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In which it is proved that H~OLQ) n C(K) = R(K).

l Introduction* Let if be a compact subset of the complex
plane C, and let R(K) be the uniform closure in C{K) of the rational
functions with poles off K. Denote by Q the set of nonpeak points
of R(K), let λρ be the area measure λ = dxdy restricted to Q, and
let H°°(XQ) be the weak-star closure of R(K) in L°°(XQ). Our first goal
is to prove the following theorem.

THEOREM 1.1. H°°(xQ) n C(K) = R{K).

As an immediate consequence, we can state the following more
concrete version of the result: If fe C(K), and if there is a bounded
sequence fn in R{K) converging pointwise almost everywhere {dxdy)
t o / , then/ejβ(2f).

Theorem l l will be essentially a corollary of the following theorem
of A. M. Davie [5].

DA VIE 'S THEOREM. If /eiP°(λρ), there is a sequence fn in R(K)
such that H/JI ^ [|/||, and fn{q) —>f(q) for almost all (dxdy) points
qeQ.

Actually, Davie states explicitly the above result only for those
feH°°(XQ) which are weak-star limits of bounded sequences in R(K).
It follows then from the Krein-Schmulian theorem that the space of
such functions is weak-star closed, and so must coincide with H~(XQ).

We will offer three proofs of Theorem 1.1. The first proof, given
in §3, depends also on Vitushkin's description of the functions in
R(K). In §§4 and 5, we present two "abstract" proofs of Theorem
1.1, which are dual to each other. All three proofs use a localization
procedure.

In §§6 and 7, some extensions of Theorem 1.1 are obtained by
the methods of the abstract proof. These are pursued in the setting
of uniform algebras.

The first extension is a qualitative form of Theorem 1.1, which
is inspired by a theorem of Sarason ([12]; see also [16], [6]). If he C(K),
then the distance from h to R{K) is defined by

d{h, R{K)) - inf {||Λ - f\\:feR(K)} ,

and the distance d(h, H°°(XQ)) is defined similarly. The results of § 6,
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applied to R(K), will yield the following theorem, which has Theorem
1.1 as an immediate consequence.

THEOREM 1.2. d(h, R{K)) = d(h, ίP°(λρ)) for all heC(K). Equiv-
alently, ball [R{K)L Π LX(XQ)] is weak-star dense in ball R(K)L.

B. Cole had observed (unpublished) that a result like Davie's
theorem could be used to show that every nonpeak point q e Q has a
representing measure which is absolutely continuous with respect to
XQ. The results of §7, again specialized to the algebra R(K), include
the following extension of Cole's result.

THEOREM 1.3. For each q e Q, the representing measures for q
which are absolutely continuous with respect to XQ are weak-star dense
in the set of all representing measures for q.

Theorem 1.1 can also be derived immediately from Theorem 1.3
and the abstract Hardy space theory. In fact, combining Theorem
1.3 with a theorem from [10, p. 334], we obtain the following.

COROLLARY 1.4. If feC(K), and f lies in the closure of R{K)
in Lι(v) for all representing measures v for points q eQ satisfying
v < < XQ, then feR(K).

In connection with Theorem 1.3, we mention that it may be im-
possible to find representing measures for R{K) which are boundedly
absolutely continuous with respect to the area measure λρ.1 In fact,
Wilken [15] has shown that there are compact planar sets K with the
following property: If ΛeL^λρ), then the set of points qeQ which
have representing measures boundedly absolutely continuous with
respect to hdXQ has zero area.

In §8 we discuss various other situations in which the abstract
results apply.

In §§9, and 10 we characterize the function in H°°(XQ) in terms
of analytic capacity, using the methods of rational approximation
theory. The characterization is parallel to Vitushkin's theorem, and
when coupled with Theorem 1.1, it actually yields a sharper form
of that theorem. For example, if / is continuous on the plane, then
it was known that f\Ke R(K) whenever there is a(δ) —> 0 (δ —>0) such
that for any square S of side δ;

1 J. Brennan has pointed out that such an example is also provided by Sinanyan's
example [A. M. S. Transl. 74 (1968), Theorem 2.4 on p. 114] of a compact K such that
R(K) Φ C(K), while R(K) is dense in LP(K, dxdy) for all p < oo.
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If /(«)*
where 7 denotes analytic capacity. We are able to replace the condi-
tion by

I \ f(z)dz ^ const y(S\K) .

In §11 some applications of the characterization of JT0 0^) are given.

2* Notation and background* The notation will be as in [7],
except that Δ(z, S) will denote the open disc with center at z and
radius δ. All norms will be supremum norms. All measures are finite
regular Borel measures. If / is a bounded function defined on a subset
E of C, then the oscillation of / on E is denoted by

osc (/, E) = sup l\f(z) - f(w) \:z,weE} .

We repeatedly use the following lemma, whose two assertions are
dual to one another.

LEMMA 2.1. // τeRζK)1, then its Cauchy transform

τ{z) = \dτ(Q/(ζ - z)

vanishes a.e. (dxdy) off Q. If h is a compactly supported bounded
Borel function, then

J JCJC\Q Z — ζ

is in B(ϋΓ)

Proof. See [1, p. 171 Corollary 3.3.2].

