Pacific Journal of

Mathematics

REPRESENTATION OF FINITELY GENERATED NILPOTENT
GROUPS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 45, No. 1, 1973

REPRESENTATION OF FINITELY GENERATED
NILPOTENT GROUPS

JAN D. BrROWN

A. I, Malcev has shown that finitely generated torsion
free nilpotent groups imbed as lattices in nilpotent Lie groups,
and hence their structure is similar to that of the Lie groups.
Since A. A. Kirillov has classified the representations of nil-
potent Lie groups and, in particular, shown that they are all
monomial (induced from one dimensional representations of
subgroups), one might conjecture that representations of
finitely generated nilpotent groups were monomial. (A repre-
sentation, here, is a weakly continuous unitary representation
on separable Hilbert space.) We prove a criterion for when
a representations of finitely generated nilpotent groups are
monomial. We will also show that representations induced
from finite dimensional ones satisfy similar equivalence and
irreducibility criteria to those deduced by Kirillov for nil-
potent Lie groups.

To widen the conjecture slightly, one might ask about represen-
tations induced from finite dimensional representations. Our first
lemma shows that this reduces to the question of monomial repre-
sentations (using the theorem on inducing in stages).

Let us establish some notation. ¥ | G will be the representation
of G induced (definition in Mackey, [6]) from a representation y of
some subgroup. If y is a character (one dimensional representation)
on a subgroup H of G, x° is the character on H’ = g7'Hg given by
x°(h) = (ghg™). If U is a representation, S5#°(U) is the space on which
U acts. Let C be the complex numbers.

First of all, the wider conjecture reduces to the narrower via.

LEMMA 1. If V is a finite dimensional trreducible representation
of a mnilpotent group G, them V is induced from a one dimensional
representation of some subgroup of G.

Proof. Consider V as a representation of G, = G/Ker V. If V
is not one dimensional, G, is not abelian. Since G, is nilpotent, there
is an abelian normal noncentral subgroup AcC G,. Then V|A is a
sum of characters. Call one of these ¥. Let F={geG:y° =y}
If ge G — F, g carries 5#°()), the subspace of £#(V) on which A4 acts
according to y, onto 57°(x°). Hence [G,: F] < . Since F preserves
S#(Y), we can let the representation of F on 57 (x) be U. Now note
that F == G, since V is faithful and A is not central hence not a
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multiple of a single character. Hence if we can prove V is equivalent
to U 1 G, we are done by induction on the dimension of S#Z(V).

Let fe 57(U 1 G,) be defined by f7(g9:) = 0,4v where ve (),
the g, are representatives for G,/F and §,, is the Kroneker 6. Then
the f? span 22 (U | G,). Let Wfr = V(g:7)v. Then W: 5#7(U | G,) —
57 (V). One can check that W commutes with the action of G, and
is unitary, using the fact that V(g,)5# () L S#(y) for g;# e. Thus
we conclude that V is induced as a representation of G, from a
faithful representation of some subgroup of G,, hence, by induction,
from a character y, on some subgroup H of G,. Then, as a repre-
sentation of G, V is induced from yx; on »'(H) where p: G — G, is
the canonical projection and yx;(9) = X.(p(9)).

Next, we need some information about finitely generated nilpotent
groups.

DerFINITIONS. (1) If Nis a group, let N* = [N, N©'], N* = [N, N]
where [A, B] is the subgroup generated by all commutators aba™'b7?,
acA,beB. (2) A nilpotent group is nilpotent of class k if N*** = 1,
Nt =1,

LEMMA 2. A subgroup of a finitely generated nilpotent group
18 finitely genmerated.

Proof. Let H be a subgroup of the finitely generated nilpotent
group G. If G is nilpotent of class 1, G is abelian and the result is
quite easy.

Assume the result for all nilpotent groups of class k. If G is
nilpotent, of class & + 1, HN [G, G] is finitely generated as a subgroup
of [G, G]. Also H/HN[G, G], as a subgroup of G/[G, G] is finitely
generated since G/[G, G] is abelian.

