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Let μ be any positive definite measure on a locally compact
group, and let (π*, ^ίf^) be the associated unitary representa-
tion of G. Previous work of the authors' showed that a cyclic
vector exists for π^ if G is second countable; there is now a
simple proof of this result, due to Hulanicki. Rather element-
ary conditions on the way μ is related to the geometry of G
are examined which are necessary, or sufficient, for the exist-
ence of a cyclic vector. These conditions require μ to be
"constant" on cosets (or double cosets) of certain subgroups
of G. A conjectured necessary and sufficient conditions is
presented. These results are adequate to decide whether or
not πu is cyclic for various nontrivial measures. As a special
case it is shown that the left regular representation of G is
cyclic <=> G is first countable.

1* Notations* All groups are locally compact, not necessarily
second or first countable. The space Ce(G) of continuous functions
with compact support is given the usual inductive limit topology.
Convolutions f*g of functions in CC(G) are defined in the usual way;
we use the involution operation

{A the modular function) which makes CC{G) a || ||rdense *-subalgebra
of the convolution algebra Lι{G). Positive definite measures μ are
Radon measures {not necessarily bounded), so that μeCc{G)*, that
satisfy the condition

<μ, /**/> - \{f**f){x)dμ{x) ^ 0, all / e CC{G) .

Positive definiteness is indicated by writing μ > 0. The representation
(πμ, £%fμ) associated with μ is defined by imposing the conjugate
bilinear form

,£), = \g**fdμ for f,geCc(G)

on CC(G). Left translation Xxf{y) — f{%~ιy) preserves this form.
I f w e w r i t e \\f\\μ = (f, f)f, a n d s e t Λ ~ μ = {/ e CC(G): \\f\\μ - 0},

then the quotient map jμ: Ce(G) -> ^ μ = CJ^Kμ maps CC(G) into a
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166 F. P. GREENLEAF AND M. MOSKOWITZ

pre-Hilbert space whose completion is denoted by £Zfμ. Left translation
induces a unitary operator πμ on Sίfμ\ if we write jμ(f) = [f]μ, then
πμ[f]μ — [Xxf]μ for all vectors in the dense subspace £gζμ. Details
concerning the representation (πμ, £ίfμ) can be found in Dixmier [2],
or Effros-Hahn [3]. For additional comments on positive definite
measures, and their relationship to positive definite functions see [5]
(introduction to §3).

The space M(G) — CC(G)* of all Radon measures (bounded or not)
has an involution defined by

<μ*,f> = \f{x~ι)dμ{x) all feCc(G)

To a certain extent convolution is defined in M(G); thus μ*v is defined
if one of the measures has compact support, or if both are bounded
(finite total variation). Left Haar measure on a closed subgroup i Γ ϋ
G is denoted by mκ; CC(G) becomes a convolution subalgebra of M(G)
if we identify / e CC{G) with f mGe M{G). M(G) includes point masses
δx for x e G, and the left translate Xxf of / 6 CC(G) is just δa*f.

We will be interested in measures "constant on cosets" of a closed
subgroup K. Constancy on right cosets K\G — {Kx: xe G) (resp. left
cosets G/K — {xK: x e G}) means that

(1) δk*μ = μ (resp. μ*(ΛG(k)δk), all keK;

here ΔG is the modular function on G. If μ arises from a continuous
function φ on G, so that μ = <p mG, this notion of constancy agrees
with the usual one, in which

φ(kx) = φ(x) (resp. φ{xk) = φ{x)) for all keK,xeG.

By definition of convolution of measures (see Appendix), the modular
function must appear in right-hand convolutions if constancy of meas-
ures is to agree with constancy of functions; indeed, if x e G then
consider what happens to the right convolutes of Haar measure:

mG*δx — Λ(χ-ι) mG and mo*(d(x) δx) = mG .