This lemma implies that any τeR(K)L is supported on Q and
that R{K) consists of all continuous extensions to K of the functions
in R(Q). The set Q is the smallest subset of K, modulo sets of zero
area, for which either assertion of 2.1 is true. It is for that reason
that we study convergence on Q rather than on, for instance, the
interior K° of K.

If g is a smooth function with compact support, the localization
operator Tg is defined by

Tgf(Q - 0(ζ)/(Q + - (( ^ r
7Γ J J Z — L
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where / is any bounded Borel function. We use the following facts:
Tgf is analytic wherever / is analytic; Tgf is analytic off supp g9 the
closed support of g; and / — Tgf is analytic on the interior of the
level set βΓ^l). If / is a compact subset of the Riemann sphere
disjoint from supp g, then Tgf e R(K U J) whenever / e R(K) [or, more
precisely, whenever f\κ e R(K)]. If g is supported by a disc Δ(zo;δ)>
then

dg.
dz

For a discussion of these and other properties of the operator Tg, see
[7, VIII. 7.1].

If S is a set of measures, then we write r < < S if τ < < v for
some veS. The second and third proofs of Theorem 1.1 depend on
the following equivalent formulation of Davie's theorem, which we
state in slightly more generality than necessary.

DAVIE'S THEOREM (alternate version): Let τ be a measure on K
such that τ <<R(K)L. Then the restriction map H°°(XQ + |τ | ) —•
iJ°°(λρ) is an isometric isomorphism.

Proof. Choose τ'eR(K)L such that τ < < r \ Let B and Bf

consist respectively of the pointwise bounded limits of R(K) in
H°°(XQ + \τ\) and H°°(XQ + | r ' | ) , and consider the restriction mappings
Bf —>B~+ H°°(X^. Davie's proof of Theorem 1 in [5] shows that the
composite map Br —>H°°(λρ) is an isometry. Since the map B'—+B is
onto, the map B-^HCO(XQ) is an isometry. The Krein-Schmulian
theorem then shows that B is weak-star closed, so that B must coin-
cide with H°°(XQ + | τ | ) .

3* First proof of Theorem 1*1* Vitushkin has shown that the
following conditions are equivalent, for a continuous function / defined
on C:

( i ) feR(K)
(ii) For every zoeC, every δ > 0, and every smooth function g

supported on Δ(zQ;δ),

< 2πδ dg_
dz osc ; δ))Ί{A{zQ) δ)\K) .

(iii) There exists r ^ 1 and a positive function a(δ) tending to
zero with δ, such that

^ δa(δ) dg_
dz 0; rδ)\K)



BOUNDED APPROXIMATION BY RATIONAL FUNCTIONS 133

whenever δ > 0, z0 e K, and g is a smooth function supported on J(z0; <5).
For a discussion of the analytic capacity 7 and of Vitushkin's

theorem, see [14] or [7] The following lemma extends the implica-
tion "(i) ==> (ii)" of Vitushkin's theorem to cover functions in H

L E M M A 3 . 1 . Let XQ be the area measure on the nonpeak points
Q of R ( K ) , and let f be a bounded Borel function on C. If fe H ( )
then

2πδ o s c ; δ)\K)

for any smooth function g supported on a disc J(z0; S).

Proof. Since

π

we must study Tgf and find the appropriate estimate for (TgfY(o°).
Let / be the complement of J(z0; δ) in the Riemann sphere. Then

the nonpeak points of R(K U J) all lie on Q U J. We intend to apply
Davie's theorem to the weak-star closure ί?°°(λρu/) of R(K\JJ) in

Let {fn} be a bounded sequence in R{K) which converges pointwise
a.e. to / on Q. Then the functions

Fn(ζ) = g(ζ)fn(ζ) + -Mi IM-ψ-dxdy
π IJQ z — ζ dz

belong to R(K U/), because by Lemma 2.1 the difference fn — Tgfn

belongs to R(K[j J). Moreover, {Fn} coverges pointwise boundedly
to the function

z — ζ δ

so that this function belongs to H°°(XQ (J J)* Again by Lemma 2.1,
we find that Tgf efΓ^λρuj). By Davie's theorem, there is a sequence
{hn} of functions which are analytic on KU /, such that \\hn\\ ̂  || Tgf\\,
and {hn} converges pointwise a.e. to Tgf on Q \J J The inequality

leads in the limit to

\(TgfY(oo)\^\\Tgf\\y(J(z0;δ)\K) .

If we substitute here the expression above for {Tgf)
f(oo) and the
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standard estimate (§2) for || Tgf\\, we obtain the estimate of the lemma.
That completes the proof.

Now Theorem 1.1 follows immediately from Lemma 3.1 and
Vitushkin's theorem. Indeed, if fe C(K) Π ίΓ°(λρ), then Lemma 3.1
shows that any bounded continuous extension of / to C satisfies con-
dition (ii) of Vitsushkin's theorem, so that feR(K).

4. Second proof of Theorem 1.1. Theorem 1.1 can be easily
proved using some functional analysis instead of Vitushkin's theorem.
Our original such proof (§5) was simplified by B. Cole, and we pres-
ent his proof in this section. His key idea is to localize annihilating
measures rather than functions. Recall from §2 that each τ < < R(K)1

is supported on Q, while supp XQ — Q.

