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There are a number of results that yield information
about the structure of a finite group G, based on information
about its local subgroups; that is, the normalizers of its p-
subgroups. Alperin and Gorenstein defined a notion of control
of transfer, fusion, or strong fusion in a group G by a con-
jugacy functor W, or rather by N(W(P))9 where P is a Sylow
3>subgroup of G, and proved that if W controls transfer, fusion
or strong fusion in every local subgroup of G, then W con-
trols, respectively, transfer, fusion or strong fusion in the
entire group G.

This paper gives a definition of control by two functors,
W and V, or rather N(W(P)) and C(V(P)), and proves that
when W contains the center, and when V is contained in the
center and satisfies another condition, control in certain local
subgroups implies control in the entire group G. In particular,
the result on transfer says that P Π Gf, the focal subgroup
of G, can be factorized whenever their focal subgroups can be
properly factorized. From theorems of Glauberman, Gold-
schmidt, and Thompson which give conditions under which a
group can be factorized, it is possible to obtain results which
say that the focal subgroup of G can be factorized whenever
certain local subgroups are ̂ -solvable and satisfy the hypotheses
of the factorization theorems.

l Introduction* We use throughout the notation of [5]. In

particular, H is a subgroup of G is denoted by H<^ G, with H< G

reserved for proper subgroups. We fix G a finite group, p a prime

dividing the order of G, and P a Sylow ^-subgroup of G.

DEFINITION 1.1. ([2], p. 242) Let Sίf be the set of all non-identity

p-subgroups of G. A conjugacy functor W on £(f is a mapping from

Sίf to £ίf satisfying, for each He£ί?

(a) W(H) ^ H, and

(b) W(HX) = W(H)X for all xeG.

DEFINITION 1.2. A central functor V on <§ίf is a conjugacy functor

satisfying, for any H, Ke ^f

(a) V(H) ^ Z(H)

(b) if Z(H) ^ Z(K), then V(H) ^ V(K).

REMARK 1.3. Examples of conjugacy functors include the identity
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map W{H) = H, and the Thompson subgroup, J(H), which is the
subgroup of H generated by all Abelian subgroups of H for which
the minimal number of generators is maximal. Examples of central
functors include the center Z{H) and the functor V(H) = ϋn{Z{H)),
the subgroup of H generated by all pnth powers of elements of Z{H).

We now define a special notion of fusion.

DEFINITION 1.4. Let A and B be subsets of G, and Kt and K
subsets of G with Kx S K, and g e <A, J5> such that K? S K. We say
g takes Kx to K? in K via A and B if we can write g — gxg2 gn

with Qι e A or B, and K^'"tti S K for all ί = 1, 2, , n That is, we
require that JBLΊ be conjugate to KJ by a series of conjugations so
that each intermediate step lies in K.

REMARK 1.5. (a) If g takes Kt to Kf in K via A and B, and if
K^L; AQC, B^D and if JSΓaSΛΓi then g takes ίΓ2 to Kξ in L via
C and D.

(b) If 0! takes K± to ίΓ2 in K via A and 5, and g2 takes iΓ2 to
K3 in iΓ via A and B then the product gλg2 takes JKi to ΛΓ8 in K via
A and B.

Using this notion of fusion, we can now define local control, and
state our main theorem.

DEFINITION 1.6. Let W be a conjugacy functor on <%*, and V a
central functor on Sίf, and L a subgroup of G with order divisible by
p. We say, respectively, that W with V controls

(1) transfer in L
(2) fusion in L
(3) strong fusion in L

provided there exists a Sylow p-subgroup Q of L such that
(l) Q n u = (Q n JV,(iF(Q))') (Q n cL(F(Q))θ
(2) Whenever X and 3Γ are subsets of Q conjugate in L, then

they are conjugate by an element of (NL(W(Q)), CL(V(Q))) which takes
X to Y in Q.

(3) Whenever X and Y are subsets of Q, with F = Xa for some
α e i , then a = cb, with ceC L (X), 6e <iSΓz(TΓ(Q)), CL(V(Q))}, and 6
takes X to Y in Q.

DEFINITION 1.7. A local subgroup of G is a subgroup of the form
L = N(H), for some Hz£ίf. Define .Sf as the set of those local
subgroups satisfying L = N(H), with Z(P) ^ H £ P.

We now state our main theorem, relating local and global control
by two functors, W and V. Note that we require Z(H) <£ W{H) and
V(H) ^
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THEOREM 1.8. Let W be a conjugacy functor on ^f satisfying
Z(H) ^ W(H) for all He £$f, and let V be a central functor on Sίf.
Assume that W with V controls

(1) transfer,
(2) fusion, or
(3) strong fusion

in all local subgroups L e Jίf. Then W with V controls, respectively,
transfer, fusion, or strong fusion in G.

We use Theorem 1.8 (1), on control of transfer, to obtain fac-
torizations of the focal subgroup, P Π G', when the local subgroups
in Sf are all p-solvable and satisfy certain other conditions. This is
discussed in §6.