A set of representatives for the generators of H/H N [G, G] plus
the generators for H N [G, G] will serve as a set of generators for H.

LeMMA 3. If G is a finitely generated wnilpotent group for any
fized n there are only a finite number of subgroups of G of index n.

Proof. The result is due to Howe [3] for a torsion free finitely
generated nilpotent group. We show here how the result extends to
any finitely generated nilpotent group.

Hirsch {2] has shown that G is isomorphic to a subgroup of finite
index in the direct product A x B where A is a finite group and B
is a torsion free finitely generated nilpotent group. Then if [G: H] < »
and [A x B: G} = n, then [A X B: H] < n + ». Since H/HN B= BH/B
[H:HN Bl =[BH:B] < |A|. Thus[A x B:HNB]=£(®n +7)-]A]and
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[B: HN Bl £ n + r. By Howe’s result there are only a finite number
of choices for HN B and then, to complete the choice of H, one is
left to select among less than (n + r)-|A| cosets of HN B in G.
Hence there are only a finite number of possibilities for H given 7
and G.

We now introduce, the

DeriNITION. A subgroup H of a group G is called isolated if it
contains all its roots, i.e., if g"e H for some positive integer %, then
g€ H.

We will denote the smallest isolated subgroup containing H by H*.

Then H* has the following properties.

LemmaA 4,

(1) H" = H* for all g G

(2) (H.NHy)*=H*NH?

(3) Ny (H?*) = Ny(H)*

(4) H/H°N H and H?/H?’ N H are finite = g Ny (H*).

Proof. (1) ke H" = ke H* for some n
= k™ = g~'hg for some n, h
= (gkg™)* = h for some n, h
= gkgtec H*
=keH*
(2) ge(I'Lﬂ Hz)*:g"eH1mH2=’geH1* N H;*
geH*N Hf =9gme H, and g™¢c H,
=gmme H N H,—gec(H N H)*

(8) [H*: H] is finite (from Baumslag [1], Lemma 2.8). If ge
Ny(H*), gHg™  H* of index [H*: H]. Thus only a finite number of
these gHg™" are different by Lemma 3. Thus g" € Ny(H) for some =,
i.e., ge Ny(H)* and Ny(H*)c N(H)*. But N,(H?*) is isolated (Kuros
[5], p. 249). Hence N (H*)* = N (H*). Also for he H* gec Ny,(H),
if h~e H, gh"g™ = (ghg™")" is in H. Hence ghg™e H* and g€ Ny (H™*).
Thus N (H)c N(H*), so we have

No(H™) © Ny(H)* © Ny(H*)* = No(H*) .

Hence the result (3)

(4) (H'NH)*=H*NH* HH°N H is finite— H*/H°N H is
finite = (H* N H)* = H** N H* = H* (this because if H> K are both
isolated they may be considered as subgroups of torsion free G/(torsion
subgroup of G) and there it is easy to see that either [H: K] =1 or
[H: K] is infinite). Similarly H/H’ N H finite = H* N H* = H*’.
Hence the two finiteness conditions yield ge N (H*). If ge N (H*),
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(H° N H)Y* = H* and the two quotients are finite.

1. To develop our criterion mentioned above, we need a couple
of lemmas, and for these we need the

DerFINITION. If L, M are representations of a group G, and inter-
twining operator for L and M is a bounded linear operator T: 57 (L) —
57 (M) such that TL(g9) = M(g)T for all geG.

The intertwining number, +(L, M), of L and M is the dimension
of the space of intertwining operators for L and M.

The first lemma centres around a situation which will be the
chief concern of this section. A subgroup H preserves a one dimen-
sional subspace of a certain representation space 5#°(0). This action
describes a character of H. If this character is induced to G, the
lemma describes its relationship to the original representation p.

LEMMA 5. Let p be a representation of G, ve S7Z(0) such that
o(H)v < Cv where H is some subgroup, and o(g)v 1. v for all ge G — H.
Then if y(hyv = o(h)v, i(x 1 G, 0) > 0.

