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In this paper, using the Bergman kernel function KD(zf

z)9 we give necessary and sufficient conditions that a pseudo-
con formal mapping f(z) be starlike or convex in some bounded
schlicht domain D for which the kernel function KD(z, z) becomes
infinitely large when the point ze D approaches the boundary
of D in any way. We also consider starlike and convex map-
pings from the polydisk or unit hypersphere into O.

Generalizing the results obtained by M S. Robertson [10] using
the principle of subordination, T. J. Suffridge has established necessary
and sufficient conditions that a function be univalent and map the
polydisk or

onto a starlike or convex domain [11].
Similar problems have been considered by T. Matsuno [8] ^ υ ^

hypershere. In this paper we deal with the same problems in terms
of the Bergman kernel function KD(z, z), and show the results are
equivalent to theorems of Suffridge in case of polydisk or hyper-
sphere.

The author wishes to thank Professor S Ozaki for helpful dis-
cussions on the preparation of the paper.

1* Preliminaries. We consider bounded schlicht domains D in
Cn for which the kernel function becomes infinite everywhere on the
boundary 3D, i.e., it is the union of an increasing sequence of strictly
pseudo-convex domains

(1.1) A = [z: φt{z) = KD(z, z)-t<O,zeD]

for some number t > 0, where z — (zu •••, zn)'. (See [3]). F i r s t we
have

LEMMA 1.1. If D is a bounded domain, the Bergman kernel func-
tion KD(z, z) is strictly plurisubharmonic and

(1.2) 1/ωφ) ^ KD(z, z) ^ l/π"(l(z)Yn ,

where l(z) = min r e 9 2 ) ρ(τ, z), ρ(τ, z) = max,- {| τ5 — zά |, j = 1, , n) and
co(D) signifies the euclidean volume of D.
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Proof. The minimum value of the integral ||/||ί> = ί \f(ζ)\*dvζ

for functions f{Qe£f\D) satisfying the condition df(z)/dζ u = 1,
where u = (uί9 •••, uny is an arbitrary nonzero column vector, is

(1.3) :d
2KD(z,z)
3ζ*3ζ u =

w dζ*

u D(z, z)
u

(See [1], [2].)

3ζ*3ζ

Here we define partial derivatives of a function g(ζ, τ) as

= (3/9?!, , dβτn)' x (3/3ζi, , d/dζn) x g(ζ, τ)
(1.4)

X flr(C,

and if #(ζ) is a function of only ζ, we denote dg(ζ)/dζ = (d/dζlf ••-,
3/3ζn) x g(ζ), where the sign x designates the Kronecker product and
the sign * denotes the transposed conjugate matrix. (Cf. [7].)

On the other hand, if we put f(ζ) = u*(ζ - z)/\u\\ then

dζ
= u*u/\u\* = 1,

therefore

i/ ia&a.
(1.5)

\U\

Uω(D)

\u

where L = maxreθjD \τ — z\ and |u | = (Σi=i l%la)1/2

Thus

for all 2Gΰ, that is, KD{z,z) is strictly plurisubharmonic (see [3]).
Next it is well known that the minimum value of the integral ||/||ί>
under the condition f(z) — 1, zeD, becomes l/KD(z, z). Then, for the
function /(ζ) = 1, we have

(1.6) , z) = [ I KD(ζ, z)/KD(z, z) \2dvζ ^[ dvζ = ω(D) .
JD JD

Also, using the Cauchy integral formula, we obtain
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(1.7)
KD(z,

Jo Tl •••
, . . . r(2π)

where ζ, — z3 = r3e
iβi, 0 < r3- < l(z), (j = 1, •••,«). We get therefore

by the Schwarz integral inequality

V

(1.8)

dVr

jl/2

Then

(1.9) π^V ^ \\ \ψ^i
Z)

= (l/KD(z,

hence we have (1.2) from (1.6) and (1.9).

2. Convex mappings* We consider the above mentioned domains
D and Dt, and suppose that dKD(z, z)/dz ^ 0, z ^ 0, in D, and KD(0, 0) =
min2ei) KD(z, z) at only z = O For a holomorphic univalent function

w == f(z) of D, let

(2.1) ?),(z) = ψt{f~\%

and let J = f(D), Δt = /(Z>()
Then we have

, 0) ,

(2.2) Δt = [w: Φt(w) <0,weΔ]

corresponding to (1.1). On the boundary dDt: φt(z) = 0, the total
differential of φt{z) becomes

(2.3) dφt = ψ *^i = 2^\d-Pdz\ = 0 ,
dz* L dz J

where cί̂  — (dzu , cϋzj'. Consequently, since dφtjdz* = dKD{z, z)/dz*
is perpendicular to all tangential vectors ίfe of the boundary 9Z)t at
«, dφjdz* is a normal vector of dDt at z. And we can derive

9 J
(2.4)

hence dΦJdw* is also a normal vector of the boundary dΔt\ Φt(w) = 0
at w = /(z). (See [5], [6].)