2* Assumed results • We need a number of concepts and results
from Alperin [1] and Alperin and Gorenstein [2]. Throughout, as in
the previous chapter, G is a finite group, and P is a Sylow ^-subgroup
of G. Also, W is a conjugacy functor on Jg^, as in Definition 1.1,
and in addition, satisfies W{H) ^ Z{H) for all

DEFINITION 2.1. ([1], p. 236) A family is a collection of pairs
(H, T) where H is a subgroup of P and T is a subset of N(H).

DEFINITION 2.2. ([1], p. 237) A family F is called a conjugation
family provided that whenever A and B are subsets of P and B = A9

for some g eG, then there exist elements (Hu TJ, (H2, T2), , (Hn, Tn)
of F, and elements xl9 x2, ••-, xn, and y of G satisfying

(a) g = xι xny
(b) Xi e Ti, for i = 1, 2, , n, and y e N(P)
(c) A ^ Hl9 Aχί ' Zi ^ Hi+1, for ί = 1, . . , n 4- 1.

We now define a particular conjugation family which we use for
the remainder of the paper.

DEFINITION 2.3. ([1], p. 225) If Q and R are Sylow ^-subgroups
of G, then we say Q Π R is a ίαme intersection provided that NQ(Q Π i?)
and NB(Q Π i?) are Sylow p-subgroups of JSΓ(Q Π i?)

DEFINITION 2.4. ([2], p. 245) If H is a subgroup of P, we set
- H, M,{H) = NP(H), and N^H) - ΛΓ(JΪ), and define recursively

, and N

REMARK 2.5. As noted in [2], page 245, the sequence M^H) is
strictly increasing until it stabilizes at P. Also, if M^H) = P, then
Wi+ι(H) = W(P), so that the sequence Wι{H), though not necessarily
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increasing, stabilizes at W(P).

DEFINITION 2.6. ([2], p. 245) If H is a subgroup of P, we say
that H is well-placed in P with respect to W if M^H) is a Sylow
p-subgroup Ni(H), for all i.

PROPOSITION 2.7. ([2], p. 252) If His a subgroup of P, then some
conjugate of H is well-placed in P.

DEFINITION 2.8. ([2], p. 246) We define the family F to consist
of all pairs (H, T) such that there exists a Sylow ^-subgroup S of
G so that H — P Π S is a well-placed tame intersection, and

(a) T = C(H) if CP(P ΠS)£PnS
(b) T - N(H) if CP(PnS) SPΠS.

REMARK 2.9. Note that (P, N(P)) e F. This fact eliminates the
need for special mention of y e N(P) in Definition 2.2.

PROPOSITION 2.10. F is a conjugation family.

Proof. Section 2 of [2] is devoted to a proof of this fact.
In the next section, we use the following result, which applies

to all conjugation families.

PROPOSITION 2.11. ([1], p. 238) If P* is a subgroup of P, and
if [P, N(P)] g P* < P Π G', then there is an element (H, T) of F such
that [H, T] £ P*.

3* Control of transfer• We now turn to the proof of Theorem
1.8 (1), on local control of transfer.

LEMMA 3.1. Let P* bea subgroup of G satisfying P Π ι
P* < PfΊ G\ Then there exists a non-identity subgroup K of P such
that

(a) Z(P)£K
(b) P Π L is a Sylow p-subgroup of L — N(K)
(c) P(]L' S P*, α^d
(d) P Π M' £ P* wAere Λf - N(W(P Π L)).

Proof. By the definition of conjugacy functor, if xeN(P), then
TF(P) - TF(P*) = TΓ(P)β, so that N(P) £ N(W(P)). Thus, P Γ) iV(P)' ^
P Π N(W(P))', and the hypotheses of this lemma imply that P Π i\r(P)' ^
P*. Thus all the hypotheses of Proposition 2.11 are fulfilled, and
we conclude that there exists (H, T) eF such that [H, T] S P*



LOCAL CONTROL AND FACTORIZATION OF THE FOCAL SUBGROUP 117

Now, if CP{H) S H, then by the definition of F, Definition 2.8,
we have T = C(H), so [H,T]^P*> contrary to our choice of (H, T).
Thus, we must have CP(H) ^ H and T = N(H).

Thus, Z(P) <£ H, so (a) is satisfied for K = H. Furthermore, as
[H, N(H)] ^ N(H)'f and [iϊ, N(H)] ^ P, we have [H, N(H)] ^ P Π N(H)'.
Thus, [H, iV(iϊ)] ^ P* implies PίΊ JSΓ(JEΓ)' ̂  P*, as required in (c).
Also, i ϊ is, by choice, a tame intersection in P, so NP(H) = P Π N(H)
is a Sylow p-subgroup of N(H), as required in (b). Thus, (a), (b),
and (c) hold for K = H.

Define TF« - TFi(fl), so that T^ = # . We shall find an m so that
Wm satisfies (d) as well as (a), (b), and (c).