Let PC(K) be all probability measures (v ^ 0 in the usual sense;

\dv — 1 j with compact support and supp (v) § K. By taking weak-*

limits of convex combinations it is easily seen that (1) holds ̂ =>

(2) v*μ = μ (resp. μ*4β v) = μ) all vePc(K)

here

\ v ] ( x ) = \f{x)AG{x)dv{x) for feCc(G) .
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Special facts about convolutions, and constancy on cosets, are discussed
in the Appendix.

2* A special case: left regular representation* We (briefly) deal
with the left regular representation which acts in L2(G) via Xxf(g) =

THEOREM 2.1. The left regular representation of a locally compact
group G is cyclic <=> G is first countable.

Proof. (<==) This is (2.6) of [5].

Proof. (=>) If there is a cyclic vector feL2(G) its support
supp (/) is σ-compact, so supp (/) lies within an open σ-compact sub-
group Gf. If x ί G' then Xxf is supported on xG'; thus supp (Xxf) Π
supp (/) = 0 , so that (Xxf, /) = 0 in L2(G). Evidently, the "reduced
action" Gr x L2(G') —> L2(G') is also cyclic, with cyclic vector /, because
translations of / by x g Gr cannot contribute to the approximation of
any vector in the subspace U(Gr) £ L2(G). The following basic lemma
(applied to G') shows that G' is first countable; thus G is first countable.

LEMMA 2.2. If G x £ίf —»έ%f is faithful, cyclic representation
of a σ-compact group G on a Hilbert space §#f, then £έ? is separable
and G is first countable.

Proof. Take compacta Kn containing the unit such that Kn £
int (Kn+1) and U~=i Kn = G. If ζ is the cyclic vector the map φ\g-»
πg(ζ) is norm continuous, φ: G —> £ίf. Thus φ{Kn) is norm compact,
hence totally bounded, and there is a finite set of translates of ζ,
Sn S <P(Kn) such that all points in φ(Kn) are within distance 1/n of
Sn. Now the closed linear span

3 = ls{Fg(ζ): geG}

equals ^ and it is easy to see that ϊs{\Jn=ι Sn} = £ίf too. Thus
is separable.

Now let ^(Sίf) be the unitary operators on έ%f, with strong
operator topology. The representation π: G —• Ήf(Sίf) is a continuous
isomorphism. If K is a compact neighborhood of the unit in G,
π:K—>π(K) is a homeomorphism. But the strong operator topology
is first countable since έ%f is separable; thus the (relative) topology
on K is first countable, and G is first countable.
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This completes the discussion of regular representations.

3. Sufficient conditions* In [5] we showed that the representa-
tion (πμ, £ίfμ) is cyclic for every positive definite measure on a second
countable locally compact group. That proof, based on operator algebra
methods, was nonconstructive and we raised the question of finding
a construction which produces a cyclic vector using nothing but the
geometric/algebraic features of the group. Even when πμ is the left
regular representation and G = R (real line) it is not completely
obvious how this is to be done. In an elegant note [7] Hulanicki
and Pytlik have proven:

THEOREM 3.1. // μ> 0 on a first countable group, the representa-
tion (πμ, §$fμ) is cyclic.

The proof is totally constructive: take any countable basis of
compact neighborhoods of the unit Kn and form the characteristic
functions φn; taking scalars αn ^ 0 so that Σ ^ U α J i ^ ί ^ J L < °°, we
get a function φ = Σ~=i o,nφ^φn e CC{G). The vector ζ = [φ]μ is cyclic.
In particular, one can find cyclic vectors within <$ίf/\ it is not necessary
to turn to the completion

Added in proof. R. Goodman has found a subtle, but serious, gap
in the sections of the Eίfros-Hahn memoir [3] on which the results
of Hulanicki and Pytlik [7] depend. To get a correct proof of Theorem
3.1, we start with the results of [5], which are unaffected by Prof.
Goodman's discovery. A short, self-contained argument then yields
Theorem 3.1. In [5] we used operator algebra methods to establish
Theorem 3.1 for second countable groups; second countability was
required so that operator methods could be applied freely. Below we
show that the theorem may be established for arbitrary first countable
groups without further reference to the theory of PP-algebras. If
the following proof is appended to Theorem 3.1, and references to [7]
deleted, this paper remains unaffected by the gaps in [3]. Our
references to [3] here, and in [5], are fairly superficial and do not
use the afflicted section in [3] (p. 48, lines 9t—lit).

