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The main result of this paper establishes an infinite dimen-
sional version of the finite-dimensional handle straightening
result of Kirby-Siebenmann. In order to do this a procedure
is developed for doing surgery on infinite-dimensional mani-
folds. These results are used elsewhere to prove that every
compact Hilbert cube manifold can be triangulated and to
establish the topological invariance of Whitehead torsion.

1. Introduction. A Hilbert cube manifold (or @-manifold) is a
separable metric space which has an open cover by sets which are
homeomorphic to open subsets of the Hilbert cube Q. Some obvious
examples of @-manifolds are (1) open subsets of @ and (2) M x Q,
for any finite-dimensional manifold M. Some nonobvious examples of
@-manifolds are provided by the work of West [17], where it is shown
that P x @ is a Q-manifold, for any locally compact polyhedron P.
We say that a @-manifold can be ériangulated (or is triangulable)
provided that it is homeomorphic to P x @, for some locally compact
polyhedron P.

The main result of this paper is Theorem 7.1, which gives an
infinite-dimensional version of the finite-dimensional handle straighten-
ing result of Kirby-Siebenmann [10]. This result is a crucial step in
the author’s recent proof that Whitehead torsion is a topological
invariant [6]. Theorem 7.1 is also used to establish the following
theorem. We will use the notation R* for Euclidean n-space, and
for any r > 0 we use Br = [— 7, r]* and Int (B}) = (— r, )" to denote
the standard n-cell of side 2r and its interior.

THEOREM. If X is a triangulable Q@-manifold and h: R" x @ — X
s an open embedding, for n = 2, then X\h(Int (B}) X Q) is triangulable.

The above theorem is the main tool used in proving that every
compact @Q-manifold can be triangulated. We refer the reader to [5]
for details of the proof of this result and for a discussion of its
corollaries.

In broad outline the proof of Theorem 7.1 follows the proof of
the corresponding finite-dimensional result. In particular, the idea of
torus homeomorphisms is used. However to achieve the details we
will have to apply a considerable amount of infinite-dimensional ma-
chinery.
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A crucial step in the proof of Theorem 7.1 is Theorem 3.1, where
we establish an infinite-dimensional surgery result. For the most
part, the techniques used in proving Theorem 3.1 differ from those
used in corresponding finite-dimensional situations. In particular we
don’t need Poincaré duality or transversality.

In §2 we give some definitions and notation which will be used
throughout this paper. As mentioned earlier, §3 is devoted to surgery.
In §§4,5, and 6 we establish some technical results which will be
used in §7, where we prove our version of infinite-dimensional handle
straightening. Finally in Section 8 we prove the theorem cited earlier.

2. Definitions and notation. In this section we will describe
some of the basic terminology that will be used throughout this paper.
We will use the representation @ = [[, I;, where each I; is the closed
interval [~ 1,1]. If X is any space and % is any integer, then we
use p, to denote the projection of X x @ onto X x I*, where I* =
I % «eo I,. We also let Q,,, = Iy, X Ise X »o+, for all £ > 0. Let
S* denote the standard 1-sphere in R? and let e: R — S*' be the covering
projection defined by e(x) = exp (wixz/4). Let the n-torus be denoted
by T"=8"x -+« x §* and let e R — T" be the product covering
projection defined by e¢" =¢e X -++ X e.

For any space X and A C X we use Inty (4) and Bdy (4) to denote
the topological interior and boundary, respectively, of 4 in X. As
usual, the subscript will be omitted when the meaning is clear. If
M is an m-manifold (i.e. a finite-dimensional manifold), then oM will
denote the combinatorial boundary of M. We will use definitions and
notation from [8] concerning PL spaces and manifolds, regular neigh-
borhood theory, ete.

A map is a continuous function and embedding f: X—Y is a
homeomorphism of X onto f(X)c—Y. When we say that f: X —Y is
a homeomorphism, we mean that f is a homeomorphism of X onto
Y. If f,9: X— Y are homotopic maps, then we write f=g. We
will denote composition of maps by juxtaposition.

We will also need Anderson’s notion of Property Z [1]. A closed
subset A of a space X is said to be a Z-set in X provided that given
any nonnull, homotopically trivial open subset U of X, U\A is also
nonnull and homotopically trivial. Z-sets in @-manifolds are impor-
tant because of the following result [2]. Homeomorphism Extension
Theorem. Let K,, K, be compact Z-sets in a @-manifold X and let h:
K, — K, be a homeomorphism such that h = id (i.e. h is homotopic to
the inclusion of K, into X). Then h can be extended to a homeomorphism
of X onto itself.

3. Infinite-dimensional surgery. Our main result is Theorem
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3.1, where we establish an infinite-dimensional surgery result. In
Theorem 3.2 we apply a special case of Theorem 3.1 to prove a result
which will be used directly in §7 for handle straightening.

Let P be a compact connected PL space such that P is 1l-con-
nected or #(P) = Z, M be a finite-dimensional PL manifold, and
let : Px Q@ x R— M x @ be an open embedding. We will use this
notation throughout this section. The proof of Theorem 3.1 will be
made more readable by establishing Lemmas 3.1—3.5, each of which
strengthens the preceding one. In the argument that follows we
have explicitly given the details for the case =, (P) = Z. The case
in which P is l-connected is quite similar, and easier.

LEMMA 8.1. There exists an integer k> 0 and a compact PL
submanifold X of M x I* such that

(1) X s connected,

{2) Bd(X) is a PL submanifold of M x I* which is PL bicollared,

(3) Bd (X) consists of exactly two components,

(4) ¢o(Px Q@ x{0hcInt(X) X uCX X @1 Co(P X Q x R).

Proof. Choose an integer k, > 0 large enough so that
P8P x Q@ x {0}) X QT o(P x @ x R).
Choose an open set Uc M x I* such that
PP X @ x {0}) X @t CU X @t CTo(P X @ X R) .

Then let X, c U be a regular neighborhood of any compact connected
PL subspace of U which contains p, ¢(P x @ x {0}), and such that
X, meets oU regularly. Clearly X, is a compact connected PL sub-
manifold of M x I* such that Bd (X)) is a PL submanifold which is
PL bicollared and

(P xQx{0)cInt(X) X @ C X, X Qe To(P x @ X R).