We can expand (^(w + dw) into a Taylor series:
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Φt(w + dw) = Φt(w) + i ^ A d w \
Ldw J

+ 2 ^ Γ ^ W + dw*-^dw] + 0(| dw (2) ,
L dw dw dw J

where dw2 = (dwί9 ---,dwn)' x (dwl9 ---,dwn)'. (See [3], Chap. IX.)
Since

\**L&wΛ = 0
Ld

at w 6 dΔt9 it follows that

(2.6) Φt(w + dw) =
^dw + dw
dw2 dw*dw

If the point (w + dw) lie always the outside of Δt for all w e dΔt and
tangential vectors dw at w, i.e., Φ^w + dw) > 0, then J t is convex.
From (2.6), we must have the following condition in order to consist
always Φt(w + dw) > 0:

(2.7) ^[ξ^Ldw2 + dw*-¥2*-dw\ > 0 .
Low dw dw -I

Now we can calculate as follows by formulas of matrix derivatives
described in [7]:

d2Φt

dw 2 dw\dz\dzJ J dz\dz\dzJ A\dzJ J

(2.8) = d^/ίdwγ1 (dw\\~ι __ d^
dz2\\dzJ \dzJJ dz γ (

dzJJ dz\dz) dz2\\dz) \dz

Then, substituting (2.9) and (2.10) into (2.7), we obtain

(2.11) &\\*£L - ̂  (*Lr*» W + dz^dz] > o.
L I dz2 dz\dzJ dz2 ) dz*dz J

Thus we have the following Lemma.

LEMMA 2.1. For a fixed value t, a holomorphic univalent function
w = f(z) of D have convex image Δt of Dt defined by (1.1) if and only
if at every point z on the boundary dDt
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(2.12) ^KD{z,z)a + Γ
dz*dz 1 ~dz~

for all unit vectors a satisfying

dz

DEFINITION. We define the class £& of bounded schlicht
domains D for which the kernel function KD(z, z) becomes infinite
everywhere on the boundary 3D, KD(0, 0) = m i n ^ KD(z, z) only at
z = 0, dKD(z, z)/dz =̂= 0, z =̂= 0, in D, and there is the holomorphic
mapping g(z) of D into Z) satisfying g(0) = 0, for some one z{l) of two
arbitrary points z(1), z(2)(^= 0) in D g(z{1)) = z(2), and KD(z, z) ^ KD{g{z), gffi).

For example, let D be a minimal domain or representative domain
with center at the origin which is the image domain of E = {ζ: | ζ | =
(Σ?=i ICil2)1/2 < 1} under the biholomorphic mapping z = ?>(ζ) satisfying
0 = £>(0). Then det (dφ(ζ)/dζ) = const, when D is a minimal, domain
and dφ(ζ)/dζ = const, when D is a representative domain (see [4],
Theorem 3.1). Hence, for any holomorphic mapping g(z) of D into D
satisfyingj/(0) = 0, we have KD(z, z) ^ KD{g{z)y g{z)) because KE(ζ, ζ) ^
KE(Φ(ζ), Φ(ζ)) under the holomorphic mapping Φ(ζ) = ^ [ ^ ( ζ ) ) ] , Φ(0) = 0,
of E into .E. Also we have ϋΓ^O, 0) = min z e 2 ) KD(z, z) at only the origin.
Moreover, for arbitrary points z{i), z{2) eD, if \,φ~ι{z{2))\ ^ \φ~1{z{l))|, then

g{z) =

is a holomorphic mapping of Z) into D satisfying g(0) = 0 and
5:(2) where

0 0

\ 0 / \ 0 /

and Z7Ί, ί72 are unitary matrices. And we observe

dKD(z, z)/dz = dKB(ζ, ζ)/dζ-(dφ(ζ)/dζ)-1 ±* 0, z** 0 ,

because

dKs{ζ, ζ)/dζ = (n + l ) ζ % ( ζ ,

THEOREM 2.1. Let D he a hounded schlicht domain of the class ££f.
Suppose f:D~>Cn is holomorphic, /(0) = 0, and det (df/dz) =N= 0 for
all ze D. Then f is a univalent map of D onto a convex domain if
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and only if

(2.13) &\<*•**><*>*>a
L dz*dz a + { (y

dz*dz I dz2 dz \dz/ dz2

for all unit vectors a satisfying

dz

Proof. The Bergman kernel function KD(z, z) of this domain D
becomes infinite on 3D. Then we define Dt and Δt by (1.1) and (2.2)
respectively. If z/ = /(Z>) is schlicht and convex, then all Δt also
become convex, i.e., for any w{1), w{2) edΔt ,

(2.14) w{0) = τw(2) + (1 - τ)w(1) e 4 0 < τ < 1 .