Incidentally, Goodman has justified the construction of Hulanicki
and Pytlik for Lie groups (countable at infinity, but not necessarily
connected) by considering the relation between representations and
positive definite distributions on such groups. He shows that (πμ, £ίfμ)
has a cyclic vector for every positive definite distribution. His work
will appear soon in an article: Positive definite distributions and
intertwining operators, (Pacific J. Math.).
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Proof of Theorem 3.1. Let Go be any open σ-compact (hence
second countable) subgroup in G. The restricted measure v = μ \ Go

is positive definite on Go; the canonical injection i: Ce(G0) —+ CC(G)
induces an isometric injection of £ίf^ into ^g? ,̂ as indicated below,
because if /, ge Ce(G0) we have

(/, g)v = \ g**fdv = \ g**fdμ = (/, g)μ .
JG0 JG

Therefore, £έfv is identified with a closed subspace Sίf* in £ίfμ.
Under

T~T~T
cc(G) — > & & — > j r "

this identification the operator πu

x is equivariant with πμ | <^* for every
a e Go, because (δ,*f, #), = (δ,*/, 0), for all xeG0;f,ge Ce{G0). There-
fore, we may identify the action Go x ^ ^ —> <^ v with the restricted
action Go x ^ * —> £ίf* on the subspace Jg^* £ £ίfμ.

Now let {βw} S CC(G) be a countable approximate identity with

supports supp (en) £ Go that decrease to the unit {e}: en >̂ 0, \en(x)dx — 1
all n. As indicated in [5; Lemma 3.3], the vectors [en]v in Sίf* are
asymptotically cyclic under the action of πv(G0). Consequently, since
the TF*-algebra 2C = πv(G0)" in Sιf(^fv) is separable, there is a cyclic
vector ζ e ^ 7 * [5; Lemma 3.4]. Identifying ζ as a vector in £ίf* £
Jĝ 1 ,̂ this means that if η e <^*, there are functions {/&„} £ CC(GO)
such that \\πμ(hn)ζ - ^ | | ^ - > 0 as n~>™ (recall: πv(G0)" = π*(Ce{G0))").

We assert that ζ is a cyclic vector for the full action G x 3ίfμ —+
Jξ?μ. Because βέ?o

μ is norm dense in <§ίfμ, it is clearly sufiicient to
show that any vector of the form η = [f]μe £%Hμ can be approximated
by vectors πμ(h)ζ with heCe(G). Let {x(a):ael} be representatives
for the distinct left cosets G/Go — {xG0: xeG}. If / e CC(G), we may
write (finite sum) / = Σ«ejδΛ(β>*/α where /«eCc(G0). Now there
exist {feΛ>α: w = 1, 2, •••} such that πμ(hn,a)ζ—+ [fa], for each α e J .
Thus,

a s n —> 00, a n d

as n—> 00. Clearly, ζ is cyclic.
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If μ >• 0 the kernel of πμ is a closed normal subgroup in G; now
μ must be constant on (right = left) cosets of Ker (πμ); moreover, this
subgroup may be identified directly by examining how μ relates to
the structure of (?, without referring to the representation πμ.

THEOREM 3.2. Let μ be a positive definite measure on a locally
compact group G. Then Ker πμ is characterized as the largest normal
subgroup K £ G such that μ is constant on cosets of K.

For a proof of (3.2) see Appendix A2. The result of [7] can be
extended considerably using Theorem (3.2).

PROPOSITION 3.3. Let μ be a positive definite measure. If there
exists a closed, normal subgroup K £ G such that

(i) G/K is first countable
(ii) μ is constant on cosets of K,

then (πμ, £^μ) is cyclic.

Proof. Clearly K £ Ker πμ; thus the map x —> πμ is constant on
ϋΓ-cosets, and the representation πμ: G x <§{fμ —* έ%fμ is lifted back to
G from a corresponding representation π: (G/K) x Sίfμ —> £ίfμ via the
quotient homomorphism φ: G —• G/K.