Proof. We merely have to construct one nonzero intertwining
operator.

Let U=y 1 G, g; be right coset representatives of H and f?! be
in 5#7(U) defined by fiug;) =v +=7 and fig;) =0 75 j. Then
U(9)f: = fi where w = x(g,997")v and g, is the representative of
Hyg.g™*. To see this,

U(g)fi(hg;) = fi(hg;9)
= M) fi(9;9)
= Y(h) f¥9;997"9,) Where g,

represents
017

Hos0 = x(W)x(grg97)v 1 =14 since
1 =1 if and only if g;0 € Hg; = g, € Hg;g™
= x(h)f%(g;) as claimed. Now define
W: 52(U) — 52(0) be
W(f?) = plgiv .

Then one can show that WU(g) = po(g) W for all ge G, after defining
W on all of 5#(U) by linearity. Then if W is bounded it is an
intertwining operator. In fact, W is an isometry. First note that
for fe o7(U),
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f=3S5w.
Thus

(WF, Wiy = (3 0(g:)f(9:), 2 0(97)fo(95))
= 3. (0(g).f (92), 0(9:)fo(9:))

by the perpendicularity hypothesis of the lemma,
= 25 (F(g4), fo(g2))
= (.f ’ f 0) .

The other lemma is concerned with the multiplicity of characters
in the restriction of a representation.

LEMMA 6. If o is a representation of a milpotent group H and
X is a one dimensional subrepresentation of o, and H, is a normal
subgroup of H such that [H: H,) is finite with the property that x| H,
occurs anm infinite number of times in O|H, (i.e., WY |H, o|H,) s
infinite), then Y occurs an infinite number of times in Q.

Proof. Choose an integer %k such that H*c H,, H*'¢ H, (H' =
[H, H']). Choose he H**' — H,. Then the group H, generated by
h and H, is normal in H. Also, for some positive integer =, h* ¢ H,.
Let v;€ 57(0) be an infinite independent set on which H, acts as
2| H,. Then the subspace spanned by the {A*v,: 7 =1, .-, n} contains
a vector on which H, acts as y|H,. Namely, if a = y(h) and

w = ﬂz_‘,l a*~*o(h’)v, , then
=0

h*w = y(h)*w for all integers p. Since there is an infinite number of
independent »,, there are an infinite number of independent such w-
hence y|H, is of infinite multiplicity in o|H,. Continuing this con-
struction a finite number of times, we reach the conclusion of the
lemma.

These two lemmas will be very useful in what follows. We now
come to our criterion.

DEFINITION. We will say a representation of a group G has the
finite multiplicity property if there is a subgroup H which preserves
a one dimensional subspace of S#°(0) with the additional property that
if y is the character of H so defined, o|H contains yx as a discrete
direct summand only a finite number of times.

With this we can state.
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THEOREM 1. If G is a finitely generated mnilpotent group, an
1rreducible representation 0 of G has the finite multiplicity property
if and only if 0 is induced from a one dimensional representation of
some subgroup of G.

Proof of Theorem 1. Assume p has the finite multiplicity property.

Claim. There is a subgroup HcC G and a vector v in S#°(0) such
that o(h)yv = y(k)v for all he H (x(h) € C) with the additional property
that X | G is irreducible.

If this is so, ¥ T N(H?*) is irreducible, where N, (H?*) is the
normalizer of H* in G. But this means, by Mackey [7], Theorem &,
that y* == y on H° N H for any ge Ny (H*) — H. Choose he H' N H
such that y*(h) == x(h). Then

(0(9)v, v) = (o(hg)v, O(h)v)
= (0(9)X*(R)v, X (R)v)
= 1 (xR (e(g)v, v) .

Since y°(h) = y(h), then (o(g)v, v) = 0. Let K = N,(H*). Then yx 1 K
is an irreducible subrepresentation of the representation of K given
by the closed linear span of o(K)v, by Lemma 5.