Bd (X)) x @4, is compact and since P is connected it follows that
each component of @(P x @ x R)\(Int (X)) X @) meets Bd (X)) x
Q.- Thus (P x @ x R)\(Int (X)) X @,+,) has only finitely many
components, and it is clear that exactly two of these are unbounded.
Let {4,, -++, A,} be the collection of bounded components of #(P x
Q@ x R)\(Int (X)) X Q;+). Choose k, = k, large enough so that

Diy(A) % Qi C (P x Q x R),
for 1=i¢<p. Let X; =X, x I, X +++ X I, and note that p;,(A4))

1 Bd (X) is PL bicollared means that there exists a PL open embedding A: Bd (X) x
(=1,1) > M x I* such that h(z, 0) = =, for all z€ Bd (X).
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is a relatively open subset of (M x I\Int (X)), for 1 =<+ < p. Put
X=X U (}__Jl pkz(Ai))

and note that X, is a compact connected PL submanifold of M x I*
such that Bd (X,) is a PL submanifold of M x I*:, Bd (X;) PL bicollared,
(P x Q x {0})cInt (X;) X Qs € X, X Qpyes C (P X @ X R), and ¢(P x
Q x R)\(Int (X;) X Q4,+,) has exactly two components.

Let A, B denote the components of ¢(P x @ x R)\(Int (Xp) X Q4,+1)-
We will show how to reduce the number of components of (Bd (X;) x
Qi+ N A. The procedure for reducing the number of components
of (Bd (X;) X @4,+) N B will be similar. Thus choose distinct components
C, D of (Bd(X,) x Q) N A. We can find a path ¢ in A from C to
D (ie.onNC=¢andoND=+g). Choosek;,; = k, large enough so that
Di(0) X Qe C A, Let X{ = X, X I, X +++ x I, and note that p,(0)
is a path in (M x I)\Int (X;) from p,(C) to p, (D). We can use
Pi,(0) to find a PL arc a in (M x I™)\[Int (X;) UM x I*)] from
Di(C) to p, (D) such that one endpoint is in p,,(C), the other is in
P, (D), and the remainder of the arc misses Xj.

In a standard way we can use a to attach a PL handle to X; in
(M x I*)\[Int (X;) U d(M x I*)] which connects the components p, (C)
and p, (D) (i.e. take a regular neighborhood of a in (M x I*)\o(M x
I*) and add it to X7). In this manner we obtain a compact connected
PL submanifold X, of M x I*s such that Bd (X;) is a PL submanifold,
Bd (X)) is PL bicollared, Bd (X;) has one less component than Bd (X;),
(P x Q@ x {0}) < Int (X,) x Qi1 C X, X Qk3+1c¢(P><Q><R) and (P x
Q@ x R)\(Int (X;) X Q,+,) has exactly two components. [For this last
condition we need to assume that %, = 3.].

It is now clear that we can continue to eliminate boundary com-
ponents in this manner to inductively arrive at an integer k = k. and
a compact connected PL submanifold X of M x I* which fulfills our
requirements.

Our next task is to alter the X obtained in Lemma 3.1 so that,
in addition to the properties listed there, if C is a component of Bd (X),
then the inclusion C X Q.. C ¢(P x @ x R) induces an isomorphism
of 7,(C X Q,4,) onto T (¢(P x @ X R)). In Lemma 3.2 below we achieve
the surjectivity of this induced homomorphism and Lemmas 3.3, and
3.4 give an inductive procedure for eliminating the kernel of this
homomorphism, while maintaining the surjectivity.

LeMMA 3.2. There exists an integer k>0 and a compact PL
submanifold X of M x I* such that
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(1) X s connected,

(2) Bd(X) is a PL submanifold of M x I* which is PL bicollared,

(8) Bd(X) consists of exactly two components,

(4) ¢(Px@x{0hcInt (X) X @ CX X @i CH(P X @ X R),

(5) if C is any component of Bd (X), then the inclusion C x
Qi C (P X Q X R) induces a surjection of m,(C X Q1) onto m(¢(P X
Q x R)).

Proof. Using Lemma 3.1 there exists an integer %k, >0 and a
compact connected PL submanifold X, of M x I** such that Bd (X))
is a PL submanifold of M x I\, Bd (X)) is PL bicollared and has
exactly two components, and ¢(P x @ x {0}) CInt (X)) X @4,+:C X, X
@1+ C¢(P x Q@ x R). The procedure is now to “fatten up” X, X
Iy X »oe X I, in M x I, for some sufficiently large integer £,, so
that (5) above is satisfied. Since 7,(¢(P x @ x R) = Z, this amounts
to “fattening up” X, X I, X +++ X I, so that a loop is introduced
into each component of its boundary, where this loop is appropriately
chosen to achieve (5) above. We will not give the details of the
construction since they are similar to the “fattening up” process used
in Lemma 3.5 later on.

LeEMMA 8.3. Let k, > 0 be an integer and let X, C M x I* be a
compact connected PL submanifold of M x I* such that Bd (X)) is a
PL submanifold, Bd (X)) is PL bicollared and has exactly two com-
ponents, and ¢(P x @ X {0}) € Int (X)) X Q441 C Xi X Q11 T ¢(P X @ X
R). Let C, D, be the components of Bd (X)) and let 4,7, be the
inclusions C; X Q1 C¢(P X Q@ X R), D, X QuuCo(P x @ X B). If
a € m,(Cy X Q1) and B €T (D X Q1) satisfy (1) (@) = 1 and (5,)+(8) =
1, where (i), and (5)« are the induced homomorphisms on the funda-
mental groups, then there exists an integer k., = k, and a compact
PL submanifold X, of M x I*: such that

(1) Bd (X)) is a PL submanifold of M x I*,

(2) Bd (X, 4s PL bicollared and has exactly two components,

(3) ¢(PxQx{0}) cInt(Xy) X Qi © Xz X iy T(P X Q@ X R),

(4) if C, D, are the components of Bd (X;) (with notation appro-
priately chosen) and 1, j, are the inclusions C;X @i+ C (P X Q X R),
D, X Qi1 C ¢(P X Q X R), then there exist surjective homomorphisms
s 7, (C, X le-m) — ,(Cy X Qk2+1) and v: w,(D, X Qk1+1) — (D, X Qk2+1)
such that u(@) = 1, v(B) = 1, (i)x% = (1), and (Jo)«¥ = (1)«

Proof. Let A, B, be the components of ¢(P x @ x R)\(Int (X)) x
Q4,+:) and choose notation so that C, X Q1+, CA4,C¢(P X Q X (0, «)) and
D, X Qs C B, C (P x Q@ X (— o0, 0)). Since (i)«(a) = 1and (j)«(B) =
1 we can find maps f,: B:— ¢(P X Q X (0, 0)) and g,: B — ¢(P X Q X
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(_ o, 0)) such that fl(Bd (B%))CCL X le-H’ [flle (BLZ)] = Q, gx(Bd (Bf))C
D, X @11, and [g,|Bd (BY)] = B(here [ ] denotes homotopy class).
Choose k, = max (k,, 5) large enough so that

Do,/ 1(B) X Qpyrs C (P X @ X (0, 0))
and
Di,9:(BY) X @y TP X Q X (— o0, 0)) .