LEMMA 4.1. Let τ < < R(K)1. For each pesuppr and each
-(\00 + | r | ) ,

τ — ess lim sup | F(z) | ^ \Q — ess lim sup | F(z) | .
z->p

Proof. Set c — λρ — ess lim sup \F{z) |. Let ε > 0, and let Δ be
a small disc centered at p such that \F\ ^c + εa.e. (λρ) on Q Π Δ.
Let g be a smooth function supported on Δ such that g = 1 near p,
and set

τ' = gτ - λlire(z)dxdy .
π dz

Then τflR(K Π Δ), and there are several ways to see this. One way

is to note that r' = gτ (see the proof of the Bishop splitting lemma

in [7, p. 51]). Another way is to observe that \Tgfdτ = \fdτf for

all continuous functions/, while TgfeR(K) whenever feR(KΠ Δ).
Since r = 0 a.e. off Q, we have τ' < < λρnJ + | r | , and the restric-

tion F\Δ is in the weak-star closure of R(K f] Δ) in L°°(λ.ρnJ + | r ' | ) .
Applying the alternate version of Davie's theorem (§2) to the algebra
R(KΠ Δ), we obtain |JP| ̂  c + ε a.e. (λρnJ + |τ ' | ) . Since τ coincides
with τ' near p, we obtain

r —ess lim sup \F(z) | = τ'-ess lim sup \F(z) \ ̂  c + ε .
z-+p z->p

Letting ε—>0, we obtain the estimate in 4.1.
Now to prove Theorem 1.1, we suppose that feH^Xq) Π C{K).

To show that feR(K), it suffices to show that \fdτ = 0 for each
τ1R(K). So fix such a r, and choose F e ίP°(λρ + | r |) such that
F = / a.e. (dλρ). If p 6 Q, then
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λρ-esslimsup|/(z)-/(j>)| = 0 .

By Lemma 4.1,

τ—ess lim sup | f(z) — f{p) \ — 0 , pe supp τ .
z-+p

It follows that F = /a.e. (dτ). Since τ is orthogonal to H°°(XQ + | r | ) ,

we conclude, that 0 = \Fdτ = \fdτ, as required.

5* Third proof of Theorem 1Λ. In this section, we give
another functional analytic proof of Lemma 4.1, thereby obtaining a
third proof of Theorem 1.1. We begin with two lemmas.

LEMMA 5.1. If feH°°(k^ is analytic at peC, then [f — f(p)]l

Proof. This is trivial if p £ K, and it follows by a simple limiting
argument if p e dK. If p e K°, and / is a weak-star limit of the net
{fa} in R(K), then [/ — f(p)]/(z — p) is the weak-star limit of the net
{[fa - fa{p)]l{z - V)} in R{K). That covers all cases.

LEMMA 5.2. Let / e i ϊ 0 0 ^ ) , and let peK. Suppose there are
δ > 0 and c > 0 such that \f\<.c a.e. (dXQ) on Δ(p\ δ). Then there
is /o G jff°°(λρ) such that \\f0 \\ ^ 9c, α^d f — fQ extends to be analytic in a
neighborhood of p.

Proof. Let g be a smooth function supported in J(p; δ) such that
O^f/^ 1, 0 = 1 near p, and \dg/dz\ ^ 4/<5, and set /0 = TJ. The
properties of Tg and the standard estimate for Tgf show that /„ has
the desired properties.

Alternative proof of Lemma 4*1 Let τ<<i?( J K') 1 , let Fe
H°°(XQ + |Γ |) and let peQ. Suppose the assertion of 4.1 is false for
F; that is, suppose

T — ess lim sup | F(z) | > λρ — ess lim sup | F(z) \ .
z-^p z-*p

By replacing F by a constant multiple of some high power of F, we
can assume that

λρ—ess lim sup | F(z) \ < 1
z-*p

! > 100 .

Let / be the projection of F onto ίZ"°°(λρ). Then there exists δ > 0
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such that I/I < 1 a e. (dXQ) on A(p; δ). Let /„ be the function given
by Lemma 5.2 and set fx - f0 + (/ — fo)(p). Then / — Λ is analytic
at p, and (/ — fd(p) — 0 By Lemma 5.1, there exists & e H°°(XQ)
such that f — fι— (z — p)h. Since | |/ 0 | | ^ 9, we obtain the decom-
position

Using the alternative version of Davie's theorem (§2), we obtain
Fl9 HeH°°(XQ + \τ\) such t h a t

F=F1+(z-p)H, HFJI^IO.

Consequently τ — ess lim sup^p | F{z) | <̂  10. This contradiction estab-
lishes the lemma.

The proof of Theorem 1.1 now follows as in §4.

The proof of Lemma 4.1 given here shows that if ψ is any com-
plex-valued homomorphism of H°°(XQ), and φ(z) = p (a point of Q), then

(**) \φ{f) I ̂  λρ - ess lim sup \f(z) \ , fe H~(XQ) .
z-*p

In abstract terms, this means that the ίZ"°°(λρ)-convex hull of the fiber
over p of the spectrum of L°°(XQ) includes the entire fiber over p of
the spectrum of ίZ"°°(λρ).

