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It is shown that

for — o o < 2 < o o , w , : > l and k ̂  0, where F(z) is an entire
function of a special type. For k — 1 this simply is the well
known Laguerre inequality

(2P<»+i>(s))2 _ F™(z)F{»+2)(z) ^ 0

— oo < 2; < 00, ̂  ^ 0. From these inequalities we obtain the
inequalities

(

which hold for such values of x, for which the functions
un = un(x) have a generating function of the type

1. Introduction. Consider the entire function of the form

(1.1) F{z) = Ce-a'2+^zr Π (1 - zlzM'Zm

m

where a^ 0, C, β and all zm are real, and Σm m̂2 is convergent. These
functions have been studied by Laguerre (see Borel [1; pp. 32-47]),
Pόlya and Schur [9], and others. Apart from constant factors, these
functions are the only ones which are limits of polynomials with real !

zeros only.
In § 2 we show, for integers n ^ 0, that

(1.2) I F^(x + iy) |2 - Σ Lk(F^; x)y2k

fc=0

where

(1.3) Lk(F^;x)=ΣL

7£τΓ(

and F{n)(z) denotes the wth derivative of F(z) = Fw(z). Furthermore,
we show that

(1.4) Lk(F^;x)^0

675
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for each n ^ 0, k = 0,1, 2, , and all real x. Patrick [8] obtained
inequality (1.4) for polynomials with real zeros only. For k — 1, (1.4)
is the well known and useful Laguerre inequality.

(1.5) CF(w+1)(z))2 - FM(z)Fin+2)(z) ^ 0, - o o < z < o o , ^ 0 .

Finally, in §3, we use (1.4) to obtain the inequalities

2fc f _ i w + * (2k \

(1.6) Σ 1 ^ . W+;(ΦW-;(*) ^ 0

which holds for such values of x, for which the functions un = un(x)
have a generating function of the type

(1.7) Σ ^ 5 = TO
«=o %!

where F(z) is of the form (1.1).
For k = 1, (1.6) is the interesting and much studied Turan

inequality

(1.8) (un+1(x))2 - un(x)un+2(x) ^ 0, n ^ 0 .

In 1948 Szego [13] called attention to (1.8) for Legendre polynomials.
Since that time the inequality has been studied for other special
functions by Mukherjee and Nanjundiah [6]; Nanjundiah [7]; Szasz
[11], [12]; Thiruvenkatachar and Nanjundiah [14]; Venkatachaliengar
and Rao [15], and others. These authors have shown that the func-
tions which satisfy (1.8) include the Legendre, Tchebychef, ultra-
spherical, Hermite and Laguerre polynomials and the Bessel and
modified Bessel functions. A summary of these results are contained
in Skovgaard [10]. Also in [10], Skovgaard uses the Laguerre in-
equality (1.5) to obtain the Turan inequality for sequences un =
un(x), n = 0,1, 2, satisfying (1.7). He shows that for such sequenc-
es the Turan inequality is a special case of the Laguerre inequality.
Then he is able to easily prove the inequality (1.8) for most of the
above mentioned functions. These results served as motivation for
the work which resulted in this paper.

Some other papers containing results related to the Turan type
expressions or inequalities are Carlitz [2]; A. E. Danese [3], [4]; Karlin
and Szegδ [5]; and Webster [16].

2* "Extended" Laguerre inequalities* We now prove the fol-
lowing theorem concerning entire functions of the form (1.1).