Since k, = 5 we can approximate f, and ¢, by PL embeddings
fa BE— (M x I'\o(M x I*)

and
gs: B:— (M x I'"))\o(M x I*)
such that
(1) foBd(B))CC, X I X ++» X I, and g,(Bd (BY))C D, x I 4, x
+ X Ikzs

(2) foAB) X Qi Co(P X Q X (0, ) and gx(B}) X @41 C ¢(P X
Q X (* 0, 0)),

(3) [((f:.1Bd(BD), 0] = a and [((9.|Bd (B}), 0)] = B, where
((f=1Bd (BY), 0): Bd(B}) —C, X Q1 and ((¢.| Bd (B})), 0): Bd (B}) — D, x
Qi+ are defined by ((f=|Bd (B)), 0)(®) = (f(%), 0) and ((g:|Bd (BY)), 0)(x) =
(9:(x), 0), where 0 = (0,0, -++) € @,y

(4) fu«B) is in general position with respect to C, x I, X
cee X Ikz,

(5) ¢.(B}) is in general position with respect to D, x I, X

« X Ii,. Choose an open set Uc M X I*: such that

(Co X Ly X o+ x L) U fo(BHCU

and U x Q,,+, C¢(P x Q x (0, ©)). Similarly we can choose an open
set V. M x I* such that

D, x Ik1+1 X oeee X Ikz) UgBHcV

and V x @Q,,.:C¢(P X Q@ X (— «,0)). The procedure of Browder now
applies here. That is, Lemma 3.1 of [3] implies that we can exchange
discs to construct a compact connected PL submanifold X, of M x
I*> such that

(1) Bd (X, is a PL submanifold of M x I** which has exactly
two components, one in U and the other in V,

(2) Bd (X, is PL bicollared,

(3) ¢(PxQx{0)cInt(Xy) X Quu C X, X Qs Co(P X Q X R),

(4) if C, and D, are the components of Bd (X,), where C,< U and
D,cV, then the homomorphisms % and v of the statement of the
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lemma exist and satisfy the required properties.

We now use Lemma 3.3 to inductively construct an X which
satisfies the requirements of Lemma 3.1 and which also satisfies the
property that if C is a component of Bd(X), then the inclusion
C X Qi1 C (P X Q@ X R) induces an isomorphism of 7,(C x @,,,) onto
m(¢(P X @ x R)).

LEMMA 3.4. There exists an integer k> 0 and a compact PL
submanifold X of M x I* such that

(1) X s connected,

(2) Bd(X) is a PL submanifold of M x I* which s PL bicollared,

(3) Bd(X) consists of exactly two components,

(4) 6(Px @ x {0hcInt(X) X @ C XX QTP X Q X R),

(5) if C 1s a component of Bd (X), then the inclusion C X @+, C
#(P x Q@ X R) tnduces an isomorphism of 7 (C X Qry1) onto w(¢(P X
Q@ x R)).

Proof. Using Lemma 3.2 there exists an integer k£, > 0 and a
compact connected PL submanifold X, of M x I such that Bd (X))
is a PL submanifold of M x I*, Bd (X)) is PL bicollared and has
exactly two components, and ¢(P x @ x (0}) C Int (X)) X Q4. C X, X
Qi C (P x Q@ x R). Moreover if C, and D, are the components
of Bd (X)) and %;: C, X Q11 T ¢(P X @ X R), ji: D, X Q1. C ¢(P X Q X R)
are inclusions, then (),: 7 (C; X Q) — m(3(P x @ X R)) and (j,)4:
T (D; X Q40 — T((P X Q X R)) are surjections. Let a be a generator
of m(¢(P x @ x R)) and choose a,em(C: X Q+1), Bie€T(D: X Qi 1)
such that (1).(a) = a and (5)«(8) = a. Since 7,(C; X Q) and
7 (D, X Q) are finitely generated we can choose generators v, «--,
Ym of 7 (C: X Q44 and 0, +-+, 8, of m(C, X Q). We now apply
Lemma 8.3 to inductively reduce the number of generators of 7,(C, x
Qi+ and (D, X Qp 41)-

Note that ().(7,) = a” and (5,),(0)) = «*, for some integers r and
s. Thus (1).(ma;") =1 and (4).(0,87°) = 1. Using Lemma 3.3 we
can choose an integer k&, = k, and a compact connected PL submanifold
X, of M x I*» such that Bd (X)) is a PL submanifold of M x I*: which
is PL bicollared and has exactly two components, and 4{P x @ X
{0}) c Int (Xy) X @41 C Xy X @1,1n CH(P X @ X R). Moreover if C,, D,
are the components (appropriately named) of Bd (X,) and i;: C; X @4,+, C
$(P X @ X R), jo: Dy X Q,s1 C $(P X @ X R) are inclusions, then there
exist surjective homomorphisms u: 7,(C; X Q4,+1) — 7:(Cs X Quy41) 5 v: (D, X
Q1) — Ti(Dy X Q1) such that u(v,ar”) = 1, v(8,57°) =1, (22) U= (4,4, and
(J)«v=()«. We have 7,(C, X Q,,+,) generated by w(a), u(v,), ««+, u(V.),
where (7)) = (u(a,))". Thus 7,(C; X Qx,+.) is generated by u(a,), u(7,), « -,
(V). Also we have (1,),(u(a)) = a. Similarly we have 7,(D, X Q4,1
generated by v(8,), v(,), +++, v(0,) and (J,).(v(8)) = a.
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Inductively continuing this procedure we will eventually arrive
at an integer k, = k, and an appropriate subspace X, of M x I*s, with
boundary components C, and D,, and inclusions %;: C; X Q. C (P X
Q X R) and j;: Dy x Q. C¢(P x @ x R), such that m,(C;, x Q) is
generated by an element «, which satisfies (i,).(;) = a and 7,(D, x
@) is generated by an element 3; which satisfies (5;).(8;) = @. This
implies that (1)), and (j,), are isomorphisms.

We now prove that the X of Lemma 3.1 can be constructed so
that the inclusion X x Q,,, C ¢(P x @ x R) is a homotopy equivalence.

LEMMA 3.5. There exists an integer k > 0 and a compact connected
PL submanifold X of M x I* such that

(1) Bd(X) is a PL submanifold of M x I* which has exactly
two components,

(2) Bd(X) is PL bicollared,

(3) (P x Q@x{0p)CInt(X) x @, CX X Qe CTo(P X Q X R),

(4) the inclusion X X Q.. C#P x Q x R) is a homotopy equi-
valence.

