G_δ-DIAGONALS AND METRIZATION THEOREMS

William George McArthur
The topological space X is said to have a G_δ-diagonal if the diagonal $\Delta = \{(x, x) : x \in X\}$ is a G_δ-set in $X \times X$. It is easy to see that if X has a coarser metrizable topology, then X has a G_δ-diagonal. The main result is that a completely regular pseudocompact space with a regular G_δ-diagonal is metrizable.

A considerable amount of research has been done on the question of what topological properties imply metrizability in the presence of a G_δ-diagonal. For example, it is well-known that the existence of a G_δ-diagonal is sufficient for metrizability in any of the following classes of spaces:

- compact Hausdorff spaces
- linearly ordered spaces
- paracompact p-spaces.

A question still open is whether a countably compact regular space with a G_δ-diagonal must be metrizable. A space X is said to have a regular G_δ-diagonal if the diagonal Δ is the intersection of countably many closures of open subsets of $X \times X$ (see [5]). It is known that a countably compact space with a regular G_δ-diagonal is metrizable [1].

2. The main result.

Definition 2.1. A space X is pseudocompact if every real-valued continuous function on X is bounded.

Pseudocompact spaces were first defined and investigated by Hewitt in [3]. The following characterization of completely regular pseudocompact spaces may be found in [2], page 134.

Lemma 2.2. Let X be a completely regular space. X is pseudocompact if and only if for every sequence $G_1 \supset G_2 \supset \cdots \supset G_n \supset \cdots$ of nonvoid open subsets of X, $\bigcap_{n=1}^{\infty} \overline{cl}_X(G_n) \neq \emptyset$.

Lemma 2.3. Let X be a completely regular pseudocompact space. Suppose $G_1 \supset G_2 \supset \cdots \supset G_n \supset \cdots$ is a sequence of open sets such that

$$\bigcap_{n=1}^{\infty} G_n = \bigcap_{n=1}^{\infty} \overline{cl}_X(G_n) = \{x\}$$

for a point x of X. Then the sets G_n form a local neighborhood
base at x.

Proof. Let G be an open set containing x. Suppose

$$G_n \cap (X - G) \neq \emptyset$$

for every n. Choose H open such that $x \in H \subset \text{cl}_x(H) \subset G$. Then, $(G_n \cap (X - \text{cl}_x(H)))_{n=1}^\infty$ is a decreasing sequence of nonvoid open subsets of X. Thus, by Lemma 2.2, there is a point p of X such that $p \in \bigcap_{n=1}^\infty \text{cl}_x(G_n \cap (X - \text{cl}_x(H)))$. But, p belongs to $\bigcap_{n=1}^\infty \text{cl}_x G_n$, a contradiction! Therefore, there must be an integer n such that $G_n \subset G$.

DEFINITION 2.4. Let \mathcal{G} be an open cover of X, $x \in X$, and $H \subset X$. Then,

$$\text{st}(x, \mathcal{G}) = \bigcup \{G \in \mathcal{G} : x \in G\}$$

$$\text{st}(R, \mathcal{G}) = \bigcup \{G \in \mathcal{G} : G \cap H \neq \emptyset\}.$$

The following result was announced by Moore in [4].

LEMMA 2.5. (Moore's metrization theorem) A topological space is metrizable if

1. X is Hausdorff, and
2. There is a decreasing sequence $\mathcal{G}_1 \supset \mathcal{G}_2 \supset \cdots \supset \mathcal{G}_n \supset \cdots$ of open covers of X such that for every x in X, the sets $\text{st}(\text{st}(x, \mathcal{G}_n), \mathcal{G}_n)$ for $n = 1, 2, 3, \cdots$ form a local neighborhood base at x.

Our main result appears below.

THEOREM 2.6. Let X be a completely regular pseudocompact space. If X has a regular G_δ-diagonal, then X is metrizable.

