0. Since h is real, it follows that

(8) h(m, n) =0 if n=0.
Now (7) and (8) imply that
h(m, 0) = ah(m — 1,1) = 0 if m<o0.

Since h is real, we have h(m, 0) =0 if m = 0. Thus h(0, 0) is the
only Fourier coefficient of h that can be different from 0, so that &
is constant almost everywhere. This completes the proof.

The above example, together with the proof, has been suggested
to us by Rudin. We should note that the same method was used once
by us in order to prove the extremity of the function 2, + 2z, (cf. [2]).
Probably, Rudin’s example will give a new insight into our problem
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and we will discuss it on another oceasion.
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