First, we show that Z(P) ^ Wi for all u For i = 1, we have
seen that Z(P) ^Wx = H. For i > 1, as W^ ^ P, we have Z(P) ^

^O Π P, so Z(P) ^ (̂iSr(TF,) 1Ί P). By our choice of W, we have
^ W(L) for all L e ^ T , so

z(P) ^ ^(iSΓίTΓί-O n ? ) ^ " ^ ( ^ ( T F ^ O r\P)= w,.

Thus, Z(P) ^ T7i for all i, so each ^ satisfies (a).
As -ff is well-placed, each M^H) is a Sylow p-subgroup of

That is, NP(Wi(H)) = PΠ (N(Wt(H)) is a Sylow p-subgroup of N(Wi(H)).
Thus, (b) is also satisfied for each Wt.

Now, as noted in Remark 2.5, Wi = TΓ(P) for all i sufficiently
large, and, as we have Pf)N(W(P))' £ P*, (c) does not hold for Wt

with i sufficiently large. However, (c) does hold for i = 1. Thus,
we can choose m so that (c) holds Wm, but not for Wm+1. But Wm+ι =
W(PΠN(Wm)), so PniSΓ(TFm + 1)'^P*, as (c) fails for Wm+1, and so
PΠ N(W(PO N(Wm))Y ^ P*. But this last inequality states that
contition (d) holds for TFm.

Thus, setting K — Wm completes the proof of the lemma.
We now complete the proof of the theorem on control of transfer.

Proof of Theorem 1.8 (1). Assume that the conclusion of the
theorem is false. Then we have

p n N(W(P)y P n C(V(P)y < pn σ.

Call the group on the left P*. Then, as P* < P Π G', we may apply
Lemma 3.1, and find subgroups K, L, and M as defined in the lemma.

As L is a local subgroup, the hypotheses of our theorem imply
that W with V controls transfer in L} so there exists Q, a Sylow
p-subgroup of L, satisfying

Qf)L'=[Qf] CL(V(Q)Y] IQ Π NL(W(Q)Y] .

By conjugacy, this statement holds for all Sylow p-subgroups of
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L, so we may take Q = P Π L, which is a Sylow ^-subgroup of L by
(b) of the lemma- Thus, using the fact that M = N(W(PΓiL)), the
above equation becomes

(p n L) n 2/ = [(P n L) n c z(F(P n £))'] [(P n L) n

which yields

(3-2) p n u = [P n cx(F(P n L)) ' ] [P n ( i n L ) Ί .

From (d) of the lemma, P n l ' ^ P * , so certainly P n (MΠ L)' ^
P*. Also, from (a) of the lemma Z{P) ^ iΓ, and K^ L, so Z(P) ^
P n ί / g P , which implies that Z(P) ^ Z(P Π I/), and so C(V(P Π £)) ^
C(V(P)). Thus, P n CL(F(P Π L))' ^ P n C(F(P))' ^ P* by the defini-
tion of P*. Hence, from (3 2), we have

contrary to (c) of the lemma.

This contradiction completes the proof of Theorem 1.8 (1).

4. Control of fusion* Before proving Theorem 1.8 (2), we need
first the following lemma. Recall that, if g e <A, B} takes X to Y
in P, then Definition 1.4 requires that the intermediate steps lie in P.

LEMMA 4.1. Assume the hypotheses of Theorem 1.8 (2). Assume
further that we have Q, a Sylow p-subgroup of G, so that P Π Q is
a well-placed, tame intersection and CP(P Π Q) ^ P ίl Q, and that we
have X and Y subsets of PC) Q, satisfying X9 — Yfor some g e N(P Π Q).
Then X and Y are conjugate by an element of <iV(W(P)), C(V(P))}
which takes X to Y in P.

Proof. Let W, = W,{P ΓΊ Q), M, = M,(P n Q), and N< = N,(P n Q),
as defined in Definition 2.4, and let C< = <iVi, C(F(P))>. We show by
induction on i that there exists c< e C{ satisfying Y = XCί and c< takes
X to Y in Λf* via iV* and C(V(P)). Since, by Remark 2.5, ΛΓ* =
JW(TΓ(P)) and Mi = P for i sufficiently large, this will suffice.

For i = 1, we have N, = iV(P Π Q), and iŜ  ^ Clβ Thus, g e Cl9

and X9 = Γ and ^ takes X to Γ in Λfί via JVΊ and C(F(P)), SisgeN,
and I , 7 g P n Q ^ Λfx. Thus, cx = g.

Assume, by induction, that XH = F for some ct e Ci9 and ct takes
X to F in M^ That is, we have c* = ^ αn, with α* e Λ̂  or
akeC(V(P)), for fc = 1, 2, •••,%, and, if we call Xk = Xαi ^, then
we have X = Xo, Γ = XTO, and Xfc ^ Λf4 for A; = 1, , n.
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It suffices to show that, for each k = 1, , n, we have Xk_x and
Xk conjugate by an element bk e Cί+1 which takes Xk^ to Xk in Mi+ί

via Ni+1 and C(V(P)). If we show this, then the product bλ ••• bn

takes X to Γ in Mi+1, as required.
If akeC(V(P))> then X ^ and Xfc are conjugate by an element

of Ci+19 namely ak itself, and, as Mt ̂  Mi+1, we see that ak takes
Xfc_! to Xfc in Λf<+1 as required. In this case, let bk = αfc.