Proof. Using Lemma 3.4 we can find an integer %k, > 0 and a
compact connected PL submanifold X; of M x I* such that Bd (X))
is a PL submanifold of M x I which has exactly two components,
Bd (X)) is PL bicollared, ¢(P x @ x {0}) CInt (X)) X Q4+ C Xy X Q41 C
(P x @ x R), and if C,, D, are the components of Bd (X,), then the
inclusions C, X Q1 C¢(P x @ X R) and D, X @, C¢(P x QX R)
induce isomorphisms on 7,. Let A,, B, denote the components of ¢(P x
Q X R)\(Int (X)) X @,+), where notation is chosen so that Bd (4, =
C; X @,+» and Bd (B) = D, X Q-

Consider the following diagram, where all the homomorphisms are
induced by inclusions.

m.(A)
a1 / S~ b
/ \

/ bo \
T (C, X le+1) (PP x @ X R)) .
~

a (B U (X, X Q) be

We are given that b, is an isomorphism, thus a,, a, are one-to-one
and b, b, are onto. If G denotes the amalgated free product of m,(4,)
and 7,(B, U (X, X Q)1)), with the subgroup a,(z.(C, X Q) of m,(A4)
amalgated with subgroup a,(w,(C; X @4,4+,)) of (B, U (X X Q,:1)), then
there exist monomorphisms ¢,, ¢, ¢, such that the two triangles commute
in the following diagram (see [11], p. 32).
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T (A)
@y / N~
/ \

— ¢ ™~
7(Cy X Qi) G.

@y 7T1(Bx U (X1 X Qk1+1)) Ce

Using the Seifert-Van Kampem theorem there exists a homomorphism
d: T, (P(P x @ X R)) — G such that ¢, =db, and ¢, = db, (see [12], p. 114).
Thus b,, b, must be isomorphisms, hence the inclusions 4, Cc (P x @ x
R) and B,c (P x @ X R) induce isomorphisms on .

It follows from [14] (Complement 6.6(b), p. 48) that A, and B,
are dominated by finite complexes. It follows from [16] that A4, and
B, have finite homotopy type if and only if the Wall obstructions
o(A) and o(B, vanish. But since m,(4,) = 7, (B, = Z it follows that
(4, and o(B,) vanish (see [16], p. 67, for references). Thus 4, and
B, have finite homotopy type.

Our strategy will be to use the fact that A, and B, have
finite homotopy type to “fatten up” X, to get our desired X. This
is the first time that we really have to exploit the fact that we are
dealing with infinite-dimensional spaces. Instead of inductively killing
homology groups (as is done in the finite-dimensional situation), we
make the jump from X, to X in one step.

Choose a finite complex K and maps f: 4,—|K|, g: |K|— A,
which are homotopy inverses. Let ¢: C, — A, be defined by i(c) = (e, 0).
Since C, is a compact PL space we can find a PL map a: C,— | K|
which is homotopic to fi: C,— |K|. Let Y be the simplicial mapping
cylinder of «, for appropriate subdivisions of C, and K (see [7] for
details). Then C, and |K| have natural identifications in Y. Let
r: Y — | K| be the retraction which collapses the fiber over each point
of |K| in Y to that point. With this identification we obviously must
have r|C, = @. Then r is a deformation retraction. Thus gr: Y — A,
is a homotopy equivalence. Using results from [2] we can find an
embedding h: Y — A, such that A(Y) is a Z-set and % = gr. Let
7: C.C Y be inclusion and note that

hW=grj=9ga=gfi=(id)i =1,

where id denotes the identity. Thus #|C;: C,— A, is an embedding
such that 2|C, = 4 and A(C) is a Z-set. Using the Homeomorphism
Extension Theorem of § 2 we can adjust % so that the condition 4| C, =
¢ is additionally satisfied.

Now choose k, > k, large enough so that p,,h(Y) X Q,+1 C 4, and
let 8 = p,,h. If k, is chosen large enough, then we can replace g
by a PL embedding 7: Y — M x I*: such that v|C, = (id, 0): C, — M x
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I*2 and 7 is as close to B as we want. Thus v can be chosen so
that ¥(Y) X @i+ 4, and v = 8. By making one more adjustment
to v we can additionally require that

’)’(Y\Cl) N (01 X Ik1+1 X oeer X Ikz) =Q.

Note that (7, 0): ¥ — A, is a homotopy equivalence. If C, = C; x I; 4, X

« X I,, then there is a deformation retraction of C,U(Y) onto
(C.x {0h Uv(Y) = 7(Y). Thus the inclusion (C,U7(Y)) X Q4 C A4,
is a homotopy equivalence. Let

N=(C, x I, ) U(Y) x 1) c M x I**

and observe that there is a strong deformation retraction of N onto
(C,U(Y)) x {1}, thus the inclusion N X Q,,.,C A, is a homotopy
equivalence. Also we have NcC (M x I***)\Int (X;)), where X, =
X, X Iiyys X +++ X I,1,. Choose a regular neighborhood N* of N in
o((M x I=*)\Int (X;)) such that N* X @Q,+; < A,. Clearly the inclusion
N* X @42 A, is a homotopy equivalence. Put k; =k, + 1.

Since (M x I*)\Int (X;) has a boundary collar we can find a PL
embedding #: N* x [0, 1] — (M x I*)\Int (X;) such that 6(n, 0) = n,
for all ne N*, and O(N* x [0,1]) no((M x I™)\Int (X)) = N*. By
choosing 0(N* x [0, 1]) in a neighborhood of N* which is sufficiently
close to N*, we can additionally assume that 6(N* x [0, 1]) X Q4,+:
A,. Let Bd(N*) denote the boundary of N* in o((M x I*)\Int (X))
and let «: Bd (N*) x [0, 1] — N* be a boundary collar of N*, where
J(n, 0) = n, for all neBd(N*). Let us additionally assume that
w(BAN*) x [0, 1) N N= @. Let 7: N\¢Bd(N*) x [0, 1/2)) — [0, 1]
be a PL map such that 7(N) = {1} and 77(0) = 4 (Bd (N*) x {1/2}).
Put X/ = X, U G, where

G=U{n,t)|ne N \y(N* x [0,1/2)) and 0 < ¢ < t(n)/2} .

It is now clear that X, is a compact connected PL submanifold of
M x I'* such that Bd (X)) is a PL submanifold which is PL bicollared,
Bd (X;) has exactly two components, and X, X @, C Xy X Q1 C ¢(P X
Q X R). Let A;, B; be the components of ¢(P x @ x R)\(Int (X5) X Q,+)
and let C;, D; be the components of Bd (X)), where notation is chosen
so that Bd(4) = C; X Qy,rn and Bd (B} = D; X Q1. We can also
choose notation so that B; =B, and D;= D, X L. X +++ X L.
Then it follows that the inclusion C; x @,+; C 4; is a homotopy equi-
valence. Thus we have successfully operated on one side of X,.