Let NyK) = K,. Let ¥y | K= U and choose ge K, — K. Then
by Mackey [7], Theorem 8’ U’ is not equivalent to U since U | G
is irreducible.

Let 5% be a subspace of S#°(0) on which K acts according to
U. Then g57 1 57 for ge K, — K, since, if not, the projection of
957, to 5% is an intertwining operator for U*¢ and U.

By the form of U there is a vector v, € 57 such that o(k)v, L v,
for all ke K — H and p(h)v, = x(h)v, for all he H. Thus p(g)v, L v,
for all ge K, — H. Hence, by Lemma 5, ¥ | K, is a subrepresenta-
tion of the representation of K, on the closed linear span of o(K))v,.

Since G is nilpotent, a finite number of applications of this argu-
ment shows that ¥ | G is a subrepresentation of po. But p is irredu-
cible. Thus y 1 G is equivalent to p.

Thus the “only if” part of the theorem is proven if we can estab-
lish the claim.

By Theorem 3’ of Mackey [7] we would be done if ¥’ # y on
H* N H for all ge Ny (H*), where H, x are as in the definition of the
finite multiplicity property. We will produce a new triple H’, %/, v/
with this property.

The first step is to satisfy this requirement for ge N (H*) — H*.
Let Hy = V,engumg 'Hg. By (3) of Lemma 4 this intersection is finite.
Hence, by (2) and (1) of Lemma 4, H = H*, Thus [H: H,] is finite.
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Let x, = x| H, and L = {g e Ny(H*): 3§ = %}. Then, using Lemma 6,
the dimension of the space spanned by Lwv is finite, since o|H, acts
as ¥, thereon.

Then po(L) on this subspace is a nilpotent unitary subgroup of
GL(n, C) for some n. Hence the connected component of its algebraic
closure is diagonalizable. Thus L has a subgroup L, such that [L: L]
is finite and there is a v, in the span of o(L)v such that ¢v, e Cv, for
all te L,, Now if there is a ge Ny(H*) — H* such that y* = % on
H?N H, then 3°* =y on H, and ge L.

Let t.f. rank K = torsion free rank K = dimension of the simply
connected nilpotent Lie group in which K*/(torsion subgroup of K)
imbeds as a uniform subgroup.

Then t.f. rank L > t.f. rank H and t.f. rank L, > t.f. rank H.
Since G/(torsion subgroup of G) imbeds as a uniform subgroup of a
simply connected nilpotent Lie group, the torsion free ranks of the
subgroups are bounded, so we can begin with an H with the required
properties and maximum rank, and the above argument shows that
there is no ge Ny(H*) — H* such that y* =y on H’N H. In fact,
our argument is stronger-there is no ge Ny,(H*) — H* such that
X = ¥ on H,.

Now let L = {ge H*: y°| H, = x| H,}. Let L‘=[L, L], L™ C H,
and L™ '¢ H, Choose g L™"' — H, and let H, be the group gener-
ated by g and H,., Then H, is normal in L since H, is. Since L c
H*, g* € H, for some positive integer k. Let a be a kth root of x(g*
and define w as in the proof of Lemma 6. Then p(g)w = aw and
o(h)w = x(hyw for all he H,. Thus y extends to a character y, of H,.
Let L, = {te L: y} = y.} and continue this process. Since [H*: H,] is
finite, this terminates with L, = H,, say.

Then for ge H* — L, x*+ x on H, if ge H* — L, ! + % on
H-oH,if geL — L, «++, 3§ #xon H. D H,  ifgeL, , — L,. Thus
X% # Y on H, for any ge H* — L, = H* — H,. From the above
paragraph, x{ # x. on H,C H, for any ge N,(H*) — H*. Thus yi +
%, on HiN H, for ge Ny(H*) — H,. Since H* = H,* this is precisely
the subgroup-representation pair we were seeking. Hence we have
the claim, and thus the “only if” part of the theorem.