So we may assume ake N{. We now claim that W with V con-
trols fusion in JV<. To establish this, we need only prove that Z(P) <£
TΓi, since iV̂  = i\Γ(TF>) and we are assuming that W with F controls
fusion in every local subgroup of the form L = N(H) with ίΓ(P) 5g
H^P.

Since CP(P fl Q) ^ P Π Q, by hypothesis of the lemma, we have
Z{P) ^ PΠQ = Wx. Assume now, by induction, that Z{P) ^ Ws.
Then Z(MS) ̂  W(MS) = Wi+ι, by hypothesis on W. But Z(P) ^ TΓ, ^
My ̂  P, so Z(P) ^ Z(Mj) and Z(P) ^ TΓy+1. Thus, for all i, Z(P) ^
TΓί, and TF with V controls fusion in Nt as claimed.

Thus, as we have Xk^ and Xk, subsets of Mi9 conjugate by ak e Ni
and Mt is a Sylow ^-subgroup of Nif as H is well-placed, we conclude
that Xjc^i and Xfc are conjugate by some element

which takes Xk_x to Xk in Λf< Also, ^(P) ^Pf]Ni = Mi9 so
Z(M<) and F(P) ^ W ) . Thus C(V(Λf4)) ^ C(F(P)), and

δ* e ̂ ( T F ^ ) ) , C(F(P))> = Ci+ι ,

and since M̂  ̂  Λίi+1, it follows that bk takes Xfc_1 to Xfe in Mi+1, as
required. This completes the induction on i and the proof of the
lemma.

We now complete the proof of Theorem 1.8 (2).

Proof of Theorem 1.8 (2). Let Xand Y be subsets of P conjugate
in G. We wish to show that X and Y are conjugate by an element
of <iV(W(P)), C(V(P))} which takes X to Y in P via iV(PΓ(P)) and
C(F(P)).

Using the conjugation family F of Definition 2.8, we know there
exist Xo, Xi, , Xn, subsets of P, and (Hiy Γ*) e JF such that X = Xo,
Xn = Y, and X ^ and X* are contained in Hi and conjugate by an
element of TV

To prove our theorem, it suffices to prove that for each i =
1, , n, X^, and X{ are conjugate by an element gt e (N(W(P)), C(V(P))}
taking X{_λ to X̂  in P, for then their product g^z gn
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C(V(P))) takes X to Y in P via N(W(P)) and C(V(P)).
If CP(Hi) S H{, then Γ, - C(H{)9 by definition of F, so X ^ - X,,

and the assertion holds. In this case, set gt — 1.
If, on the other hand, CP(Hi) <£ Hif we may use Lemma 4.1, for

Hi is a well-placed, tame intersection of P with some other Sylow
p-subgroup of G. Thus, we can apply Lemma 4.1 to X^ and Xif

and conclude that X^t and X{ are conjugate by an element

gie(N(W(P)),C(V(P))}

taking X{_t to Xt in P.
Thus, ^^2 * 9n takes X to Γ in P as required, and the proof

of Theorem 1.8 (2) is complete.

5* Control of strong fusion* To prove Theorem 1.8 (3), on
control of strong fusion, we need first the following theorem.

THEOREM 5.1. Assume the hypotheses of Theorem 1.8 (3). Let
X be a subgroup of P, and g e N(X). Then we can write g — ab,
where a e C(X), b e (N(W(P)), C(V(P))} and b takes X to X in P.

REMARK 5.2. Proving Theorem 5.1 will suffice to prove Theorem
1.8 (3). For if X and Y are subsets of P, with X9 = Y for some
geG, then, by Theorem 1.8 (2), there exists he (N(W(P)), C(V(P))}
such that Xh = Y and h takes X to Y in P. Thus, gh~ι e N(X).
We may apply the theorem above to the subgroup <X>, and as gh~ι e
JV«X», we have gh~' = ab for some aeC((X» = C(X) and be
(N(W(P)), C(V(P))} and b takes X to Y in P. Then g = abh, where
a e C(X), bh e (N(W(P)), C(V(P))} and bh takes X to Y in P, as required
to prove the theorem on control of strong fusion.

To prove Theorem 5.1, we need the following lemmas. For the
remainder of this section assume the hypotheses of Theorem 1.8 (3),
namely that W with V controls strong fusion in all local subgroups
of the form L = N(H) with Z(P) ^ H ^ P.

LEMMA 5.3. // H is well-placed in P, and Z{P) <£ H, and if
geN(H), then ge<N(W(P)), C(V(P))), and g takes H to H in P.

Proof. Let W, = W^H), M, = Mi9 N< - N^H), and

C4 - <Nif C(V(P))} ,

as before. For geN(H), we shall show by induction on i that g e Ct

and that g takes H to H in Mi9 via N{ and C(F(P)). As before, this
will suffice to prove the lemma.