In fact,_if we put z(1) - /~ 1 (^ ( 1 ) ), ^(2) = /~W2))> then JKi,(ί5(1), i^) =
KD(zw, sF) = t. Setting

(2.15) F(z) = r/(flr(«)) + (1 - r)/(*)

where βr(̂ ) is a holomorphic mapping of D into D satisfying #(0) = 0
and g(zw) = a;(2), we observe that F(0) = 0 and ^ ) •< /(«) because
the mapping f:D—>Cn is convex. Hence

(2.16) ψ(z) ES

is a holomorphic mapping of D into D, so we have

Consequently f~\ww) e Dt, so w{0) e Δ%. Thus, by Lemma 2.1, (2.13)
holds for all z e D. Contrary, if (2.13) is realized for all zeΌ, every
Δt is convex. Therefore we can conclude that the mapped domain A is
convex.

Particularly if D is a unit hypersphere, then

KD (z, z) = n l

πn(l - \z\2)n+1

Thus we have the following result by Theorem 2.1.

THEOREM 2.2. Let D be the unit hypersphere and let f:D-+
Cn be holomorphic, /(0) = 0 and det (df/dz) Φ 0 for all zeD. Then
f(D) is convex if and only if

(2.17) ^rΓ| Az|2 + z*(&Xl^4(Az x Az)Λ ^ 0 ,
L \dz J dz2 J

where
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IA o
\

0 Aj

and the equality holds only if Az = 0.

Proof. We can compute as follows setting K = KD(z, z):

(2.18) dK/dz = (n + 1), z* K,1 - 1*1

(2.19) d2K/dz* = (Λ + l)(n + 2)^ z X , ^ * t g ,

(2.20) d*Kβz*dz =
1)

( 1 — I z I )
Then, from (2.13), we have

^r[(?ι + 2){ |z*α| 2+ (z*α)2}

+ α - , „
Since

|z*αf + ^ ( ^ * α ) 2 = 0

from

^ a I = 0, i.e., &[z*a] = 0 ,

we conclude

(2.22)

Moreover, under the condition &[z*ά\ = 0 it becomes that z*a =
ίp(p ^ 0, i = l/— 1), because both α and -a are satisfy (2.22). There-
fore we can put a — i(Az/\ Az |) when Az =̂= 0, where

l °\
#

 # , A , ^ 0 , ( j = 1 , • • - , « ) ,

AJ

are chosen arbitrarily. Thus we obtain (2.17) from (2.22).

REMARK 1. Suffridge's Theorem 5 [11] shows that
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F = *f\AH + (ψYψ-SAz x Az)]k w = (ψ
dzV. \dz I dz* Jl \dz

i.e.,

az / dz

\ Az\2 + ̂ f ^ V ^ r i ^ x

\ dz ) dz2 ^ 0 ,

is the necessary and sufficient condition for convexity.
Next, if D is the polydisk {z e Cn: \zό\ < 1, j = 1, , ri), the kernel

function KD(z, z) becomes llπn{l — | ^ | 2 ) 2 ••• (1 — \zn\
2)2. Hence

(2.23) dKjdz = 2K-z*Z,

d2K/dz2 = 4K (zxz)*(Z x Z)

(2.24) 2K-(z x

0

0

(2.25)

where

\

d*Kβz*dz = ±K-Zzz*Z + 2K-Z* ,

0

z =
o l / α - K I2)/

Substituting formally (2.23), (2.24), and (2.25) into (2.13) and setting

+ \z*Za\2 = 0 and a = %r^
\Z~ll2Az\

where

/l/l
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in place of the condition

D(z, z)

dz

we arrive at

) 1 =

J
= 0 ,

(2.26) &\\Az\2 + z*z(&Xl££(Z x ZYι<\Az x Az)λ ̂  0 ,
L \dz/ dz2 J

where the equality holds only if Az = 0.

THEOREM 2.3. Lei D be the polydisk and let f:D->Cn be
holomorphic, /(0) = 0 and det (df/dz) ^ 0 for all zeD. Then f is
a univalent map of D onto a convex domain if and only if the con-
dition (2.26) is fulfilled.