Define φ'ι CC(G) -> CC(G/K) so that φ'f{xK) - ( f{xk)dmκ (k), where
mκ — left Haar measure on K. It is a fairly routine matter to show
that

9>'(/*) = (φ'f)* φ\f*g) - (φ'/)*(<?g) all f,ge CC(G) ,

and that φf is surjective, because K is normal in G. Somewhat more
delicate calculations (presented in Appendix) show that the measure
μ > 0 on G corresponds to a unique measure μf on G/K such that

(3) <μf

9^f> = <μ9f> all feCc(G).

It follows from (3) that μ' > 0 on G/K, since

<μ', (<?/)**(<?/)> - <μ', <?(/**f)> = <μ, /**/> ^ o ail / e cc(G)

(φf is surjective!); furthermore, the map φf induces an isometry
j : £έ*μ -> <&??', since

for f,geCc(G).
Finally, the diagram in Figure 1 commutes.
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G x sir* — — (G/K) x ser* —^ (G/K) x sec?

id
V

FIGURE 1

The left-hand block commutes since πμ is constant on cosets of K;
the representation π (of G/K) is defined so that τcψ{x)[f]μ — πx[f]μ =
[δx*f]μ for xeG,fe CC(G). Next note that

(4) ^ ( δ . * / ) = δ φ ( x ) * φ ' f a l l / e CC(G), x e G ;

in fact,

= φ'f{x~ιK-yK) = φ'f{x~ιyK)

,, (A?) = j(5.*/)(»fc) dmκ (k)

Now compare images of a pair (9>(&), [/],,) e (G/K) x Jg^ in the right-
hand block:

These agree, by (4).
Obviously π^ is cyclic <=> π is cyclic, since both representations

produce the same operators on £ίfμ. Commutativity of the right-hand
block shows (πμ cyclic) <=> (π cyclic) <=> (πμf cyclic). By our hypotheses,
Theorem 3.1 given above applies to the measure μf on the first countable
group G/K; we conclude that πμt (and πμ) are cyclic.

Proposition 3.3 is the basis for a considerably stronger sufficient
condition.

THEOREM 3.4. Let μ be positive definite. Assume the existence
of a σ-compact open subgroup Gf £ G, and a closed subgroup KS G'
that is normal in G' (but not necessarily normal in G) such that

(i) G'/K is first countable
(ii) μ is constant on double cosets K\G/K, (i.e., on both left and

right cosets). Then {πμ, Sίfμ) is cyclic.

Proof. Note that supp (μ) need not be related to G'; we may have
supp (μ) = G. Taking G' as above, let SίTψ = Ts{[f]μ: f e CC(G) and
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supp (/) £ G'} Then £%?' is G'-invariant, so we get a "reduced action"
G' x <%*•' — 31?'.

If the reduced action is cyclic, so is the full action

(5) G x Sί?μ -> , 5 ^ .

To prove (5) consider cosets G/G' = {xG'\ x e G} and let {x{: iel}
be coset representatives. Let 3ί?i = ϊiίf/]^: / e CC(G), supp (/) £ α^G'}.
Obviously U e/ ^ * spans ^g^, and TΓ :̂ £%?' —+ ̂ ^ is an isometry onto
{Vie I). Let ζoe <%r^' = <%^io be the cyclic vector for the reduced
action. If ζ e ^ ' (i arbitrary), then TΓ"1 (ζ) e Sί?' and there are
finite linear combinations σn of the operators {πx: x e G'} such that
^(Co) — πς}(Q, which => (πβ.6rn) (ζ0) — ζ. Therefore ^ T ^ 2 ^
MUiei^*) = ^ ^ " a n d Co is cyclic for the action G x £ί?