For i = 1, we have g e N(H) = N^H), so that geC^ Further-
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more, H ^ NP(H) = M^H), so that g takes H to H in M1 as required.
Assume now, by induction, that geCi and that g takes H to H

in M<. Thus, g - 6X bn, bk e N< or bk e C(F(P)), and fΓ»i'"6* ^ AT, for
ft = 1, 2, , w. Define i70 = #> and £Γfc = Hbί"'bk, for ft = 1, , n,
so that Hn = H.

We now show, by induction on ft, that bk takes ί^-i to Hk in
Λfί+1 via iVί+1 and C(V(P)). This will imply that g = bx ••• bk takes
if = flo to H= Hn in Af<+1 via Ni+1 and C(F(P)), which will complete
the induction on i and the proof of the lemma.

Assume ft = 1. If bt e C(V(P)), then bλ e Ct. As M{ ^ Λf<+1, we
have &! taking iϊo to iϊx in Mi+1 via ΛΓ, and C(V(P)) as required.

Thus, we may assume that he'Ni
We now show that W with V controls strong fusion in Nt. By

the hypotheses of the lemma, we need only show that Z(P) <£ Wif as
ty = N(Wi). By hypothesis, Z(P) S H — WΊ Assume now, by induc-
tion, that Z{P) ̂  Wj. Since Z{M3) ^ W(MS) by hypothesis on TF, and
W i+1 = W(M,), we have Z(MS) ^ Wy+1. As Z(P) ̂  Λtf> ̂  P, we have
Z(P) ^ Z(Md), so Z(P) ^ TFi+1, completing the induction on j . Thus,
W with F controls strong fusion in Ni for all i.

Now flo*1 — Hly where HQ and flj are subsets of Mi9 a Sylow p-
subgroup of Ni7 and so by control of strong fusion, we conclude that
δι = c1d1, where c,e C(H), d,e {NiWiM,)), CiViMi))), and d, takes HQ

to ^ in Λf<. Now since V(P) ̂  Z(P) ^ H by hypothesis, C(iϊ) ^
C(Z(P)) ^ C(F(P)), so c.eCiViP)). Also, as we have seen, Z(P) ^
ikf, ^ P, so Z(P) ^ ZίAΓ,), and C(F(Af<)) ^ C(F(P)), which implies that
^ e ^ T F ί i l f ί ) ) , C(F(P))> = Ci+1. Furthermore, we have M, ̂  Mi+1,
and so 6i = c ^ e C ί+1, and takes Ho to J3i in Mi+1 via iVί+1 and C(F(P)),
as required, completing the case ft = 1.

We now consider the case ft > 1. We assume, by induction, that
for all r < ft, the result is true for br; that is that br takes Hr_γ to
Hr in AΓί+1 via Ni+ι and C(F(P)).

If bkeC(V(P)), we are done, as in the case ft = 1, for then 6*. e
C ί + 1 immediately.

So we may assume that bk e Nt. As we have seen above, W with
F controls strong fusion in Nif and so bk = c^^ with cA e C{Hk_^,
dk e Ci+1, and dk takes ΐZfc.! to Jϊfc in Mi+ί via ΛΓi+1 and C(V(P)). Now
c4 G α ί ί ^ O , and C(Hk_d = C(Hh**'"b±->) = C{H)h^'"h^. Thus, we have,
for some c e C(H)

(5.4) ck = δfci.! δΓ^δi δfc-i .

By our induction hypothesis on ft, each 6r, for r = 1, •••, ft — 1
takes #,._! to ΐΓr in ilfi+1. Thus, each 671 takes jHΓr to Hr_γ in M i + 1

via iSΓ<+1 and C(V(P)). Furthermore, as V(P) ̂  Z(P) ̂  ί ί , we have
C(H) £ C(V{P)), so ceC(H) also takes i ϊ to H in Λf<+1 via iV<+1 and
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C(V(P)).
We can now calculate the effect of ck on Hk_x by examining the

series of elements on the right-hand side of equation 5.4, and we find
that ck takes Hh^ to Hfc_1 in Mi+1 via NM and C(V(P)).

Thus, bk = ckdk takes Hk_x to if* in Mi+1 via JV<+1 and C(V(P)),
completing the induction on k and the proof of the lemma.

LEMMA 5.5. Let P Π Q be a well-placed, tame intersection, with
CP(PIΊQ)^PΠQ, for Q some Sylow p-subgroup of G. Let H be a
subgroup of P Π Q, let x e N(P Π Q), and suppose that for any g e N(H),
we can write g = ab, where aeC(H), be(N(W(P)), C(F(P))>, and b
takes H to H in P. Then for any heN(Hx), we can write h = cd,
with c e C(HX) and d e ζN(W(P)), C(V(P))) and d takes Hx to Hx in P.

REMARK 5.6. This lemma shows that if Theorem 5.1 holds for
such a subgroup H, then it holds for any conjugate of H by an ele-
ment of N(PpιQ).

Proof of lemma. Let ft e N{HX). Then hx~λ e N(H), and so hx~ι =
ab, where aeC(H), be(N(W(P)), C(V(P))} and 6 takes H to JBΓin P.