It is clear that the above procedure can be repeated to find an
integer &k, > 0 and a compact connected PL submanifold X, of M x
I guch that Bd (X)) is a PL submanifold of M x I** which is PL
bicollared, Bd (X,) has exactly two components, say C, and D,, ¢(P X
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Q X {0) cInt (X) X QuuC X, X @ TP X @ x R), and if A4, B,
are the components of ¢(P x @ x R)\(Int (X,) X Q,+,) such that Bd (4,) =
Ci X Qs and Bd (B) = D, X @, then the inclusions C, X @, C
A, and D, X Q.+, C B, are homotopy equivalences. A well-known
property of ANR’s implies that C, x @,,:; is a strong deformation
retract of A, and D, X Q. is a strong deformation retract of B,
(for example see [15], p. 31). This implies that the inclusion X, x
Qi CP(P x @ X R) is a homotopy equivalence. Then put X = X,
and k = k, to fulfill our requirements.

We are now ready to state and prove our main surgery result.
What we are going to do is modify the boundary of the X which
was obtained in Lemma 3.5. For the reader who is comparing this
process with finite-dimensional surgery, this is the step in which we
exchange handles.

THEOREM 3.1. There exists an integer k > 0 and a compact PL
submanifold X of M x I* such that

(1) Bd(X) 1s a PL submanifold of M xI* which is PL bicollared,

(2) Bd(X) has exactly two components,

(3) ¢(Px@x{0)cInt(X) X Qi CTX X @, T3P x Q x R),

(4) the inclusion X X Q... C ¢(P X @ X R) is a homotopy equi-
valence,

(5) for each component C of Bd(X), the inclusion C X Q,;, C
#(P X Q X R) s a homotopy equivalence.

Proof. Using Lemma 3.5 we can find an integer %k, > 0 and a
compact PL submanifold X, of M x I* such that

(1) Bd (X)) is a PL submanifold of M x I** which is PL bicollared,

(2) Bd(X) has exactly two components,

(3) (P x@x{0)cInt(X) X QuCTX X @, CTo(P xQxER),

{(4) the inclusion X, X Q.+ C¢(P x @ X R) is a homotopy equi-
valence. Let A, B, be the components of $(P x @ x R)\(Int (X)) x
@Q1,+) and let C,, D, be the components of Bd (X)) so that Bd (4, =
C. X Q,+1 and Bd (B) = D, X @+ It is possible that the inclusions
C. X QuC¢(P x Q@ x R) and D, X @, . C¢(P x @ x R) are not
homotopy equivalences. To remedy this defect we now dig back into
X, to produce our required X. This amounts to “fattening up” A4,
and B,. We will only give the details for operating on A,. A similar
procedure will work on B,. Choose notation so that we have A4,C
S(P x @ x (0, =)) and B,C (P x Q X (— oo, 0)).

Choose 7 > 0 so that ¢(P x @ x [— », r]) ©Int (X)) X Q4,+,- Then
the inclusion (P x {0} x {r}) © X, x Q. is a homotopy equivalence,
where 0 = (0,0, --+)€@. Put P, = ¢(P x {0} x {r}), let f: P,— X, x
Qj,+: be inclusion, and let g: X, x @, ., — P, be a map such that f and



70 T. A. CHAPMAN

g are homotopy inverses. Let i: C,— X, X Q;, be the map defined
by i(c) = (¢, 0) and let a: C, — P, be a PL approximation to g¢i (i.e.,

= gi). [We are regarding P, as having a fixed PL structure which
is inherited from P.] Let Y be the simplicial mapping cylinder of «,
where C, and P, have natural identifications in Y, and let »: Y — P,
be the map which collapses the fiber over each point of P, to that point.
Then fr:Y — X, X @+, is a homotopy equivalence and fr|C.: C,—
X, X @4+ is homotopic to i: C, — X, X Q4. (in X; X @4 1y). But ¢(P x
Q X [r, ) is a retract of ¢(P x @ x R). Thus the homotopy joining
t to fr|C; can be realized in (X, X @, ) N ¢(Px @ X [r, o)). Therefore
the main idea of Lemma 3.5 can be used to dig back into X, x @, .,
to produce an integer k, = k, and a compact PL submanifold X, of
M x I* such that

(1) ¢(P x Q@ x {0}) CInt (X)) X Qpprs © X X Quyrs © Xy X Qs

(2) Bd(X,)is a PL submanifold of M x I*: which is PL bicollared,

(3) Bd (X, has exactly two components,

(4) one component of Bd (X, is D, X I} 1, X =+« X I,

(5) if C, is the other component of Bd(X;), then C; X Q.. C
é(P x @ x R) is a homotopy equivalence,

(6) the inclusion X, X @, < 8(P x @ x R) is a homotopy equi-
valence. Thus we have successfully operated on A,. Using a similar
procedure on B, we can produce our desired X and k.

In Theorem 3.2 below we establish a special case of Theorem 3.1
which will also be used in the proof of Theorem 7.1.

THEOREM 3.2. Let M be a PL manifold and let h: R* X Q — M x
@ be an open embedding, where n = 2. Then there exists an integer
k> 0 and a compact contractible PL submanifold X of M x I* such
that

(1) Bd(X) is @ PL submanifold of M x I*,

(2) Bd(X) is PL bicollared,

(3) AB!x QCInt(X) X Q11T X X Qe CTh(BF X @),

(4) theinclusion Bd (X) X Q,.,Ch((B:\Int (By)) x Q) is a homotopy
equivalence.

Proof. Let ¢ = h|(Int (By;)\B%) x @, which may be viewed as an
open embedding of Bd (B") x Q@ x R into M x Q. Using Theorem 3.1
we can find an integer %k > 0 and a compact PL submanifold Y of
M x I* such that Y is PL bicollared, ¥ x @,., C h((Int (B})\B?) x @),
this inclusion is a homotopy equivalence, and Y x Q,., separates
h((Int (B7)\B%) x Q) into two components, one containing A(Bd (By) x
@) and the other containing h(Bd (By) x Q).

Clearly A™(Y X Q.. separates R" x @ into two components, one
component is bounded and contains B! x . Let C be the closure
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of this component and note that C is contractible. Then X = p,i(C)
fulfills our requirements.

4. Simple homotopy type. In this section we develop the
machinery on simple homotopy type which will be needed in the proof
of Theorem 7.1. The first result strengthens a theorem of West [17].

LEMMA 4.1. Let K and L be finite connected complexes and let
FilK|—|L| be a simple homotopy equivalence. Then f x id: | K| x
Q@ — |L| x Q is homotopic to a homeomorphism.

Proof. In [17] West proved that [K| x @ is homeomorphic to
|L| x Q. We will modify West’s argument to give our desired con-
clusion. Actually no new ideas are involved and our proof is just
West’s proof with a little more attention paid to appropriate details.