Suppose fe 22 (x 1 G) and hf = x(h)f. As in the proof of Lemma
2, let g; be the right coset representatives of H. Let

fig) =1 1=
=0 1%#j

and define f; elsewhere so that itisin 22 (x | G). Then f = X f(g.)f;
and Akf; = y(9.h97")f. where g, is the representative of Hg,h'. Then
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hf = Zf(9:)x(9:hg7")f
= Zy(Rf(9.)fs -

The f; are an orthonormal basis of 52°(x | G). Thus |f(g:)| = | f(9:)]
for all he H. Thus for f to be in 2#(y | (), Hyg; must have a finite
orbit in the cosets where f(g;) = 0 for f to have a finite norm. Thus
there is a finite integer % such that g;h" ¢ Hy;. i.e., g;h"g;'e H. Thus
g:hgite H* for each he H. Thus g;Hg:'c H*. Taking * on both
sides, g;H*g:* = H*, hence g; e N (H*).

But y 1 G is irreducible if and only if i(x 1 G,x 1 G) =1 and
by Theorem 8’ of Mackey [7], this is if and only if

SV it lHENH, x| HENH)=0.

deDf

(1)

Now de D, if and only if de Ny(H*). Hence for d e Ny(H*) there is
an he H?N H such that (k) = x(h). Now

kf(d) = f(dh) = f(dhd™'d)
= Y mf(d) for heH'NH
# x(h)f(d) unless f(d)=0.

Hence f can only be nonzero on one right H coset — H itself. There
it is determined once its value at ¢ is. Hence ¥ has multiplicity 1
in x 1 G|H.

2. Now let use this criterion to show there is representation of
a nilpotent group which is not induced from any finite dimensional
representation (or, equivalently, from any one-dimensional representa-
tion).

Our example will be a representation of the group of 3 x 3 ma-
trices of the form

1
0
0

S =R

z
y | where 2, y, # are integers
1

We will denote this matrix by (%, v, 2) so that
(9,2, v, 2)=(@+vy,y+vy,2+2 +ay).

First we describe a general form for a representation of G. A
particular example of this will turn out to be the required counter-
example. For f in L*S,, \) where S, is the circle and ) is Lebesgue
measure, let

Uz, y, 2)f(t) = ! s(z, t) f(t + xb) where b is not in Qr (Q is
the rational numbers). This is a representation for any measurable
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8: Z %X 8,—S,, where the image circle is the unit circle of the com-
plex numbers, if s satisfies the property

(@) 8@+ ', ) = s(&, )s(a’, ¢ + wb)

Note that, in fact, s(1,%) can be an arbitrary measurable function,
and then s(z, t) is completely defined by ((1)).

Let us now find out which U, are equivalent, and at the same
time show that they are irreducible.

LEMMA 7. The U, are irreducible and U, 1is equivalent to U, if
and only if there is measuradble f: S, — S, such that

si(1, 8) = fOF( + b)si(1, 1) .

Proof. Suppose V:L*S,, \)— L*S,,\) is unitary and U,V =
VU, —i.e., U, (%, 9,2V = VU,(®,y, 2) for all integers z, y, 2. Then

VUsz(O; Y, O)f = Usl(O, Y, O) Vf i

Thus V commutes with multiplication by e** for any integer y. Thus,
by a known theorem of functional analysis (cf. Naimark, [10], p. 499,
I) Vf({t) = v(t)f(t) for some measurable v: S, — S,. Then VU,/(x, 0, 0) =
U, (%, 0,0)V implies w(t)s,(x, t)f(t + xb) = s,(x, )v(t + «b)f(¢ + «b) for
any f in L*S, \) for all e S, and e Z. Thus

v(t)s:(, £) = sy(®, )v(t + @b)

is necessary for equivalence, and by the decomposition of V above it
can easily be shown to be sufficient. It is also easy to see that if
s(z, t) is constructed from s(1, ¢) by ((1)), then this equation is equiv-
alent to v(f)sy(L, t) = s,(1, t)v(t + b), as required. If s, = s,, then this
means that »(t) = (¢ + b) — i.e. v is invariant under translation by
b. But this translation is an ergodic action on the circle. Hence, by
a standard theorem of ergodic theory, v is constant a.e., with respect
to n. Thus V is in fact a scalar multiple of the identity operator,
which shows that U, is irreducible.