Since CP(PΠ Q) ^ PΠ Q, we have Z{P) ^Pf)Q. Thus, the hypo-
theses of Lemma 5.3 are satisfied, with P Π Q in the place of H, and
so, asa GiV(PΠ Q), we have α?e<JV(TF(P)), C(F(P))> and g takes Pf]Q
to P ΓΊ Q in P. Since i ϊ and i P are subsets of P Π Q, the subset
property noted in Remark 1.5 shows that x takes H to Hx in P.
Similarly, ar1 takes Hx to i ϊ in P.

Now hx~λ = αδ, so ft = (α*)^*)- As aeC(H), axC(Hx), as required.
Furthermore, 6" e (N(W(P)), C(F(P))>, and as we have seen that x"1

takes H* to jff in P, that δ takes JEf to H in P, and that x takes if
to Hx in P, we can see that bx takes ί P to Hx in P, by the transi-
tivity property of Remark 1.5.

Thus, ft = (ax)(bx) is the required factorization of ft, and the proof
is complete.

LEMMA 5.7. Let Y be a well-placed subgroup of P with Z{P) ^ Y,
and assume that Theorem 5.1 holds for every subgroup V of P such
that Y < V. Then Theorem 5.1 holds for Y.

Proof. Since Z(P) S Y9 it follows that CP{Y) S Y- Hence, Y<
Y-CP(Y). Call Γ* = Γ Cp(Γ), and note that, by hypothesis, the
theorem holds for Y*.

Now Y is well-placed in P, so NP(Y) is a Sylow ^-subgroup of
N(Y). Also, Y-C(Y) is normal in iSΓ(Γ), so NP(Y) Π Γ C(Γ) is a
Sylow ^-subgroup of Γ C(F). But NP(Y) f) Y-C(Y) = N(Y) f) Pf)
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Γ C(Y) = P n Γ C(Y), as Γ C(Γ) ^ N(Y). Furthermore, P f]
Y-C(Y) = Y-CP(Y) = Γ* by the Dedekind identity. Thus, F* is
a Sylow p-subgroup of Y C(Y), which is a normal subgroup of N(Y).
So we may apply the Frattini argument, and conclude N(Y) ^
Y C(Y) N(Y*).

But, as Y ^ Γ*, certainly 3f ^ N(Y*), so the above relation may
be rewritten as N(Y) ^ C(Γ) iV(F*).

Thus, if geN(Y), we can write g = c-n, for some ceC(F),
weΛΓ(Γ*). Now Theorem 5.1 holds for Y*f so n = ab, for some
αeC(7*), 6G<ΛΓ(TF(P)), C(F(P))>, and b takes Γ* to Γ* in P.

Now Z(P) ̂  Γ*, since CP(F) ^ Γ*, so C(Y*) ^ C(Z(P)) ^ C(V(P)),
and so αe <JV(TF(P)), C(F(P))>, and takes Γ* to Γ* in P. But
neN(Y), and thus the subset property of Remark 1.5 shows that n
actually takes Y to Y in P.

Thus, g = c-n, with C G C ( F ) , and we <iSΓ(TF(P)), C(F(P))>, with
w taking 7 to Y in P. Thus, the theorem holds for Y, and the
lemma is proved.

Proof of Theorem 5.1. We complete the proof of this theorem
by induction on \P: X\. If X = P, then N(X) ^ N(W(P)), by the
definition of conjugacy functor, and so Theorem 5.1 is true immediately.

Thus, we may assume that X < P, and, by induction, that the
theorem is true for all subgroups Y of P such that \P: Y\ < \P: X\.

We show first that there is some conjugate Y of Xf where Y is
a subgroup of P, such that the theorem holds for Y. By Proposition
2.7, some conjugate Y of X is well-placed in P. If Z(P) ^ Y, then
Lemma 5.3 shows that the theorem holds for Y. If Z(P) gί Y, then
our induction hypothesis and Lemma 5.7 show that the theorem holds
in Y. In any case, there is a conjugate Y of X such that the theorem
holds in Y.

Since the family F, described in Definition 2.8 is a conjugation
family, and since (P, N(P)) e F, we have the following, using Defini-
tion 2.2:

There exist subgroups Xu , Xn of P, with Y = Xlf and X = Xw,
and Sylow ^-subgroups Q1? •••,<?» of G, satisfying

(a) P Π Qi is a well-placed, tame intersection
(b) Xί and Xi+1 are contained in P Π Qi,
(c) if CP(P Π Qi) S P ΓΊ Qi, then Xi and Xί+1 are conjugate in

C(PnQί), and
(d) if CP(P f) Qi) ^ P f) Qi, then Xi and Xί+1 are conjugate in

We show by induction on j that the theorem holds for all X3 .
As 1 = Xn9 this suffices to prove the theorem.