Using Whitehead [18] there exist pairs (K, L), (Ki, L), -+, (K,,
L,) of finite complexes such that K = K,, L, = L, each |L,;_,| is PL
homeomorphic to |K;|, and each L; is a formal deformation of K; (we
use the language of [13]). For each 7 let us define a map f;: |K;|—
|L;| as follows: f, is inclusion if K,— L, is a formal expansion and
f: is a retraction which is homotopic to the identity if K;— L, is a
formal contraction. For each ¢ let g,_,:| L, .| — | K;| be the given PL
homeomorphism. Then f:|K|— |L]| is homotopic to f,9,_1fn-1n2 "
fig.fo- But in [17] West proved that each f; x id: |K;| x Q@ — | L;]| x
Q is homotopic to a homeomorphism. This clearly gives us our desired
result.

We now use this result to obtain the main result of this section:
It is used in the proof of Theorem 7.1.

THEOREM 4.1. Let K and L be finite connected complexes such
that the Whitehead group Whi(m,((K|)) = 0, let X be a compact metric
space, and let 11 X — | K| x Q,j: X — | L} x Q be embeddings such that
1 and j are homotopy equivalences and i(X), 5(X) are Z-sets. Then
there exists a homeomorphism f:|K| X @ —|L]| x Q such that fi = j.

Proof. Let ¢:|K| x @ —X be a map such that ¢ and g are
homotopy inverses and let h: |K|— | K| x @ be defined by h(z) = (z,
0), where 0 =(0,0,---)e@. If p:|L|x Q@ —|L| is the projection
map, then clearly pjgh: |K|— |L| is a homotopy equivalence. Since
Wh(z,( K[)) = 0 it follows then that pjgh is a simple homotopy
equivalence ([18], p. 43). Using Lemma 4.1 it follows that pjgh x
W {K| X Q—|L| x Q is homotopic to a homeomorphism ¢: | K| X @ —
|L|{x Q. Then ¢it X—|L| x @ is an embedding such that ¢i(X)
is a Z-set. It is easy to see that ¢¢ = j. Using the Homeomorphism
Extension Theorem of §2 we can therefore adjust ¢ to get our desired
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homeomorphism f:|K| x @ —|L| x Q.

5. Immersions. If X and Y are @-manifolds, then we define an
immersion to be a map a: X — Y which is locally an open embedding.
In Lemma 5.1 below we show that if Y is triangulated, then “large”
compacta in X lie in triangulated submanifolds of X. Of course if
X is compact, then this implies that X is triangulated; however our
use of this result is for noncompact X. Using an argument along
the lines of Theorem 8 of [4], one could actually prove that noncompact
X are triangulated. We settle for the weaker version, which has a
more direct proof.

LEMMA 5.1. Let X be a Q-manifold, M be a finite-dimensional
PL manifold, and let a: X — M x Q be an immersion. If K,Cc GC
Kc X, where K, and K are compact, G is open, and « |G is one-to-one,
then there exists a finite-dimensional PL manifold N, a compact PL
submanifold N, of N, and an embedding ¢: N x Q@ — X such that

(1) KcInt(@(N, x )TN, x @G KT ¢(N x Q),

(2) there exists an integer n > 0 and a PL submanifold Y of
M x I such that ag(N, X Q) = Y X Qui1s

(3) a¢|N, x {0}: N, x {0} =Y x {0} s a PL homeomorphism,

(4) for any (n, (g) € Ny X Q we have ag(n, (¢;) = (¥, (¢:), where
y 18 chosen so that ag(n, 0) = (y, 0).

Proof. Note that a(G) is open in M x @ and «a(K,) is a compact
set in @(G). Thus we can find an integer m > 0 and compact PL
submanifolds M,, M! of M x I™ such that M, C Int (M), M! X Qn. C
a(G), a(K,) < M; x Q,,. Since « is an immersion we can choose an open
cover Z of X, = X\(@| @ ™(M; X Q,+.) such that if U* e St (%), then
a|U* is one-to-one, and if Ue% and UN (@| G (M! X Q,...) + @,
then Uc G. [We use St(%) to denote the set whose elements are
U{ViVvez, VNU= @}, where Ue %.] We say that an open subset
W of Q is a basic open set provided that there exists an integer & > 0
and an open subset W’ of I* such that W = W’ x Q.., and such that
W' is a product of intervals. For each z <€ X, we can choose an open
subset A, of X such that

zxed,cU,ez,

for some U,c %, and such that «(4,) is the product of an open
neighborhood in M with a basic open set in @. Choose a finite subset
{A}, of {4,},cx, which covers K\(a|G)™'(Int (M) X @,.). Then we
can find an integer n = m large enough so that for each ¢ we have
a(A;) = B; X Q..1, for some open subset B; of M x I". Put M, =
M %X I, X ++e x I, and let
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N = (U @] 407(B, x {(0) U (@] @) x (0} ,

Ny, = (a|G)™(M, x {0},
Y=M,.

It is clear that the map p,a | N: N— M x I*, which is locally an open
embedding, induces a PL structure on N. Thus N is a PL manifold
and N, is a PL submanifold of N. Let

7= (u AU @] G, X Qus)

and define A, = (@|G)*'(M, X Q,.;). Choose ycA4;,0 <7< p, and
define

’1//‘(’]/) = ((a , Ai)—l(b, 0), Q) € N X Qn+1 ’

where a(y) = (b, q) € (M X I") X Qu+. It routinely follows that  is
a homeomorphism of Z onto N X @,,;. To check this we have to use
the properties of the cover % which are listed at the beginning of
this proof. Then @ = ™ clearly fulfills our requirements (if we
identify Q,,, with Q).

Using the covering projection e™ R"— T" of §2 let D" =
e"([2, 3]") and E™ = ¢"(B?). We will find the following result useful
in the proof of Theorem 7.1.

LEMMA 5.2. There exists an itmmersion & (T"\D") x @ — Int (By) %
Q such that a(e™ x id) | B* x Q: B x Q@ — B X @ 1is the identity.

Proof. On page 48 of [9] it is shown that there exists a map
B: T"\D" — Int (B2) such that B is locally an open embedding and
Be™ | Br: Br — Br is the identity. Then «a = g x id fulfills our require-
ments.

6. Bounded homeomorphisms. A homeomorphism A: B” X Q —
R™ x Q is said to be bounded provided that the set

{lle — yll| M=, ) = (¥, ¢2), for some (z,q)c R" X Q}

is bounded above. In this section we describe the apparatus concerning
bounded homeomorphisms which will be needed in the proof of Theorem
7.1. Our first result is just an observation due to Kirby.

LEMMA 6.1. Let h: T" x Q — T" x Q@ be a homeomorphism and
let h: R* x Q — R* x Q be a covering homeomorphism of h which fizes
lattice points, i.e. h((a), 0) = ((@), 0), for all points (a;) € R™ such that
a; =4 mod 8. Then h is a bounded homeomorphism.
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Proof. We just take the argument given on page 44 of [9] and
multiply everything by Q.