Proof. If / is a convex mapping, then by Suffridge's Theorem
3 [ii] / = T(φx{z^, , φn(zn)Y where Tis a nonsingular linear transfor-
mation and each Ψ3 {z3) is a univalent mapping from the unit disk
in the plane onto convex domain in the plane. Then we have

(
\dz) dz'

(2 27) J ^ M f e ) 0 ' " 0 0

\ u o

Substituting this into the left side of (2.26), we get

(2.28) MtA^Zj^l + z^/i

Hence from the hypothesis ^?[1 + Si9>"(Sj )/9>ί(2i)J > 0, j — 1, •••, nf

we get the inequality (2.26).
We will prove the converse. Fix k, 1 ^ k ^ n and choose Ak =

^ ^ ^ . From (2.26)

(2.29) ^ Γ | « , |2 + * l ( 1 ~ l r * | 2 ) Σ , *( 2Cf] ^ 0 ,
L d e t J 3=ι 1 — \zj\2 J

1 — \zj

where J = ίZ/*/cί̂  and Gf is obtained from det J by replacing the i th
column by the column &fld#h = (?fjdz\, ;&fjdti)' For 1,1 ^
l^n,l^k, setting | ^ | < If2,j**l, 1 ^ j ^ n, (L ~ I^Γ)/(1
tends to infinity when |«, |—+1. Then we must have always
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(2.30) ^ Γ - T ^ — — GϊΛ ^ 0
Ldet J zι J

from the condition (2.29). Here, since it becomes 0 at zk = 0, we see
that Gf = 0 for each I, I ̂  k, 1 ^ I ^ n. Next, if we set Ak = Ax =
1, Am = 0, m Φ k, I, then (2.26) becomes as follows from the above
results:

(2.31)

- l z f e l 2 ) ( i -
+

detJΓ

For s,l ^ s tί n, setting

tends to infinity when \zs\ —>1. Then we must have always

(2.32) MT^- — GS

H Ί ^ 0 .
LdetJ zs J

Since it attains to the minimum value 0 at zkzt = 0, we must have
Gsl = 0 for each s. Thus we arrive at the conditions of the Theorem
3 of Suffridge following his methods. So we can conclude that / is
a convex mapping.

3* Starlike mappings. We now consider univalent functions of
D which map D onto a starlike domain with respect to 0. First we
set up the definition of starlikeness following Suffridge:

DEFINITION. A holomorphic mapping f: D—>Cn is starlike if /
is univalent, /(0) = 0 and (1 - τ)f < f for all τ e I = [0,1].

THEOREM 3.1. Let D he a hounded schlicht domain for which the
kernel function KD(z, z) hecomes infinite everywhere on the houndary,
KD(0, 0) = minZeD KD(z, z) at only the origin, and KD(z, z) ^ KD(g(z),
g(z)) for any holomorphic mapping g(z) of D into D satisfying g(0) =
0. Suppose f: D—+Cn is holomorphic, /(0) = 0 and det (df/dz) =N= 0
for all zeD. Then f is starlike if and only if

for all zeD,z=^ 0.
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REMARK 2. Domains which belong to the above mentioned class
3f satisfy the conditions of this Theorem.

Proof. If / is starlike, then all image Δt are starlike, that is,
for all wa) e dΔt we have wi0) — (1 — τ)w{l) eΔt,τe I. In fact, if we
set z(1) = f-ι(w™), KD(z™, zF) = t and ψ(z) = /- '((I - τ)f(z)), then we
obtain

(3.2) KD{z*\ z(1)) ^ KD(ψ(z"

because ψ(z) is a mapping of D into D and ^(0) = 0. Then it holds
that f~ι(w{0))eDt which yields w{0)eΔt. Now, since

φίw + e^-) = 2ε
\ dw*

dΦt 0(ε2) > 0

when e > 0 is sufficiently small and w e dJt, Nw = dΦt/dw* is the
outward normal vector at the boundary point w e dAt. Hence (1 — τ)w e
At{w e dΔu 0 < τ ^ 1) implies

(3.3) cos (~NW, -w) = &\ -¥±w dΦt \w\ > 0
.dw J/ I dw*

which yields (3.1) by virtue of

dw dz V dz

Conversely, if (3.1) holds, then we conclude (1 — τ)w eΔt,we dΔt, 0 < τ <
ε( < 1) for some e > 0 by (3.3). Moreover, we can conclude (1 — τ)w e
Δu w e dΔu 0 < τ <£ 1, because, if (1 — τjw = w{1) e dΔt and (1 — τ)w e
Δt,0<τ<τ1 for some τι < 1, then (1 — τ)w{l) $ Δt, w

a) e dΔt which is
a contradiction. Then the image domain Δ of D becomes starlike.

COROLLARY 3.1. Let D be the unit hypersphere, and let f:D~*
Cn be holomorphicy /(0) = 0 and det (df/dz) =N= 0 for all zeD. Then
f(z) is starlike if and only if

(3.4) &\z*(MXlf\ > 0
L \ dz / J

for all zeD, z^0.

Proof. Substituting (2.18) into (3.1), we obtain the required
result.

REMARK 3. The conditions of Suffridge's Theorem 4 [11]:/ =
Jw, we^2 are the same as (3.4).
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