For j = 1, we have X1 = Y, and we have chosen Y so that the
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theorem holds in Y. Now suppose that the theorem holds in X3 . If
(c) is true for the index j , then X5 and Xj+1 are conjugate in C(P Π Qi),
and, as they lie in PΠ Qiy they are equal, and the theorem holds for

If, on the other hand, (d) holds for the index j , then Lemma 5.5
shows that the theorem holds for X3 +1, as a conjugate of X3- by an
element of N(P Π Q*).

This induction completes the proof of Theorem 5.1, and so, of our
result on control of strong fusion.

6* Factorizations of the focal subgroup* We first need the
following result, which says that a factorization of a p-solvable group
yields a factorization of its focal subgroup.

LEMMA 6.1. Let G be a p-solvable group, P a Sylow p-subgroup
of G, and suppose G = <iί, K, L>, where P g H, and P ^ K, and L
is a normal pf-subgroup of G. Then P f l G ' = (P Π H') (P Π K').

Before we turn to the proof of Lemma 6.1, we prove a preliminary
lemma.

LEMMA 6.2. If P is a Sylow p-subgroup of the group (?, and M
is a subgroup of G with P ^ M, and N is a normal pf-subgroup of
G, then PNf] M'N = (Pί)M')N.

Proof. Call E = PN n M'N. Then E ^ PN, and N ^ E, so, by
the Dedekind identity, E=(PΠ E)N. Also, PnE=Pf)PNnM'N =
P Π M'N, so E = (P Π MfN)N. Since P Π Λf'JVΓ is a p-group, and i\Γ
is a #/-group, this factorization of E shows that P Π M'iV is a Sylow
p-subgroup of E. Also, since Mr is a normal subgroup of M and
P ^ M, we have that P ΓΊ If' is a Sylow p-subgroup of M\ and hence
also of M'N. Since P C) M' ^ E, and S ^ ΛΓiV, we have P Π Λf' a
Sylow p-subgroup of £7 as well. But P f l i l ί ' ^ P ί l Λf'iNΓ, and each
of these is a Sylow p-subgroup of E. Hence, P f] M' = P f] M'N, and
so E = (P Π ilf')ΛΓ, as required.

Proof of Lemma. 6.1. We proceed by induction on the order of
G. Thus, we assume that the lemma is true of any group whose
order is less than \G\.

Let N be a minimal normal subgroup of G. Define G = G/N,
P - PN/N, H = HN/N, K - KN/N and L = LN/N. We claim that
these homomorphic images satisfy the hypotheses of the lemma. By
elementary properties of homomorphic images, G is a p-solvable group,
G = {3, K, L>, and all the hypotheses of our lemma are satisfied. As
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\G\ < |G|, our induction hypothesis shows that the conclusion of the
lemma holds for G; that is, that P Π G' = (P Π H') (P Π K').

If we consider the corresponding equation for the pre-images in
G of these subgroups of G, using the fact that G' = (G/JV)' = G'JV/JV,
we get

(6.3) PJV n G W - (PN n #'JV). (PJV n Γ J ί ) .

Define F = PΛΓ Π G'iV. Now JV is a minimal normal subgroup of
the p-solvable group G, so N is either a p-group or a p'-group. We
consider each of these cases separately.

Case 1. JV is a p'-group. Using, in turn, G, then if, and then
K for Jkf in Lemma 6.2, we have PN Π G'JV = (P Π G')N, and PJV Π
H'N = (PΠ H')N, and PJV Π K'N = (P n i θ ^ . Using these equations
to rewrite (6.3), we get

F= (PΠ G')N and F = (P n #') (P Π # ' ) #

The first of these equations shows that P Π G' is a Sylow p-sub-
group of F, and the second that (P Π H') (P Π Kf) is a Sylow p-sub-
group of F. But as (P Π H*) (P Π K') ^ P Π G-, we must have P Π
G' = (Pn H'). (Pn Kf) as required.

2. N is a p-group. As N is a normal ^-subgroup of G, we
have N^ P, so PiV = P. Thus, (6.3) becomes

F= Pn G'isr- (Pn H'N) (Pn E 'JSΓ) .

Now, we have PΠ G'N^ G'ΛΓ and N^Pn G'N, so by the
Dedekind identity, P ΓΊ G'iNΓ = (P Π GW ΓΊ G')iV. But P n GW Π G' =
P Π G', so P n G'iSΓ = (P Π GO-ZV. Similarly, P n JBΓiNΓ = (P Π i ϊ ' ) ^ and
P Π K'N) = (P Π i Π N Thus, the equation above becomes

F = (p n G*)N = (P n H') (P n x ' ) ^ .

Now ^ is either an eccentric or a central factor of G; that is
either [N, G] > 1 or [N, G] - 1.

If [ΛΓ, G] > 1 then, as JV is a normal subgroup of G, [iSΓ, G] is a
normal subgroup of G, and [JV, G] ^ iV, and so, by the minimality
of N, we have [JV, G] = JV. We claim that in this case JV <̂
( P Π i ϊ ' ) . ( P n i Γ ) .