The next simple result gives us conditions which imply the exis-
tence of bounded homeomorphisms.

LEMMA 6.2. Using the notation E™ = e™(BY) (as introduced in
85), let h: T* x @ — T" x Q be a homeomorphism such that h| (T"\E") x
{0} = id, where n = 2. Then h can be covered by a bounded homeo-
morphism h: R* x @ — R" x Q.

Proof. Let X = (T"\E") x {0} and note that X = (¢* x id)~(X)
is connected, since n = 2. Let 7: R" x Q — R" x Q be the covering
homeomorphism of 4 which satisfies h((4, 4, ---,4),0) = (4,4, +-+, 4),
0). The existence of % follows from standard covering space theory.
Since k| X = id it follows that % | X: X — X is a covering transforma-
tion which satisfies 7((4, 4, «+-, 4), 0) = ((4, 4, +++,4),0). Thus 7| X =
id, which implies that % fixes lattice points. It now follows from
Lemma 6.1 that % is bounded.

We now establish the main result of the section. It is one of
the key technical results which will be needed in the proof of
Theorem 7.1.

THEOREM 6.1. Let h: T" X @ — T™ x @ be a homeomorphism and
let h: R* x Q — R* x Q be a covering homeomorphism of h which is
bounded. Assume that A CInt(E") x Q 1is compact, connected, and
h(A) C Int (E") x Q. Then there exists a homeomorphism hi B* x Q—
E" x Q such that h|Bd (E") x Q =id and h|A = h|A.

Proof. Let A = ((e" x id) | B x Q~'(A), which is a subset of
Int (B) x Q. We will now show that there exists a covering trans-
formation ¢: R* x Q — R* x @ such that ¢i(4) cInt(B?) x Q. To see
this note that

a= (e xid)|B* x @ h|A: A—Int (B) x @

gives a lifting of %] A: A —Int(E") x Q. Choose any a,< A and note
that a(a,) = ((¢" x id) | B* x Q)™ 'h(a,) = @, € Int (By) x Q. Now

8 =h(e" xid)|B" x Q) '|A:A—R" x Q

also gives a liftingof h|A: A—Int(E") x Q. Let¢: R"x Q@ —R"x Q
be a covering transformation which satisfies ¢G(a,) = @. Then we
must have ¢8 = «, since A is connected. Thus ¢i(4)  Int (B?) x Q.
We also note that ¢% is bounded. So without loss of generality we
man assume that 7 satisfies £(4) c Int (B?) x Q. We will now construct
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a homeomorphiszn fiB* x @ — B" x Q such that f|Bd (B*) x @ = id
and f|A =h|A. Once this is done we can get our required % by
defining

b= (e" x id)f((e" x id) | B* x Q™.
Since A is compact we can find ¢, 0 < ¢ < 1, such that
Auh(@c(—t )" x Q.

Let v: Int (B") — R” be a radial expansion which satisfies v | B = id.
Let C(Br x @) = (Int (B x @ U (Bd (B*) x {0}) and let p»: B" x @ —
C(B! x Q) be defined by »|Int (B x @ = id and »(z, q) = (z, 0) for
all (x,9)eBd(By) x Q. Give C(B" x Q) the identification topology
determined by p. Since @ is known to be homeomorphic to its own
cone, it follows that C(B" x @) = Q. Define a homeomorphism g:
CB x @ —C(B! x Q) by

_ id on Bd (B x {0}
Y= (v x id)"h(v x id) on Int(B") x Q.

It is clear that ¢ is a homeomorphism because % is bounded. Note
that g|A = h|A. Choose a homeomorphism é:B" x Q — C(B! x
Q) which satisfles 6|B” x @ =id and 6 is close enough to p
so that 6Bd(B") x @ N (B x @ = @. Then 6 induces a homeo-
morphism §: B® X @ — B" x @ which makes the following diagram
commute.

BrxQ@-sBrx@Q

s e

CB x Q) - C(B" x Q)

Note that §| A = g|A = h|A. If § is chosen sufficiently close to p
then we have §|Bd (B") x @ = id (in (BM"\B/") x Q). Using the fact
that Bd (B) x @ is a Z-set in B! x @, the Homeomorphism Extension
Theorem of §2 applies to give us a homeomorphism 6: B* X @ — B X
Q such that 0|B? x Q =id and 6|Bd(B") x Q = §|Bd(B" x Q.
Then f = 67§ clearly fulfills our requirements.

7. Handle straightening. In this section we obtain our infinite-
dimensional version of the handle-straightening results of Kirby-
Siebenmann. The statement of the result is given in Theorem 7.1.

Let M be a finite-dimensional PL manifold and let #: B x Q@ =M X Q
be an embedding such that Bd (2(B; X @)) = A(Bd (By) x Q). Then we
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say that & can be straightened if there exists a homeomorphism f: By x
Q — B x @ and an integer k > 0 such that f|Bd (B)) x @ = id and
hf(Bl X Q) = N X Q,.,, where N is a PL submanifold of M x I*
such that Bd (V) is a PL submanifold of M x I* which is PL bicollared.

THEOREM 7.1. Let M be a finite-dimensional PL manifold and
let h: By x @ — M x Q be an embedding such that Bd (h(B x @) =
hBd (B) x Q. If n =2, then h can be straightened.

Proof. We use the notation D™ and E” of §5. Using Lemma
5.2 let a: (T"\D") x Q — Int(By) x @ be an immersion such that
a(e” x id) | B X @ = id. Then it follows that a| E" x @ is one-to-one.
Also ha: (T"\D") x @ —> M x @ is an immersion. Let

K, = en(BeTu) X Q y
G =e/(Int(B") x Q,
K= (T"e"((1.5,83.5)") x Q.

Note that K, G K, where K, and K are compact and G is open.
Moreover we see that ha |G is one-to-one. Using Lemma 5.1 there
exists a PL manifold N, a compact PL submanifold N, of N, and an
embedding ¢: N x @ — (T"\D") x Q such that

(1) K, CInt(3(N, x @) Co(Ne x Q)CGC K C (N X Q) ,

(2) there exists an integer m > 0 and a PL submanifold M, of
M x I™ such that hag(N, x Q) = M, X Q,,,

(3) hag|N, x {0}: N, x {0} — M, x {0} is a PL homeomorphism,

(4) for any (n,(g))eN, x Q@ we have hag(n, (¢) = (m, (q,),
where m is chosen so that hag(n, 0) = (m, 0).

Note that ¢ | Int (K,): Int (K,) — Int (N;) x @ is an open embedding.
Using Theorem 3.2 there exists an integer &k, > 0 and a compact
contractible PL submanifold Y, of Int (N, x I* such that

(1) BdA (Y, is a PL submanifold of Int (N, x I* which is PL
bicollared,

(2) ¢7He" (B x Q) CInt (Y) x le—l—lc Y, x leﬂ

Co 7 (e"(Int (Byj) X Q) »

(3) the inclusion Bd (Y)) X @+ C o7 {e"(B,\Int (B)) x @) is a
homotopy equivalence.