Now let us look at a character ¥ and subgroup H. U, is infinite
dimensional. Hence if ¥ 1 G is equivalent to U,, [G: H] is infinite.
Further, by Theorem 3’ of Mackey [7]

1621 6)= dg.fi(xlednH,ledﬂH) .

If d=1(0,0,2),d is central so that H?= H and y* = x. Thus if
(1 G,x 1 G) =1, there can be only one H: H double coset repre-
sentative of the form d = (0, 0, 2). Hence (0,0, Z) c H. From this
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and the fact that [G: H] is infinite, we can see that H = {(nk, np, 2):
n,z in Z}. Call this subgroup H,,. If y is a character on H, since
(0, 0, Z) is central, x((0, 0, 2)) = ¢*** for some w for all ze Z. If T ig
the identity operator, then x T G((0, 0, 2)) = ¢**I. But U,((0, 0, 2)) =
e, Hence w = b if ¥ 1 G is equivalent to U..

LEmMMA 8. If U, is equivalent to x 1 G for ) a character on
H,,, then k = 1.

Proof. Let K = H,. Parameterize the elements of H,, by n and
z. Let [n, 2] = (nk, np, 2). Then [n, z][n/, 2’] = (n + 0, 2 + 2’ + nn'kp).
Then one can check that any character on H,, is of the form y,,
where

Yao(nk, np, 2) = exp t(nae — bu(n — D)kp/2 + bz) .

First let us examine %,, | G|K where %,, is a character on H,, and
k # 0. Then the H,,: K double coset representatives may be chosen
{(=, 0, 0): 0 £ & < k}. One can check that if d = (z, 0, 0), X%, = Yazzps,se
Then by Mackey’s theorem (Mackey, [6], p. 117, Theorem 7.1)

%o 1 GIK =S [2100,0, 2)] 1 K

= 3 10,0, 2)] 1 K
=k

copies of the regular representation of (0, Z, 0) direct product with
r, Where ,(0, 0, 2) = e®. If k=1, this has a commuting algebra
whieh is not abelian. A projection onto one of the copies does not
commute with the isomorphism between the copies. On the other hand,

U0, 9, 2)f(8) = e f(1) ,

which is precisely the regular representation of (0, Z, 0) direct product
with . Using the theorem in Naimark ([10], p. 499, I), it is easy
to see that this representation has an abelian commuting algebra.
Hence to prove the result it remains to dispose of the case where
k=0. Then y,, | GIK = >\v__.. x% by Mackey’s theorem where d =
(2,0,0)if p=1. Fork=0and p # 1 or —1 it is not hard to show,
using Theorem 8’ of Mackey [7], that y,, 1 G is not irreducible. Now
if U, and %,, | G were equivalent for y,, defined on H,, then U,|K
and %, | G|K would be equivalent, and by a theorem of Mackey
(Mackey, [8], p. 103) Lebesgue measure would be measure isomorphic
to the measure which weights each point of the orbit of @ as 1. But
this is a contradiction, since Lebesgue measure would then be atomic.
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This concludes the lemma.

Now some U, are equivalent to ¥ 1 G for some ). In fact we
have the following lemma.

LEMMA 9. If %. is a character on H,,, Y. | G is equivalent to
U, where s(1,t) = et*t?,

Proof. For feF (e | G) let f'(m) = f(0, m,0). Then f— f’
is an isomorphism S#(X,, ] G) — I, and

Yo 1 G(z, ¥, 2)f((0, m, 0)
= f(x, m + y, ?)
= f((x, xp, 2 — xm — xy + 2*p)(0, m + y — xp, 0))
= Xu(®, p, 2 — xm — zy + &°p)f'(m + y — »p) .