Let neN. Then, as N = [N, G], there exist meJV and geff
satisfying n = [m, ^]. As G = <£Γ, JΓ, L>, we may write ^ = g^ . . . gnf

with each î G H, K, or L.
We show by induction that any such commutator [m, g1 gk] e

(PnH')(PnKf), where each g^H9K9 or L. This will suffice to
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establish the claim above.
For i = 1, we have [m, gt]. If gt e H or K, then [m, #J e N, since

JV is normal, and [m, &] e iΓ, or K' since meN^P^HΠK, so
[m, &] e iV Π K' ^ P Π K\ If & e L, then [m, gfj e N Π £, as each of
these subgroups in normal; but they are of relatively prime order, so
[m, g1]eNΠL = l. Thus in any case [m, g,] 6 (P Π H')(P Π JBΓ')

For i — k, assume the result holds for i = k — 1. Call h = gλ gk_x.
Then [m, ̂  gk] = [m, %fc] = [m, βrfc][m, h][[m, h], gk]. As in the case
above [m, ̂ ] e (P Π J ϊ ' ) ^ ΓΊ if'), and, since [m, h] e N, we have

[[m,,h],9k]e(PΓιH')(PnK')

for the same reasons. From our induction hypothesis,

[m, h] e (P n fΓ')(P Π JΓ'). so [m, ̂ , , gt] e(PΠ H')(P Π

This completes the induction, and shows that when [N, G] > 1, we
have N £ (P n £Γ')(^ Π ίΓ') Since i\Γ ̂  P n G' as well, (6.3) becomes
Pf)G' = (Pf)H')(Pf) K'), as required-

The remaining case is [AT, G] = 1; that is, JV ̂  ^(G). From (6.3),
we can calculate

| P n g Ί - \F\-\PnG'ΠN\
\N\

and

_ \F\.\(Pf)H').(PΠK')f)N\
\(PΓ)H')-(PΓίK')

\N\

Now, to show that P Π G' = (P Π -ff') (P Π ̂ ')» it suffices to show
that their orders are equal, and for this, it is clear from the equa-
tions above, it suffices to show that, PΓ\G'ΓiN=(PΓίH') (Pn K') n iV
Certainly, (P n H*) (P Π Kr) Π N ̂  P n G' Π JV.

A transfer theorem ([5], page 416) states that Pίlff 'Π Z(G) ̂  P'.
But N^Z{G), soPnG'ΠN^P', and P ^ H; we have P' ^PnH'.

Thus, Pn G' n iv^ Pn ff', and so Pn G' n N= (PnH')iPnκ') n ΛΓ,
as required. This completes the proof of Lemma 6.1.

We can immediately apply this result to obtain a factorization of
the focal subgroup from Theorem 1.8.

THEOREM 6.4. Let G be a group, P a Sylow p-subgroup of G,
and W a conjugacy functor satisfying Z{H) ^ W(H) for all He £ίf,
and V a central functor. Assume that for every local subgroup L e Jίf,
L is p-solvable, and there is a Sylow p-subgroup Q of L such that
L = <N(W(Q))> C(V(Q))> OAL)>. Then
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PΠ G' = (Pfl N(W(Q)Y)(PΠ C(V(Q)Y) .

Proof. The theorem follows directly from Lemma 6.1 and Theorem
1.8 (1), our result on local control of transfer.

We now quote several theorems which give conditions under which
a group factorizes.

DEFINITION 6.5. A group H is involved in a group G if there
are subgroups K and L of G, with K a normal subgroup of L, such
that H is isomorphic to L/K; that is, if H is a homomorphic image
of some subgroup of G.

THEOREM 6.6. (Thompson [6]). Let G be a p-solvable group, and
P a Sylow p-subgroup of G, and suppose one of the following holds:

(a) p ^ 5
(b) p = 3 and SL(2, 3) is not involved in G.
(c) p = 2 αwd &L(2, 2) is wo£ involved in G.

Then G = NG(J(P)). CG(Z(P)). OP,(G).

THEOREM 6.7. (Glauberman [3], p. 19). Lβί T be a Sylow 2-
subgroup of G, cmd C(O2(G))^O2(G), and either

(a) \N(H)/C(H)\ < 6 /or everi/ four-group H in Z(O2(G))> or
(b) ίfee symmetric group on four letters is not involved in G.

Then G = (N(J(T)), C(Z(T))}.

THEOREM 6.8. (Goldschmidt [4]). Suppose P is a Sylow p-sub-
group of G, <md (C1Z(P))SO,(G). TΛβw G - W ( P ) ) C(0l(Z(P))).

We can now combine any of these three results with Theorem
6.4, and obtain conditions on the local subgroups which imply that
the focal subgroup factorizes.

THEOREM 6.9. Assume that every local subgroup Le £f is p-
solvable, and satisfies the hypotheses of

(a) Theorem 6.6.
(b) Theorem 6.7, for p = 2.
(c) Theorem 6.8.

Then, respectively,
(a) and (b) PnG' = (Pn N(J(P))')(P Π C(Z(P)Y), or

n

Proof. Apply Theorem 6.4, with TF(iϊ) = J(£Γ), and, in the first
two cases, V(H) = Z(H), and V(H) = ϋ\Z{H)) in the third case.
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