Now that (5) is proved, we need only demonstrate that the action
Gr x £{?' —> ,5^ ' is cyclic. The restricted measure i; = μ | G' is cleary
positive definite on G', and it is clear that the actions G' x £ί?v —> ,^571/

and G' x J ^ ' —> , ^ 7 r are equivalent (3 an obvious G'-equivariant
isometry ^?v ~ 3ί?')> so we are reduced to the situation in Proposi-
tion 3.3.

4* Necessary conditions; a conjecture* We conjecture that the
conditions of Theorem 3.4 are also necessary; that is, if G is any
locally compact group and μ any positive definite measure, then

Conjecture 4.1. (πμ, Sί?μ) is cyclic <=> there exist a σ-compact
open subgroup G' ξΞ? G and a closed subgroup iΓ ϋ Gf that is normal
in G' (but not necessarily in G), such that

(i) G'jK is first countable
(ii) μ is constant on double cosets K\G/K.

The conjecture will be supported in several ways. First we will
show that these conditions really are necessary in two very different
special cases.

THEOREM 4.2. // μ > 0 and the support supp (μ) is σ-compact,
then the conjecture is true.

COROLLARY 4.3. On any σ-compact, locally compact G the conjecture
is valid for every μ > 0 on G.

Proof. The implication (<==) in 4.1 is true for every μ > 0 (Theorem
3.4). For (=>) let ζ be the cyclic vector. Take hneCc(G) such that
\\[hn] — ζ>\\μ—>0; then there exists a σ-compact open subgroup Gf ^ G
such that
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G' 2 supp (hn)9 all n, and G' 2 supp (μ) .

Obviously &?' = Ts{[f]: fe CC(G), supp(/)eG'} is G'-invariant and
[hn] 6 3gf'(Vn); thus ζ e 3ίff too. We claim that

(6) The reduced action G' x 31?'-+31?' is cyclic (with cyclic vector ζ).

In fact, if f,ge CC(G) are supported on G', and if xe G ~ Gf

 t(set-
theoretic difference), then the double coset (G'xG') n f f = 0 . Thus,

\, M), - ί 9**$**fdμ = 0 ,

since supp (g**δx*f) £ G W and supp (μ) S G\ Therefore, translates
of ζ by x & Gr cannot contribute to an approximation of a vector ζ e
31?'. But ξ is approximated by G-translates of ζ, so it must be
approximated using only G'-translates, which proves (6) Let v —
μ I G'. Since μ is supported on G', there is an obvious equivalence
between the actions G' x £έf' -> Sίf' and G' x ^r7l/ -• ̂ ĝ % so the
latter is cyclic. If K = Ker πu then K is normal in G' (and closed
in G) and πv is obtained in the usual way from a representation π of
G'/E:; π and πv both act on ^ v , and

π^s) = τr£ all xeG' (φ: G' —> G'/̂ K" the quotient map)

Since we have factored out Ker πv, the representation π: (G'/K) x
^g^1' —> J^u is faithful; it is also cyclic, since ττv and π give the same
operators in <%?*. Applying Lemma 2.2, we conclude that G'jK is
first countable. Obviously v is constant on cosets G'/K, by Theorem
3.2; μ is then constant on K\G/K cosets, being zero off G'.

In the next situation, we impose algebraic conditions on μ9 but
leave off any finiteness requirements.

THEOREM 4.4. If μ > 0 and μ is a central measure, the conjecture
is valid.

Proof. Again, we have only to prove (cyclic) =>(•••)• As in the
proof above, we start by taking hneCc(G) such that \\[hn] — ζ\\μ—»0.
Let G' be an open, σ-compact subgroup such that supp (hn) S G' for
all n. Let 30" = Έ{[f]: f e Cβ(G), supp (/) E G'}; clearly ζ 6 ^ ^ ' and

< ^ 7 ' is G'-invariant. By (A. 11) of the Appendix there is a compact
normal subgroup K of G' such that G'/i£" is second countable and each
hn is constant on cosets of K.