Taking Fourier transform,
Yoo T G, 9, 2)F'(t)
= %1 e—“mXub T G(%, Y, Z)f’(m)
= > ey, xp, 2 — xm — xy + ) f(m + y — xp)

= > expi[t(m — y + xp) — br(m — y + xp) + xa — ba(x — 1)p/2
+ bz — wy + «*p)]f'(m)
= i+ exp f[oa — bw(e — 1)p/2 — tap]f'(t + wb).

Thus comparing to the form of U,,

s(1, t) = eite?

COROLLARY. U, s equivalent to a representation induced from a
character on some subgroup if and only if there is some real a and
integer p and measurable f:S,— S, such that

s(1,8) = e F(R)F(E + b)

What we are going to show is that we can choose s(1, ) so that
this equation is impossible.
To do this, we need

LEMMA 7. If Y. %8 a character on H,, and Y., a character on
H,, for p = 0, then X., | G s not equivalent to Y., | G for any choice
of a, b, u, v.
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Proof.

7:(Xab T G: Xuv T G)
= g.fi(x;lbleé N Hip, Xuo | H$ N H,yp)

by Mackey [7], Theorem 3’. But H,, is normal and H,, N H,, = (0, 0, Z).
Hence for no d is [HE: HEN H,,] finite. Thus D; is empty and the
representations are not equivalent.

Let us note what this says according to the equivalence formula
for the U,. Substituting s,(1, t) = ¢ and s,(4, t) = ¢! 7" we find that

(2) e = e f(E) f(E + b)

is false for any measurable f: S,— S, » # 0, and any a, u.

But by Theorem 1, if U, is induced from y there must be an
fes”(U,) such that U,h)f = y(h)f for all he H, the subgroup on
which y is defined. Thus there must be an fe L*(S,, \) such that

U,(n, np, 2)f(t) = expilna — bn(n — 1)p/2 + b2]f(¢) »
i.e.
gtmirttngly ) f(t + nb) = expi[na — bn(n — 1)p/2 + b2]f(t) .
Taking absolute values, this means |f| is constant on orbits under

translation by 6. Hence |f] is constant a.e., by ergodicity. Hence
we can assume f:S,— S,. Then for n = 1, this says

s(1, 1) = e*f(O)f(t + be~*7.
U, is an irreducible representation if s(1, ¢) = ¢*/®%. Then

eic/z — eiae—itpf(t)‘fm)
Then
git+2n) e““f(t)zm .

Sinee 1 + 2p == 0 for any p, this contradicts (2). Hence this U, is not
induced from a character.

3. Although every irreducible representation of a finitely gener-
ated nilpotent group is not induced from a character, it is useful to
know exactly how to obtain those that are. In fact Mackey’s Theorem
3’ of [7] leads quickly to a Kirillov type result. We have

THEOREM 2. Let G be a finitely generated nilpotent group. Then

(1) If H is a subgroup of G,y a character (ome dimensional
representation) on H, and there is no g € NoJ(H*) — H such that y° = %
on H*N H, then y 1 G is trreducible.
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(2) If H 1is a subgroup of G, V a finite dimensional representa-
tion H such that V 1 G is irreducible then V | G is equivalent to a
representation obtained as in (1).

(8) If %, X2 are characters on subgroups H,, H, respectively satis-
fying the condition in (1), them x, 1 G is equivalent to X, T G if and
only if there is a g € G such that

H¥ = H} and 3! = ¥, on H N H,.

Proof. By the theorem of Mackey,
(01 G, 116G) = dg)‘.fi(xflﬂf’ N H,, x| H? N Hy)

where d € D, if and only if both H¢/H? N H, and H,/H!N H, are finite
= H*/H!N H, and H/H!N H,
are finite
= H¥|(H: N H)* and H}/(H!N Hy)*
are finite

= Hi* = H¥* N H¥ and Hy = H* N Hy
= Hi* = H* = H¥ .,

From this (3) is immediate.
If we let ¥, = . = %, then d e D; if and only if de Ny(H*), and
(1) 1is immediate.
(2) is merely Lemma 1.
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