To verify (**), one proceeds as follows. Suppose fe H°°(XQ) satisfies
XQ — ess lim sup^p \f(z) \ < 1. Applying φ to the decomposition (*),
we obtain \φ(f)\ = |<P(/i)| ^ 11/ill ^ 10. The same estimate applies
to φ(fn) = φ(f)n for all n, so that in fact \φ{f)\ ^ 1, the estimate
(**) now follows easily.

Finally, we mention that the proof of §4 can be regarded in some
sense as the adjoint of the preceding proof. Indeed, the measure τf

produced in §4 coincides with T*τ. The proof of §4 is shorter and
avoids the estimates for the operator Tg. It does not however seem
to yield the additional information concerning the spectrum of H°°(XQ).

6* Distance estimates* In this section and the next, we fix a
compact space X, a uniform algebra A on X, and a positive measure
σ on X. The weak-star closure of A in L°°(σ) will be noted by H°°(σ).
First we make the following elementary observation.

LEMMA 6.1. Let z be a measure on X, such that the restriction
map H°°(σ + \ z |) —> H°°(σ) is an ίsometry. Then the map is onto, and
it is a homeomorphism between the weak-star topologies inherited from
L°°(σ + \z\) and L°°(σ) respectively.
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Proof. An application of the Krein-Schmulian theorem shows
that the range of the restriction map is weak-star closed in L°°(σ),
and hence it must coincide with H°°(σ). Now H°°(σ + |r |) and H°°(σ)
can be regarded as the dual spaces of U(σ + IrQ/fA1 Π U(σ + |r|)]
and Lι{σ)l[AL Π Lι(σ)\ respectively, and the restriction map is the
dual of the map

hdσ + [A- n L\σ)\ -^hdσ + [A1 f) L\σ + \τ |)J .

Since the restriction map is an onto isometry, the predual must also
be an onto isometry, and the restriction map is a weak-star home-
omorphism.

We will be interested in measures τ which have the following
property:

(#) supp τ S supp σ, and for all F e H°°(σ + \ τ |) and x e supp τ ,

τ—ess lim sup | F(y) | <: σ—ess lim sup | F(y) | .

Recall (see Lemma 4.1) that this property is enjoyed by any measure
τ < < R(K)L

y in the case X = K, A = R(K)> and σ = XQ. As a simple
consequence of the definition, we obtain the following.

LEMMA 6.2. // τ satisfies (#), then the restriction map £Γ°°(σ +
|r I) —> H°°(σ) is an isometry. Moreover, if he C(X) and Fe H°°(σ + \τ |),
then

Proof. The first assertion is obvious. To prove the second, let
x e supp τ. Then

r—ess lim sup | h(y) — F(y)\ = τ — ess lim sup|/φ) — F(i/)|

^ σ—ess lim sup|Λ(α;) — F(y) \

= σ —ess lim sup |Λ(?/) — JP(2/)| .

It follows that \\h — F\\L-{r) ^ \\h — F\\L°°(σ)9 so that the norm equality
asserted by the lemma is valid.

The following theorem is the first abstract version of Theorem 1.1.

THEOREM 6.3. Let A be a uniform algebra on a compact space
X, and let σ be a positive measure on X. Suppose that every τ e AL

has property (#). Then

d(h, A) = d(h, H~{σ)) , all he C(X) .
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In particular, H~{σ) Π C(X) = A.

Proof. Fix h e C(X), and let fe H°°(σ). Choose a measure τeAλ

such that |[r| | = 1, and

d(h, A) = \hdτ .

By Lemmas 6.1 and 6.3, there exists FeH°°(σ + \τ\) such that F = f
a.e. (dσ). Since τ 1 if°°(σ + | r | ) ,

<g | |λ - F\\L~iσ+wl) .

Applying Lemma 6.2, we obtain

d(h,A)^\\h-f\\L~{σ).

Since this is true for all feH°°(σ)9 we conclude that

d(hf A) ̂  d(h, H~(σ)) .

The reverse inequality is trivial.
The validity of distance estimates as in Theorem 6.3 has a dual

formulation in terms of weak-star density of orthogonal measures.
Indeed, let A be any closed subspace of C(X), where X is compact,
and let σ be a positive measure on X. Then

d(h, A) = d(h, H~(σ)) , all he C(X) ,

if and only if ball [A1 Π L\σ)\ is weak-star dense in ball A1. This
assertion follows directly from the following expressions, valid for
heC(X):

d(h, A) = sup j I \hdτ : τ e ball Aλ\

d(h, H~(σ)) - sup 11 \hgdσ : gdσ e ball [A1 n -L1^)]} .

and

If ball [A1 Π If1^)] is weak-star dense in ball A1, then the suprema
coincide, and the distances are equal. On the other hand, if there
exists τ e ball A1 which does not lie in the weak-star closure of ball
[A1 Π Lι(σ)\, then the separation theorem for convex sets provides us
with an h e C(X) for which

sup I [hgdσ : gdσ e ball [A1 f] L 1 ^ ) ] ! < I [hdτ

and the distance estimate fails.