Proof. $\Delta = \{(x, x) : x \in X\}$. Then, there is a decreasing sequence $G_1 \supset G_2 \supset \cdots \supset G_n \supset \cdots$ of open subsets of $X \times X$ such that

$$\Delta = \bigcap_{n=1}^\infty G_n = \bigcap_{n=1}^\infty \text{cl}_{X \times X}(G_n).$$

For each x in X, choose a sequence $(g_n(x))$ of open subsets of X such that $(x, x) \in g_n(x) \times g_n(x) \subset G_n$ for each n. Then, for each n let

$$\mathcal{G}_n = \bigcup_{k \geq n} \{g_k(x) : x \in X\}.$$

Then, $\mathcal{G}_1 \supset \mathcal{G}_2 \supset \cdots \supset \mathcal{G}_n \supset \cdots$ is a decreasing sequence of open covers of X.

(i) For x in X, $\bigcap_{n=1}^\infty \text{cl}_x(\text{st}(x, \mathcal{G}_n)) = \{x\}$. Let $y \neq x$. Then,
there is an integer \(n \) such that \((x, y) \in \text{cl}_{XX} (G_m)\) for \(m \geq n \). Then, there are neighborhoods \(U \) and \(V \) of \(x \) and \(y \) respectively such that \((U \times V) \cap G_m = \emptyset\) for \(m \geq n \). Suppose that \(V \cap \text{st}(x, \mathcal{E}_n) \neq \emptyset \). Then, there is an integer \(k \geq n \) and a point \(z \) of \(X \) such that \(x \) is in \(g_k(z) \) and \(V \cap g_k(z) \neq \emptyset \). Then,
\[
\emptyset = (U \times V) \cap g_k \supset (U \times V) \cap (g_k(z) \times g_k(z)) \neq \emptyset .
\]
Contradiction! Thus, it must be that
\[
V \cap \text{st}(x, \mathcal{E}_n) = \emptyset \quad \text{and} \quad y \in \text{cl}_x (\text{st}(x, \mathcal{E}_n)) .
\]
(ii) We conclude by Lemma 2.3 that \((\text{st}(x, \mathcal{E}_n)) \) forms a local base at \(x \), for each \(x \) in \(X \).

(iii) For \(x \) in \(X \), \(\bigcap_{n=1}^{\infty} \text{cl}_x (\text{st}(x, \mathcal{E}_n), \mathcal{E}_n)) = \{x\} \). Let \(y \neq x \).
Then, there is an integer \(n \) such that \(m \geq n \) implies that
\[
(x, y) \in \text{cl}_{XX} (G_m) .
\]
Then, there are neighborhoods \(U \) and \(V \) of \(x \) and \(y \) respectively such that \((U \times V) \cap G_m = \emptyset\) for \(m \geq n \). There are integers \(k \) and \(j \) such that \(\text{st}(x, \mathcal{E}_k) \subset U \) and \(\text{st}(y, \mathcal{E}_j) \subset V \). Let \(m = \max \{n, k, j\} \). Then, \((\text{st}(x, \mathcal{E}_m) \times \text{st}(y, \mathcal{E}_m)) \cap G_m \subset (U \times V) \cap G_m = \emptyset\). Suppose
\[
\text{st}(y, \mathcal{E}_m) \cap \text{st}(x, \mathcal{E}_m, \mathcal{E}_m) \neq \emptyset .
\]
Then, there is an integer \(k \geq m \) and a point \(z \) of \(X \) such that
\[
g_k(z) \cap \text{st}(x, \mathcal{E}_m) \neq \emptyset
\]
and \(\text{st}(y, \mathcal{E}_m) \cap g_k(z) \neq \emptyset \). Then,
\[
(\text{st}(x, \mathcal{E}_m) \times \text{st}(y, \mathcal{E}_m)) \cap (g_k(z) \times g_k(z)) \neq \emptyset .
\]
Contradiction! Thus, it must be that \(\text{st}(y, \mathcal{E}_m) \cap \text{st}(x, \mathcal{E}_m, \mathcal{E}_m) = \emptyset \) and hence \(y \in \text{cl}_x (\text{st}(x, \mathcal{E}_m), \mathcal{E}_m)) \).