Now mκ — Haar measure on K is a finite measure and mκ*hn*mκ =
λΛ for w = 1, 2, •••. Let μ* = nικ*μ*mκ; clearly μ* is constant on
cosets K\G/K and ^ >- 0 on G. Form the submanifold ^£ = ϊs{?>*Λn:
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ψ 6 CC(G), n= 1, 2, •} (algebraic linear span), let j μ : Ce(G) --> Sίfμ be
the canonical injection, and write ^€μ — jμ{^)\ then

(6) ^€μ is H ll̂ -dense in JT^ .

Indeed, if πμ

ψ — \φ(x)πμdx is the integrated form of πμ for φeL1(G),

it is obvious that

^ [ / ] = [?>*/] all /eCβ(G), all ^ G C C ( G )

furthermore, {ττ£(ζ): <p e CC(G)} is || ||̂ -dense in Jg^, since ζ is cyclic.
Thus, given ζ^^fμ, there exists a φeCc(G) such that \\πμ(ζ) - £|| <
1/2%, and there exists an hk such that

consequently

\\[<P*hk] -ξ\\μ^ \\πμ

φ[hk] - πμ[Q\\μ + \\πμ[ζ] - ζ\

so that ^£μ is || ||^-dense.
We would like to show that the mapping A: CC(G) —> Cΰ(G) defined

via right convolution

A:f-+f*mκ feCe(G)

induces a well-defined, bounded operator Ά: £{fμ —* ^fμ\ that is, we
want

| | / - g\\μ = 0 = » | |/*m^ - ^m^H/* = 0

(or, simply \\f\\μ = 0=*\\f*mκ\\μ = 0), and

\\f*™>κ\\μ ^ K \\f\\μ (K fixed constant) ,

so that A can be transferred to ^ μ = Cc(G)/^Γμ. If this can be
done, it follows directly that μ is constant on K\G/K cosets, because
if A exists it must equal the identity operator I on β^μ. This is so
because

A[φ*hn] = [<P*hn*mκ] = [φ*hn] all φeCe(G), all % ,

(since hn*mκ — hn), so that A — 7 on the dense submanifold .^^^
Once we know A = I, we observe that for any /, g e CC(G),

= ([/], [g])μ = (A[f], A[g])μ

c
^ = \mκ*g**f*mκdμ .
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It is obvious that mj = mKf so that (g*mκ)* — m\*g* = mκ*g*
as above; in the appendix we verify that

\mκ*φ*mκdμ = \φd[mκ*μ*mκ]

for all φeCc(G); thus

\ κ all f,geCc(G) .

Now the submanifold X = {#**/:/, # e CC(G)} is dense in the inductive
limit topology on CC(G); μ and μ* are continuous functionals, so we
conclude that μ — μκ — mκ*μ*mκ. Therefore, pending the existence
of A, we have shown that

(πμ, £ίfμ) cyclic = > μ constant on cosets K\G/K

where G' and K are defined as above.
We observe that, up to this point, we have used no special assump-

tions about μ; we have proved the unrestricted conjecture, modulo
the existence of Ά. Unfortunately, it is difficult to see why we
should have 11/11,, = 0=> \\f*mκ\\μ = 0, let alone boundedness of Ά,
unless μ is a central measure. Commentary on the unrestricted con-
jecture (following this proof) will be based on the constructions up
to this point.

If μ is central we will show that \\f*mκ\\μ ^ | |/ | |^ for feCe(G).
By definition,

μ centralζ=ϊμ(f*g) - μ(g*f), all f,geCe(G)

thus, if / is given and g — /*, we have

1 1 / * ^ ! ^ = μ(mκ*f**f*mκ) = μ{f*mκ*mκ*f*)

)) = \\mKg\\%

= μ(f*Γ) = μ(f**f) = I I / i n .

The proof of Theorem 4.4 is complete.

5* Examples and further comment on the conjecture* We are
now in a position to demonstrate that certain positive definite measures
μ do not give cyclic representations (πμ, β^μ); to reach this conclusion
we must use the necessary conditions obtained in §4.

EXAMPLE 5.1. Define H = Π{TS: seR}, product of uncountably
many circle groups T8 = R/Z (written additively). Let G be the space
Rd x H equipped with semidirect product structure
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(r, {p.}).(ίf {Qs}) = (r + t, {p8} + ar{q8})

here Rd = discrete reals, and at: H-+H is the "right shift" mapping
h = {p8} to ft' = {?,} where q8 = pβ_r (all seR).