THEOREM 1. Let F(z) = F(x + iy) be an entire function of the
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form (1.1) and let F{n)(z) denote the nth derivative of F(z). Then for
any integer n ^ 0 and any z: = x + iy Φ ^

(2.1)

where

(2.2) 1

(2.3)

/k(F(n); x)

(χ + iy)\* = Σ>Lk(l
fc=O

2k (_l)i+fc/2&\

u {2k)ι ' j i

Lt(FM;x)^O

2k

for k = 0,1, 2,

Proo/. We first prove (2.1)-(2.2) for n = 0. Since F(0)(z) =
is an entire function we can write for any z

(2.4) F(z) = 2F(s + iy) = Σ

and

(2.5) F{z) - JP(OJ - i») = Σ ( -
fc=o

where

(2.6) Afc(F; x) = j{F
w(x) , fc = 0,1, 2,

Since C, a, β, and all zm are real, F(z) = F(z) and so from (2.4) and
(2.5) we have

(2.7) I F(x + iy) |2 - Σ CJF\ x)ym

m=0

where

Cm(F; x) = ( - 1)-Λ(F; a;)^M(F; *) + ( - 1 ) " - 1 ^ ^ ; x)Am_1(F; x)

' ) + . . . + (-l)Au.ι(F; x)A1(F; x) + Am(F; x)A0(F; x) .

When m is odd, it follows from (2.6) and (2.8) that

Cm{F; x)

(2.9) = f {^ψ^g + -J^.^ψ
3=o\jϊ (m — j)l (m — j)l 3I

= Σ . (~1 ) H? [(-l)m + l l ^ ^ F - ^ a ; ) = 0
j 3(m — 3)1
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where M = [(m +• l)/2]. When m is even, say m = 2/c, we have from
(2.6) and (2.8)

(2.10) C t t(F; s) = <

It follows easily that Lk(F{n); x) in (2.2) with n = 0 is equal to
C2k(F; x) in (2.10). From (2.7), (2.9), and (2.10) we have the desired
result (2.1)-(2 2) for n = 0.

We now prove (2.1)-(2.2) for % ̂ > 1. Skovgaard [10] shows that
the derivative of a function of the form (1.1) is also of the form (1.1).
Therefore, all derivatives F{n){z) of F(z) are of the form (1.1) and
(2.1)-(2.2) for any n ^ 1 follows from the proof of the n = 0 case by
replacing F(z) by F{n){z).

Next we prove (2.3) for n = 0. Using (1.1) we have

(2.11) I .F(z) |2 = C2e-a(z2+~zy^\zzy Π (1 - Φ J ( 1 - zlzm)ezΛΓzlZm

m

or

v ; = C2e-2-2+2^e2^2(x2 + y2)- Π [(1 - ΦJ2 + ^/«.]e

Since e2*'*™ is real and positive for all x we can write

Π [(1 - x/zm)2 + yVzUe**1*™ = Σ Ck(x)y*k

fc0

where CA(α;)^0 for k = 0,1, , and all a;. Also α ^ 0 , C 2 >0, β-2α;a;2+

for all x, (x2 + y*)r is a polynomial in τ/2 with positive coefficients that
are functions of x, and e2ay2 is an absolutely convergent series in y2

with positive coefficients. Combining all of these facts with (2.12) we
have for any z = x + iy Φ ©o.

(2.13) | ^ ) | Σ
k=o

where

Ĵ fcία?) ^ 0 for k = 0,1,2, •••.

But (2.1) and (2.13) are identical so we have Lk(F; x) = Fk(x) ^ 0 for
fc = 0,1, 2, , and (2.3) is proved for n = 0.

As in the proof of (2.1)-(2.2), the proof of (2.3) for n ^ 1 follows
immediately by replacing F{z) by Fίn)(z) in the above considerations.

For the sake of better understanding of the functions Lk(F{n); x)
we note that
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(2.14) L0(FM; x) = (F<n)(x))z

(2.15) I«i(F(e); x) = (F(*+I)(x)y - Fw(x)F(n+2)(x)

4!

and, in general,

L (F«> x) = (
(k - 1)! (Jfc + 1)!

+ + l ΐ

^ ^ } (2k)l

We further note that (2.15) is the well-known Laguerre expression
and that (2.3) with k = 1 the corresponding Laguerre inequality. For
this reason we call (2.3) the "extended" Laguerre inequalities.