BOUNDED APPROXIMATION BY RATIONAL FUNCTIONS 139

The preceding remarks, together with Theorem 6 3, serve to com-
plete the proof of Theorem 1.2.

7* Weak-star density of representing measures* In this section,
A is again a uniform algebra on a compact space X, and σ is a posi-
tive measure on X. It will be convenient to reformulate property (#)
of §6.

LEMMA 7.1. A measure τ on X has property (#) if and only if
τ has the following property:

[If μe C(X) is positive and if FeH°°(σ + \τ\)

(satisfies \F\ ̂  u a e (dσ), then \F\ <> u a.e. (dτ) .

Proof. Evidently (#) implies (##). Suppose that (##) is valid
Let p e X\supp a, and let u be a positive function in C(X) such that
u = 1 on supp σ, while u(p) < 1. Applying (##) to the function / =
leH°°(σ + |τ |), we see that p cannot belong to the closed support
of τ. Hence supp τ £ supp σ. It is easy to verify that the other
requirement of (#) is also valid, so that (##) implies (#).

The maximal ideal space of A will be denoted by MA. The ver-
sion which we will require of Cole's theorem on the existence of ab-
solutely continuous representing measures is the following.

LEMMA 7.2. Let φ e MA. Suppose there is a representing measure
τ for ψ such that the restriction map H°°(σ + τ)-+H°°(σ) is an isometry.
Then φ has a representing measure which is absolutely continuous
with respect to σ.

Proof. The homomorphism φ is continuous in the weak-star
topology of H°°(σ + \τ\). By Lemma 6.1, the restriction map is a
weak-star homeomorphism, so φ is continuous in the weak-star topol-
ogy of -ff°°(σ). Consequently ψ has a complex representing measure,
and hence a (positive) representing measure, which is absolutely con-
tinuous with respect to a.

THEOREM 7.3. Let φ e MA, and let T be a representing measure
for φ. If τ has property (#), then τ lies in the weak-star closure of
the set of representing measures for φ which are absolutely continuous
with respect to σ.

Proof. Let ueCR(X), and set

c = inf < \udX: λ a representing measure for φ, λ < < σ> .
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By the separation theorem for convex sets, it will suffice to show that

\udτ Ξ> c. Replacing u by u — c, we can assume that c = 0.

According to Lemma 7.2, there is a weak-star continuous exten-
sion φ of φ from A to H°°(σ). By the Hoffman-Rossi theorem [11],
there is, for each t > 0, a function ft e H°°(σ) satisfying

\ft\ ^ eίMa.e.ώτ

Φ{ft) = 1

Suppose jPt G iJ°°(<7 + r) coincides with/, a.e (dσ). Property (##) shows
that

I F t I ̂  eίM a.e. d(σ + τ) .

Now ίifyZr = φ{Ft) = ?>(/t) - 1, so that

0 - W^tdτ - l l/ί ^ ί[e' - l]dτ/t .

Since [β<M — l]/t converges uniformly to u as t —> 0, we obtain 0 ^

as required.
Our second main abstract result is the following, which includes

Theorem 1.3 as a special case.

COROLLARY 7.4. Let A be a uniform algebra on a compact space
X, and let σ be a positive measure on X. Suppose every measure
T < < A1 has property (#). If φe MA is a nonpeak point, the set
of representing measures for φ which are absolutely continuous with
respect to σ is weak-star dense in the set of all representing measures
on X for φ.

Proof. Every representing measure τ for a nonpeak point satisfies
τ < < A1, so that Theorem 7.3 applies.

8. Property (#) for R{K) and A(U). The purpose of this sec-
tion is to record some other cases in which the hypotheses of Theorem
6.3 and Corollary 7.4 are met.

If U is an open subset of the complex plane, then A(U) is the
algebra of bounded analytic functions on U which extend continuously
to U. The harmonic measure on 3U for a point ze U will be denoted
by μz. If the components of U are Uu U2, •••, and z5 is any point
of U3; then the measure μ = ΣμZj/2j will be called harmonic measure
for U.

THEOREM 8.1. Every measure τ < < A1 has property (#), for each
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of the following choices of compact set X, uniform algebra A on X,
and positive measure σ:

( i ) X = K, A = R(K), and σ = λρ is the area measure on Q.
(ii) X = dK, A = R(K), and σ is the sum of the area measure

on Q Π dK and the harmonic measure on dK for K°.
(iii) X = ϋ, A = A(U), and a is the area measure on U.
(iv) X is the closed support of harmonic measure ondU, A = A(U),

and σ is the harmonic measure on dU.

Proof. As already observed, case (i) follows from Lemmas 2.1
and 4,1. The proof which establishes Lemma 4.1 depends only on
the fact that the algebra in question is invarient under the Tg opera-
tors, and therefore serves to establish the result in case (iii). In
passing, we remark that Case (iii) is treated in detail in [6]. Cases
(ii) and (iv) are similar, so we consider only case (iv).

So set X = supp μ, and let τ be a measure on X which satisfies
τ < < A(U)L. Let / e H°°(μ + \τ|), and let u be a positive continuous
function on X such that | / | ^ u a.e. (dμ). By Lemma 7.1, it suffices
to show that \f\<^u a.e. (dτ).