Obviously i ί is compact, connected. Let Ko be the compact sub-
group Ko = {h = {p8}: p8 = 0 for s Φ 0} £ £Γ, and let μ = ra^ (normalized
Haar measure). Obviously μ is positive definite on G; indeed, μ =
^^o*^«*m^o a n ( ^ ^ ^" ^ *s °bvious (see Lemma A. 6).

If (πμ, β^μ) were cyclic, then by Theorem 4.2 there would exist open
subgroup G' £ G and closed subgroup K £ G' (normal in G') such that

(i) μ is constant on double cosets K\GjK,
(ii) G'/ίΓ first countable.

However, any open subgroup G' must contain all of if, while μ cannot
be constant on left cosets of any subgroup larger than Ko. Since the
quotient space H/Ko is not first countable, the necessary G' and K
cannot exist, and (πμ

9 §ίfμ) cannot be cyclic.
Next we indicate the present status of the conjecture. If μ >• 0

and (πμ, Sίfμ) has a cyclic vector ζ and if {hn} £ CC{G) are chosen so
that \\[hn] — ζ\\μ—>0, we may construct open subgroup G'S G and
compact subgroup K £ G' (K normal in G', but not necessarily in G)
such that

(i) G'/K first countable
(ii) hn*mκ = &„ for w = 1, 2, (m f = Haar measure).

If i^: CC(G) —• .^'^ is the canonical map,

and ^tμ — 3μ{ ̂ )i we showed that ^ μ is H H -̂dense in £ίfμ. The
"smoothed" measure μκ — mκ*μ*mκ is positive definite on G and, in
addition, is constant on K\G/K cosets. In certain circumstances we
have been able to show that μ = μκ; the conjecture would be verified
if this could be demonstrated in general. We have not been able to
do this so far. However, there is an observation concerning the
representations (πμ, βgfμ) and (πμ*κ, £ίfμ>κ) which strengthens our belief
that the conjecture is valid.

THEOREM 5.2. The representations πμ and πμ>κ are nnitarily
equivalent.

Proof. Consider the scheme of mappings in Figure 2.

\J

FIGURE 2
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For / = φ*hm; g — ψ*hn in ^£ we get

(f,g)μ = \K*f**<p*h^ = \mk*h%*ψ*hm*mκdμ

*f**φ*hmd[mκ*μ*mκ] = (/, g)μκ ,

so id: ^t —> ^ induces an isometry J: ^tμ —> ^ίμ>κ. We noted that
^ μ is norm dense in Sίfμ\ but ^£μtK is also norm dense in §ίfμ>κ.
In fact, if / 6 Cc((?) and ε > 0, there exist ?> e CC(G) and hn such that

^ ] - [f*mΛ\\ < ε, by density of ^///μ in .^^^ But,

all feCc{G), so that (recall hn = hn*mκ, all w = 1, 2, •• •)

^ = \\φ*hn*mκ - f*mκ\\μ = ||?>*ΛΛ - / | | ^ < e ,

as required for density of ^fμ>κ. Thus J extends to an onto isometry
J: £έfμ —> £$fμ>κ. It is obvious that J is equivariant with respect to
left translations, so the unitary equivalence π = π^'^ is proved.

Let us say that two positive definite measures μ, v are equivalent
μ ^ v iΐ πμ ~ πv (unitary equivalent representations).

COROLLARY 5.3. If μ > 0 and πμ is cyclic, then there exists a
v >• 0 such that μ ~ v and v satisfies the conditions set forth in the
conjecture.

COROLLARY 5.4. If μ >• 0 and πμ is cyclic, then there is an equi-
valent measure of the very special form μκ = mκ*μ*mκ (K a compact
subgroup of G) that satisfies the conditions set forth in the conjecture.