In [8] we show, among other things, that 0 ^ Lj(F{n); x) ^
Lj{F{%); 1), j = 0,1, 2, 3, for - 1 ^ x ^ 1 when F(z) is restricted to the
class of ultraspherical polynomials. We conjecture that a similar
inequality holds for j > 4 over the same class of functions.

3* " Extended " Turan inequalities* Using Theorem 1 of § 2
and the results of Skovgaard [10] we can easily prove the following
theorem.

THEOREM 2. Let un — un(x), n = 0,1, 2, , be a system of real
functions which for certain values of x have a generating function
of the type

(3.1) 55
where F(z) is of the form (1.1). Then for those values of x

2k (—lV+k( 2k\

(3.2) Σ \ 9 L . )un+i(x)un+tk^(x) ^ 0 for k = 0,1, 2, .

Proof. As indicated by Skovgaard [10], we have for those values
of x where un = un(x) satisfies (3.1) that un = F{n)(0). That is for
such x inequality (3.2) is a special case of "extended" Laguerre
inequality (2.3).

We note for k = 1 that (3.2) is the interesting Turan inequality

(3.3) ul+1(x) - un(x)un+2(x) ^ 0 .
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For this reason we call the inequalities (3.2) the " extended " Turan
inequalities.

Skovgaard used (2.3) with k = 1 to obtain (3.2) with k = 1 for
certain classical functions by indicating their generating functions of
the type (1.1). These same generating functions, since they are of
type (1.1), will, by Theorem 1, satisfy (2.3) for k = 0,1,2, . . . .
Therefore, by Theorem 2, the corresponding set of classical functions
will satisfy the "extended" Turan inequalities (3.2). The following
is a list of these classical functions:
(3.4) Ultraspherical polynomials

(3.5) pth derivative of PL'^x)

D'P^ix), pgn,-lgx£l,\^^-p,
Δ

(3.6) Laguerre polynomials

Ua)(x), - o o < α < o o , α > - l ,

(3.7) pth derivative of L(

n

a)(x)

DpLlι

a)(x), p ̂ n, — oo < x < ooya^ —p ,

(3.8) Hermite polynomials

Hn{%), - oo < x < oo ,

(3.9) pth derivative of Hn{x)

DpHn(x), - oo < x < oo ,

(3.10) Sine and cosine functions

fcos)
. \ ΊIX, - oo < X < oo, ,

(smj

(3.11) Bessel functions

Λ(«), - °° < » < °° ,

(3.12) Derivative of Bessel function

Jϊ(ίB), -OO < X < OO ,

(3.13) Tchebychef function of first kind
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Tn(x), - l ^ α ^ l ,

(3.14) Tchebychef function of second kind

Un(x), - 1 ^ α > ^ l .

We point out that (3.4) and (3.5) includes Legendre polynomials and
their derivatives.

Generating functions for (3.4), (3.6), (3.8), (3.10), (3.11), and (3.12)
can be found in Skovgaard [10]. As in Skovgaard's paper we have
analogously, since

D P P ( x ) 2 ^ P } ( x ) , p ^ n ,
1 (λ)

that (3.5) satisfies (3.2) because (3.4) does. Also

D*L™(x) = (-iyU£*\x), p ^ n ,

so (3.7) satisfies (3.2) because (3.6) does. Similarly

DΉM = 2* nl Hn-9(x)
(n - p)\

and (3.9) satisfies (3.2) because (3.8) does. Finally, (3.13) and (3.14)
satisfy (3.2) because (3.10) does.

Using an inductive proof we showed that if Fίn)(z) is of the form

(3.15) Fin)(z) =

then

(3.16) Lk(F^;z) - 0

for k = 1, 2, . Also, (3.16) holds at multiple zeros of order k + 1
of F{n){z). Consequently, given the assumptions of Theorem 2, equality
in (3.2) holds for values of x for which F(n)(z) is of the form (3.15),
or for which z = 0 is a zero of multiplicity k + 1 of F(n)(z).

Acknowledgement. The author is grateful to Professor L. Carlitz
for his assistance.
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