The map g—*g(z), defined by

g(z) = \gdμz , ze U,

is an isometry from L°°(μ) to a space of bounded harmonic functions
on U (cf. [4], Lemma 2.2). Now the restriction map

is an isometric isomorphism, under which the function / corresponds
to the element FeH°°(μ + | τ | + λ̂ ) defined by F = f a.e. (μ + | r | ) ,
and F = f a.e. (d\u).

If p is a regular boundary point for U, then

lim sup I F(z) \ ̂  u(p) .

By the Iversen-Tsuji theorem (cf. [13]), this relation persists for all
p in the closure of the set of regular points, that is, for all p e supp μ.
Consequently there is a positive continuous function v on U such that
v = u on suppμ, and \F\ ^ v a.e. (dλσ). Applying the corresponding
result for case (iii), we conclude that \F\ <^v a.e. (dτ), that is, \f\<^u
a.e. (dτ). That completes the proof.

9* Characterization of functions in iJ°°(λρ)* This section and
the next are devoted to the following theorem, which is an analogue
of Vitushkin's characterization of functions in R(K).
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THEOREM 9.1, Let K be a compact subset of C. Then the follow-
ing are equivalent:

(i) feH~(XQ)
(ii) There is a sequence fneR(K) such that ||/J|.κ ^ | | / | | ρ and

fn(q) —*/(#) for dxdy-almost all q e Q .
(iii) If g is a smooth function supported on a disc A(zQ; δ), then

t* 2d osc 0; δ))
I ' dz

; δ)\K) .

(iv) For each z0 G K, there exist r Ξ> 1 and c > 0 such that for
δ > 0 sufficiently small,

JS dz
) rδ)\K)

for all smooth functions g supported on J(zQ;δ).

The equivalence of (i) and (ii) in Theorem 9.1 is Davie's theorem-
That (i) and (ii) imply (iii) has been established in Lemma 3.1, and
(iii) trivially implies (iv). The remaining implication, that (iv) im-
plies (i), is more difficult. It will be treated in the next section.
Here we make some observations concerning this theorem and give
some corollaries.

The fact that iϊ~(λρ) Γ) C(K) = R(K), and Theorem 9.1, can be
combined to strengthen the theorem of Vitushkin cited at the begin-
ning of §3.

COROLLARY 9.2. Let K be a compact plane set, and let f be a
bounded Borel function such that f\κeC(K). Suppose that for each
zQ e K, there exist r ^ 1 and c > 0 such that

Adxdy
dz

cδ
dz

0; rδ)\K)

for all δ > 0 sufficiently small, and for every smooth function g sup-
ported on A{zQ;δ). Then feR(K).

In a similar vein, we have the following.

COROLLARY 9.3. Let f be continuous on the Riemann sphere,
and let K be a compact set. Assume there is a constant C such that
whenever S is an open square having its sides parallel to the coordinates
axes,

fdz CΎ(S\K) .
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Then the restriction of f to K lies in R(K).

Vitushkin has proved a similar theorem but with the hypothesis

fdz rg b(δ)7(S\K) ,

where S has side δ, and b(δ) tends to 0 with δ. This result is proved
on pp. 177-180 of [14] by verifying that there is α(5) tending to 0
with δ such that if g has support J(z0; d), then

Adxdy
dz

a(d)d dg_
dz 0, 28)\K)

The same argument shows that the hypothesis of 9.3 yields condition
(iv) of Theorem 9.1, so that the restriction of / to K is in R(K).

A remark is in order concerning the integral in condition (iii) of
9.1. This integral can be carried over C, or over K, or only over
Q—the resulting estimates are always equivalent. To see this, let g
be a smooth function supported on J(z0; 3). If h is any bounded Borel
function, then the function

)C\Q z — ζ d

is analytic off J(z0; δ), and H belongs to R{K) by Lemma 2.1. Hence

Using the estimate

dxdy 2πδ ,
UHin\z-ζ\

and evaluating H'(oo) = Mra^^ζ^ζ), we obtain

dgU.O,., dz

This inequality shows that the validity of an estimate of the form

depends only on the values of h on Q.

10• Completion of the proof of Theorem 9*1* It will be con-
venient to introduce another condition, which falls between (iii) and
(iv) of Theorem 9.1:

(v) There exists r ^ 1 and c > 0 such that
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!i <cδ\ \*2L
\dz

Ύ(A(z0; rδ)\K)

for all £0 e K, all δ > 0, and all smooth functions g supported on
Δ(z,\ δ).

Our next step will be to show that (v) implies (i), so that (i),
(ii), (iii) and (v) will be equivalent. Then the equivalence of these
conditions with (iv) with follow from Vitushkin's nested disc argument.

In view of the discussion in §9, and in particular the estimate
(*) there with h replaced by /, the estimate of (v) is also valid for
the function which coincides with f on Q and which vanishes off Q.
Since (i) also depends only on the values of / on Q, we can assume
that / = 0 off Q.

The continuation of the proof that (v) implies (i) will be obtained
by modifying appropriately Vitushkin's constructive scheme for ap-
proximation. We will only sketch the part of the proof that is exactly
analogous to Vitushkin's argument, dwelling longer on the two esti-
mates which make Vitushkin's scheme work in this case. Constants
will be denoted by Cί9 C2, , and they will depend at most only on
c,r and | | / | | .