(iv) We conclude by Lemma 2.3 that \((\text{st}(x, \mathcal{E}_m) \cap \mathcal{E}_m)) \) forms a local base at \(x \), for each \(x \) in \(X \).

(v) By Moore's Metrization Theorem (Lemma 2.5), \(X \) is metrizable.!!

Corollary 2.7. If \(X \) is a completely regular pseudocompact space with a coarser metric topology, then \(X \) is metrizable.

Proof. If \(X \) has a coarser metric topology, so does \(X \times X \).!!

Example 2.8. The space \(E \cap [0, 1] \) of \([2]\), problem 3J is pseudocompact, Hausdorff, and has a coarser metric topology. Since the space is not completely regular, it is not metrizable.
EXAMPLE 2.9. The space Ψ of [2], Problem 51 is pseudocompact, completely regular, and the diagonal in $\Psi \times \Psi$ is a G_δ-set. But, Ψ is not metrizable.

3. Some remarks on the countably compact case.

DEFINITION 3.1. A space X is countably compact if every countable family of closed sets with the finite intersection property has nonempty intersection.

PROPOSITION 3.2. If X is countably compact, regular, with a G_δ-diagonal, then X is first countable.

Proof. Suppose $A = \bigcap_n G_n$ where the sets $G_1, G_2, \ldots, G_n, \ldots$ are open subsets of $X \times X$. For x in X, choose a sequence $(g_n(x))$ of open subsets of X which contain x such that for each n,

$$\text{cl}_X (g_{n+1}(x)) \subset g_n(x)$$

and

$$g_n(x) \times g_n(x) \subset G_n.$$

Note that $\bigcap_{n=1}^\infty \text{cl}_X (g_n(x)) = \{x\}$. Now, suppose G is an open subset of X which contains x. If it is true that no set $g_n(x)$ is contained in G, then $(\text{cl}_X (g_n(x)) \cap (X-G))_n$ is a countable collection of closed sets with the finite intersection property. Thus, since X is countably compact, $(\bigcap_{n=1}^\infty \text{cl}_X (g_n(x))) \cap (X-G) \neq \emptyset$. Contradiction! Hence, there must exist an integer n such that $g_n(x) \subset G$. This shows that $(g_n(x))_n$ forms a neighborhood base at x and hence X is first countable.!!

PROPOSITION 3.3. If X is countably compact, regular, with a G_δ-diagonal, then $X \times X$ is countably compact, regular, and has a G_δ-diagonal.

Proof. It is well-known that regularity is productive and that countable compactness is countably productive in the presence of first countability. Now, suppose that $A = \bigcap_n G_n$ with the sets G_n open in $X \times X$. Let $A' = \{(x, y), (x, y) : x, y \in X\}$. For each n, let

$$g_n(x, y) = g_n(x) \times g_n(y)$$

where the sets $g_n(x)$ are as in Proposition 3.2. Let

$$H_n = \bigcup_{(x, y) \in X \times X} (g_n(x, y) \times g_n(x, y)).$$

Claim: $A' = \bigcap_{n=1}^\infty H_n$. Clearly, $A' \subset \bigcap_{n=1}^\infty H_n$. Suppose $(x_1, y_1) \neq (x_2, y_2)$.

Case I. $x_1 \neq x_2$. Then, there is an integer n such that

$$\text{cl}_X (g_{n+1}(x_1)) \subset g_n(x_1)$$

and

$$g_n(x_1) \times g_n(x_1) \subset H_n.$$
Suppose \((x_1, y_1), (x_2, y_2) \in H_n\). Then, there is a pair \((x, y)\) in \(X \times X\) such that \((x_1, y_1) \in g_n(x, y)\) and \((x_2, y_2) \in g_n(x, y)\). Then, \(x_1 \in g_n(x)\) and \(x_2 \in g_n(x)\) which implies that \((x_1, x_2) \in G_n\). Contradiction!