It follows from the construction of ¢ that hag¢(Y, x {0}) is a PL
subspace of M x I™ x {0jc M x @ (where Y, x {0} C (N, x I") x
Qr,+)- We will construct a homeomorphism f: By x @ — By x @ such
that f|Bd (B;) x @ =1d and f(B; X @) = ag(Y, X Q). This will ful-
fill our requirements. In order to construct f we will first construct
a homeomorphism f: E* x Q — E* x Q such that 7|Bd(E") x Q =
id and f(e*(Br.) x Q) = ¢(Y, x Q). Once we have f we can define
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f by

id on (By\B) x Q
f= af(@|E"™ on Br x Q.

It is clear that ¢7|e"((1.3, 3.7)"\[1.4, 3.6]") x @ gives an open
embedding of ¢"((1.3, 3.7)"\[1.4, 8.6]") x @ into N x Q. Using Theorem
3.1 we can find an integer %k, = %, and a compact PL submanifold Y,
of N x I*2 such that

(1) Y, is PL bicollared,

(2) Y. X QuuiC o7 (e"((1.3, 3.1)"\[1.4, 3.6]") x Q),

(3) the above inclusion is a homotopy equivalence,

(4) Y, x Q,. separates ¢7'(¢"([1.3, 3.7]"\(1.4, 3.6)") x Q) into two
components, one containing ¢ '(e"(Bd ([1.8, 3.7]")) X @) and the other
containing ¢~ '(¢"(Bd ([1.4, 3.6]") x Q).

It is easily seen that (Y, X Q,+.) separates T" x @ into two
components A and B, where Cl(A4) (the closure of A) contains ¢"([1.4,
3.6]") x @ and Cl(B) contains (7" x @)\(¢"((1.3,3.7)") x Q). Let A", B’
denote the closures of the intersections of A, B with e"([1.3, 3.7]"\
(1.4, 3.6)") x @, respectively. Then @7'(4’) and »~*(B’) are the closures
of the components of (4) above. Recalling the comments concerning
ANR’s made at the end of the proof of Lemma 3.5, there exists a strong
deformation retraction of A’ U B’ onto (Y, X Q,+); let D: A’UB' —
A"UB,0=<t<1, be a homotopy which gives such a strong defor-
mation retraction, where D, =id and D, is a retraction of A’ U B’
onto (Y, X Q,+). Let » A”U B — B’ be the retraction defined by
r|B =1id and »|A" = D,|A’. Then define a homotopy D) B'— B’
by D, = rD,| B, for 0 <t < 1. It is clear that D, defines a strong
deformation retraction of B’ onto ®(Y, X @,,;.). Using D; it follows
that Cl(A) is contractible, and it is clearly a @Q-manifold. But it is
known that all compact, contractible @-manifolds are homeomorphic
to @ [4]. Thus Cl(4) = Q. [One is tempted to apply Lemma 4.1
here, but it will not work because it is not known that Cl(4) is

triangulated.] We can easily use similar tricks to show that the
inclusion

(T" % Q\(e"((1.3, 3.7)") x Q) = Cl(B)

is a homotopy equivalence.

Let Y/ =Y, x I, ., X «++ X I, and let Y] = .67 (Cl1(4)), where
D N X @ — N x I is the projection mapping. Put R = (N x I\
(Int (Y!) U Int(Y))). Then R is a compact PL submanifold of N x I*:
and Bd (R) = Bd (Y;) U Bd (Y)). It follows (as above) that if
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C = [T"\e"((L.3, 3.7)" U Int (Bz))] X {0} C¢(R X Qi)
then the inclusion 4: C C ¢(R X @4,.,) is a homotopy equivalence. Let
J: C [T"\(Int (D") U e"(Int (B1)))] < @

denote inclusion, which is also a homotopy equivalence.

If n=38, then 7,(C) = ZH ZPH --- P Z(n copies of Z). If n =
2, then it easily follows that n,(C) = Z*Z*Z (where * denotes free
product). In any case we have Wh (7,(C)) = 0 (see [13], page 373,
for references). Using Theorem 4.1 we can find a homeomorphism

7 [T"\Int (D") U e"(Int (Bi))] X @ — 6(R X Q1)

such that v |C = id. Using the Homeomorphism Extension Theorem
of §2 we can adjust v’ to get a homeomorphism

7: [T"\(nt (D") U e*(Int (B1))] X @ — $(R X Qi)
which satisfies
71C =1id, v(Bd (D") x @) = ¢(¥2 X Qi) »
and
7(Bd (¢"(Bi),) x Q) = ¢(Bd (Y1) X Qi) -

Note that T" X @ = ¢(B X Q4,+,) UCI(A) Ug (Y] X Q4,+1), Where
Cl(A) has already been observed to be a Hilbert cube and @(Y X @,+.)
is a Hilbert cube by Lemma 4.1. By applying the Homeomorphism
Extension Theorem again to

v |Bd (D") x Q: Bd (D") x @ — Bd (Cl(4))
and
7|Bd (e"(Bi})) % @: Bd (e*(Bi))) X @ — ¢(Bd (Y{) X Qi)
it easily follows that v can be extended to a homeomorphism
0:T"x Q—T"x Q.

Using Lemma 6.2 it follows that ¢ can be covered by a bounded
homeomorphism 4: R* x @ — R” x Q. Using Theorem 6.1 the existence
of our required f now follows.

8. Proof of the theorem. We are given a triangulated Q-manifold
X and an open embedding h: R" X @ — X, where n = 2. We want to
prove that X\ (Int (Br) x Q) is a triangulated @Q-manifold.

Let ¢: X— |K| X Q be a homeomorphism, for some countable
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locally-finite simplicial complex K. Then there exists a finite sub-
complex K, of K such that ¢i(Bf x @) < Int (| K,| X @) and Bd (| K,
is a PL subspace of |K| which is PL bicollared. Let us regard [ K,|
as a PL subspace of some I* (where I" N | K| = | K,|), with Bd (| K,]) <
Bd (I") and Int (| K,|) < Int (I*). Choose a regular neighborhood M of
|K,| in I™ which meets Bd (I") regularly. Then we get a new com-
plex ([L| = MU (|K|\|K,|), which is a countable locally-finite simplicial
complex containing M as a PL subspace.

It follows from [17] that there exists a homeomorphism : [L| %
Q@ — K| x Q such that « is the identity on (|L|\M) x @. Then
v7l¢: X — | L| x @ is a homeomorphism which satisfies

v igh(Br x Q) Int (M) x Q.

Since M is a PL manifold our result now follows from Theorem 7.1.
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