For each δ > 0, choose a covering Akδ = A(zk; δ) of K by open
discs, and choose smooth functions gk — gkδ such that

(a) No point z lies in more than CΊ of the Ak

(b) gk = 0 off Δk

(c) Σgk = 1 near K

(d)
Define

= (T9kf)(Q

z —

Then fkδ is analytic off Δu, \\fu\\ ^ C2, and / = Σfkδ. Using (v) and
proceeding as in [6], pp. 174-176, we obtain FkδeR(K) such that Fkδ

is analytic off A(zkδ\ rδ), Fkδ — fkδ has a triple zero at oo, and \\Fkδ\\<^C3.
Set

Fδ = e R{K) .

The estimate on [6], p. 212, shows that \\Fδ\\ <J C4. It suffices now
to show that Fδ(z) —• F(z) as δ —̂  0, for almost all zeQ.

Let N be a fixed large integer. Set

Aδ(z) =

Cδ(z) =

{\Fkδ{z) - fkδ(z) |: d(z, Akδ) > Nδ}

{Fu(z):d(z,4ki)£N8}\

{\Mz)\: d(z, Akδ) ^ Nδ} .
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Then

\f(z) - Fδ(z) I ̂  Aδ(z) + Bδ(z) + Cδ(z) .

The term Aδ(z) is estimated as on p. 193 of [7], yielding

Aδ(z) ^ Σ CMk - I)3 ^ CJN.

Using (a), we see that there are at most C7 summands involved in
Bδ(z) and Cδ(z). So we are reduced to estimating individually the
summands \Fkδ(z) \ and \fkδ(z) |, when d(z, Δkδ) <^ Nδ. It is quite simple
to estimate Bδ(z).

LEMMA 10.1. Bδ(z) —• 0 for all zeQ.

Proof. Let hδ(ζ) = Σ{Fkδ(ζ): d(z, Akδ) £ Nδ}. Then hδ e R(K), hδ

is analytic off Δ{z\ (N + 1 + r)δ), and hδ(°°) = 0. Since | J P W | ^ C 8 ,

we have \hδ\ ^ C3C7. By Schwarz's lemma, hδ converges uniformly to
zero on any set at a positive distance from z. If hδ(z) y> 0, then the
Bishop "1/4 — 3/4 criterion" shows that z is a peak point for R(K).
Hence Bδ(z) = | Aa(s) | —> 0 whenever z e Q.

In order to estimate Cδ(z), we prove the following lemma.

LEMMA 10.2. Let h be a bounded Borel function on C, and let
S be a subset of C. Let zeS, let δ > 0, and let g be a smooth func-
tion supported on J(z; δ). Then

π IJ J ζ — z dζ

\ A ΐ e &-^ί|{osc (h, A{z; δ)ΠS) + 2\\h\\\
d z i l l L

Ψ
πδ2 J

Proof. Write the integral as a sum of integrals over A(z\ δ) Π S
and Δ{z; δ)\S, and use the obvious estimates on each summand, together
with the estimate

LEMMA 10.3. Suppose S is a closed subset of Q such that f\s is
continuous. Then Cδ(z)-*0 as δ — 0, for all points zeS at which S
has full area density.

Proof. Applying the lemma to /, and recalling the definition of
fkδ, we find that
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.(z) sS 8C7{
Area (Δ(z; δ)\S)osc (/, Δ{z; δ) n S)

and this tends to zero with δ.
Now we can complete the proof that (v) implies (i). In view of

Lusin's theorem and Lemma 10,3, Cδ(z) tends to zero for dxdy-almost
all zeQ. Consequently

lim sup I/O) - Fδ(z) \ ̂  CJN
<5-»0

for cLτ%-almost all zeQ. Since N can be chosen arbitrarily large,
we see that Fδ converges dxdy-almost everywhere on Q to /• Since
the Fδ are bounded, / lies in H°°(XQ), as required.

We have show now that (i), (ii), (iii), and (v) are equivalent, and
evidently they imply (iv). To complete the proof, we will use
Vitushkin's nested disc argument (cf. [7, p. 218]) to show that (iv)
fails whenever (i) fails.

Suppose then that (i) fails. For convenience, we assume that
11/11 ^ 1. Since (v) fails, there exist zx e K, δλ > 0 and a smooth func-
tion g1 supported on A{zx; 8,) such that (taking r = c = 10 in (v))

Adxdy
dz

>
dz

Let Kx = Δ{zλ\ 2δx) Π K. The nonpeak points for R{K^) are the points
in Qx = A{ZU 2δ±) Π Q. Applying what we have already proved to
•^Γ°°(λ«1)j we see that / violates (iii), so that f^H°°(XQl). Hence there
exist z2 e Kl9 δ2 > 0 and a smooth function g2 supported on Δ(z2] δ2)
such that (taking r = c = 102, and replacing K by K± in (v))

in fMdxdy
dz dz

Since

we obtain

dz
dg2

j(J(z2;

dz

πδJlO2

In particular, J(z2; l O 2 ^ ) ^ cannot contain a disc of radius πδ2/102

Hence Δ{z2\ 102δ2) S A{zx; 2δx + δ2), so that Δ(z2; 99d2) S Δ(zι\ 2δJ. Setting
K2 = Δ(z2f 2d2) n JSΓI = Δ(z2f 2δ2) Π K, and proceeding in this manner, we
construct by induction a sequence of points zn e K, radii δn > 0, and
smooth functions gn supported on Δ(zn; δn) such that
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( a )

( b ) /!(*„; (10 -

( c )

From (b) we obtain (10* - l)δn+1 ^ 2δn, so that δn+1 < 2δn. It follows
that zn converges to z e K, and that

Hence we have

(d) gn is supported on Δ(z; 3dn) .