Case II. \(y_1 \neq y_2\). Similar argument to that of Case I. Thus, \(X \times X\) has a \(G_\delta\)-diagonal.

PROPOSITION 3.4. Every countably compact, regular, space with a \(G_\delta\)-diagonal is metrizable if and only if every countably compact, regular, space with a \(G_\delta\)-diagonal is normal.

Proof. If \(X\) has a \(G_\delta\)-diagonal and \(X \times X\) is normal, then \(X\) has a regular \(G_\delta\)-diagonal.

The author would like to thank Professor Robert Heath of the University of Pittsburgh for his many enlightening remarks on this subject matter.

REFERENCES

Received October 29, 1971.

SHIPPENSBURG STATE COLLEGE
Tsuyoshi Andô, *Closed range theorems for convex sets and linear liftings* 393
Richard David Bourgin, *Conically bounded sets in Banach spaces* 411
Robert Jay Buck, *Hausdorff dimensions for compact sets in R^n* 421
Henry Cheng, *A constructive Riemann mapping theorem* 435
David Fleming Dawson, *Summability of subsequences and stretchings of sequences* ... 455
William Thomas Eaton, *A two sided approximation theorem for 2-spheres* 461
Jay Paul Fillmore and John Herman Scheuneman, *Fundamental groups of compact complete locally affine complex surfaces* .. 487
Avner Friedman, *Bounded entire solutions of elliptic equations* 497
Ronald Francis Gariepy, *Multiplicity and the area of an $(n-1)$ continuous mapping* ... 509
Andrew M. W. Glass, *Archimedean extensions of directed interpolation groups* 515
Morisuke Hasumi, *Extreme points and unicity of extremum problems in H^1 on polydiscs* ... 523
Trevor Ongley Hawkes, *On the Fitting length of a soluble linear group* 537
Garry Arthur Helzer, *Semi-primary split rings* ... 541
Melvin Hochster, *Expanded radical ideals and semiregular ideals* 553
Keizô Kikuchi, *Starlike and convex mappings in several complex variables* 569
Charles Philip Lanski, *On the relationship of a ring and the subring generated by its symmetric elements* ... 581
Jimmie Don Lawson, *Intrinsic topologies in topological lattices and semilattices* ... 593
Roy Bruce Levow, *Counterexamples to conjectures of Ryser and de Oliveira* 603
Arthur Larry Lieberman, *Some representations of the automorphism group of an infinite continuous homogeneous measure algebra* ... 607
William George McArthur, *G_5-diagonals and metrization theorems* 613
James Murdoch McPherson, *Wild arcs in three-space. II. An invariant of non-oriented local type* ... 619
H. Millington and Maurice Sion, *Inverse systems of group-valued measures* 637
William James Rae Mitchell, *Simple periodic rings* .. 651
C. Edward Moore, *Concrete semispaces and lexicographic separation of convex sets* ... 659
Jingyal Pak, *Actions of torus T^n on $(n+1)$-manifolds M^{n+1}* 671
Merrell Lee Patrick, *Extensions of inequalities of the Laguerre and Turán type* 675
Harold L. Peterson, Jr., *Discontinuous characters and subgroups of finite index* 683
S. P. Philipp, *Abel summability of conjugate integrals* 693
R. B. Quintana and Charles R. B. Wright, *On groups of exponent four satisfying an Engel condition* ... 701
Marlon C. Rayburn, *On Hausdorff compactifications* .. 707
Martin G. Ribe, *Necessary convexity conditions for the Hahn-Banach theorem in metrizable spaces* ... 715
Ryōtarō Satô, *On decomposition of transformations in infinite measure spaces* 733
Peter Drummond Taylor, *Subgradients of a convex function obtained from a directional derivative* ... 739
James William Thomas, *A bifurcation theorem for k-set contractions* 749
Clifford Edward Weil, *A topological lemma and applications to real functions* 757
Stephen Andrew Williams, *A nonlinear elliptic boundary value problem* 767
Pak-Ken Wong, *$*$-actions in A^*-algebras* ... 775