Moreover from (b) we obtain Δ(z\ (10* - 3)δ.)S^(«iι-i;d), so that

J(s; (10* - 3)S.)\ί: - Δ(z\ (10 ~ 3 ) ^ ) \ ^

Using (c), and the monotonicity of 7, we obtain

(e) I [[f^dxdy
δz

> lo ί. 22a\h(J(z; (10" -
II dz II

From (d) and (e), we see that condition (iv) fails at z. That com-
pletes the proof of Theorem 9.1.

11* Approximation of Cauchy transforms* In this section, we
will apply Corollary 9.2 to the problem of approximating the Cauchy
transform

5 ( 0 = S dv(z)

of a compactly supported measure v. Since v is the convolution of
v and the locally integrable function 1/z, v is itself locally integrable.
Furthermore v is analytic off the closed support of v. The discussion
in this section will be based on the following simple consequence of
Theorem 9.1.

LEMMA 11.1. Let K be a compact plane set. Let v be a measure
with compact support, such that \v\(K*) = 0, and such that v is bounded.
If for each z e dK, there exists r >̂ 1 satisfying

\v\{A{z;δ))

then v e E
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Proof. Suppose that g is supported on a disc Δ(z^ δ). From
Green's formula

π J J z - ζ

we obtain \\g\\ S 2d\\dg/dz\\. Hence

< 2πd dg_
dz

v\(A(z;δ)) .

Our hypothesis, together with criterion (iv) of Theorem 9.1, yield the
desired result.

LEMMA 11.2. Let K be a compact plane set. Let v be a measure
with compact support, such that \v\(K°) — 0, and such that

z- ζ|

Suppose that for v-almost all points z e dK, there exists r = r(z)
such that

ί > O m

\v\(J(z;δ))
Then v e i?°°(X$). If in addition the restriction ofvtoK is continuous,
then veR(K).

Proof. Let E be the set of z e dK for which there is no r ^ 1
satisfying (*). The hypothesis is that \v\{E) = 0. Let Un be a sequence
of open sets such that Ϊ7W2 Un+1^E, and M(Ϊ7Λ)—>0. Let vn be the
restriction of v to C\Z7W. Then vn satisfies the hypotheses of Lemma
11.1, so that vn eH^iXρ). By the dominated convergence theorem, vn

converges pointwise to v, so that v e H°°(KQ). That proves the theorem.
Recall (cf. [2]) that a measure function h is an increasing func-

tion of δ > 0 such that h(δ) —*- 0 as δ —> 0. Associated with Λ is the
Hausdorff measure Λh. We will be interested in measure functions
satisfying the condition

H

If 1 < a ^ 2, then the measure function ftα(δ) = δa satisfies this condi-
tion. The associated measure is the ^-dimensional Hausdorff measure
Aa.

If h satisfies (*), and v is any compactly supported measure
satisfying
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(**) \v\(J(z;δ))£h(δ), 3>0,zeC,

then

\z- ζ |

and £ is continuous. Moreover, every set E satisfying Λh(E) = 0 will
also satisfy \v\(E) — 0. From Theorem 11.2, we obtain the following.

COROLLARY 11.3. Suppose the measure function h satisfies (*).
Let v be a compactly supported measure satisfying (**), such that
\v\(K») = 0. If

f > 0

h(8)

for Λh-almost all zedK, then OeR(K).

This corollary is not the strongest result which can be obtained
from the current literature. Indeed, let A be a measure function
which satisfies (*), and define

= ί
J o S

A modification of the proof of Vitushkin's instability theorem (see
[14, pp. 188-191, and [9, pp. 122-127]) shows that for ΛA-almost all
zeC, one of the following two alternatives holds:

(a)

(b)

Moreover in [9] it is shown that if (b) holds ΛA-almost everywhere
on dK, then veR(K) for any measure v on dK satisfying (**).. Com-
bining these two results, we see that the "liminf" in Corollary 11.3
can be replaced by "limsup".

In closing we mention a new result which follows immediately
from Theorem 9.1.

COROLLARY 11.4. (to Theorem 9.1): Let h be a measure function,
and suppose

h(δ)
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for all zedK. Let feC(K). If the modulus of continuity ωf of f
satisfies

ωf(δ) ^ h(δ)/δ , δ > 0 ,

then feR(K).
It would be interesting to know if the same conclusion holds when

the estimate on analytic capacity is assumed to hold only at z/fe-almost
all points of dK. When h satisfies the integrability condition (*), this
refinement of Corollary 9.4 is known (see [3] or [9]).
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