These results give necessary conditions for the existence of a
cyclic vector for πμ, but it does not seem to be very helpful to know
only that some measure in the equivalence class of μ is related to the
algebraic structure of G as stated in the conjecture. In particular,
it does not seem possible to work out Example 5.1 using these results
alone.

Two measures μ > 0 and v > 0 can be distributed on G in very
different ways and still produce the same unitary representation
of G, but if v is required to have the special form v = mκ*μ*mκ it
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seems unlikely that v could produce the same representation as μ
unless we actually have μ = v. If so, this would prove the conjecture.
We have not been able to decide this (isolated) question about positive
definite measures in cases not already covered in Theorems 4.2 and 4.4.

6* APPENDIX. Convolution of two finite measures μ, v is defined
so that

(μ*v, /> - ^f(st)dμ(s)dv(t) = ^f(st)dv(t)dμ(s)

for / e Ce(G). If μ is arbitrary, the convolutions μ*v and v*μ are defined
if v has compact support. Then Fubini's theorem applies because

\\\f(st)\d\v\(s)d\μ\(t)^ \
JJ Jsupp(y)

\μ\ is applied to a compact set, whose measure is finite. If a measure
μ e M(G) is convolved with any function / 6 CC(G), by identifying / with
the Radon measure f mG, the resulting measures f*μ and μ*f are
given by continuous functions on G (multiplying Haar measure mG):

f*μ(s) = \
J all s e G .

μ*f(s) =

In fact, for all geCc(G),

<V*f, 9> = ^g(ts)dμ(t)f(s)ds = ^f(r1s)g(s)dμ(t)ds

Obviously φ(s) — \f(t~1s)dμ(t) is continuous, since μ is a regular Borel

measure and supp (/) is compact. Similarly,

</*Λ0> = \\g(st)f(s)dsdμ(t) =

Constancy of measures on cosets. Constancy on left or right
cosets are quite different conditions on a general measure μeM(G);
however, if μ is positive definite they amount to the same thing.

THEOREM A. 1. Let K be any closed subgroup of G. A positive
definite measure μ > 0 is constant on right cosets of K<=> it is constant
on left cosets (<=> constant on double cosets K\GjK).
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To prove this, we must assemble certain facts about involutions
and convolutions of measures. First note that, if λ, v e M{G) and one
of these has compact support (so that λn> is defined), then

AG-(X*v) = (AGX)*(AGv)

because AG is a homomorphism, we have

\f{r)d\A^{X*v)]{r) = \f(r)AG(r)d[X*v](r)

= \^f{st)AG(s)AG{t)dX{s)dv{t)

= \f(r)d[(AGX)*(AGv)](r)

for all feCc(G). Below, we demonstrate that the adjoint μ* of any-
positive definite measure μ is given by μ* — A^ μ. A routine use of
Fubini's theorem yields:

LEMMA A 2. If μ e M(G) and g e Ce(G), let us define g(x) = g(x)
(complex conjugate), g(x) = g(x~x) and gv(x) = g(x~ι)AG{x~ι) = g*(x). Then

( i ) <μ,g**f> = <g*μ,f>
( ϋ ) <μ, Q*f> - <9VΨ, /> all f e Ce(G)
(iii) <μ, f*g) = (μ*g, />

LEMMA A. 3. If μe M(G) and if {ea: a el) is any nonnegative
approximate identity in Ce(G), with supp (ea) eventually within any
neighborhood of the unity, let us define the "smoothed" measures μa —
ea*μ*ea. Then

( i ) μa * μ [(σ) = weak-* topology].
If μ is positive definite, the μa are also positive definite measures;
furthermore,

(ii) μ* = AG

ι μ if μ > 0.

Proof. Here (σ) is the σ(M(G), Cc(G))-topology Clearly, e%*f*ea-+
f in the inductive limit topology of CC(G), so that

proving (i) It is also easy to show that μ-+AG

ι μ and μ~+μ* are
(σ)-continuous mappings on M{G). Now take μ > 0; the "smoothed"
measures μa are represented by continuous functions φa(x) on G, so
that μa = φa mG' Now μa > 0, because

<Λ, /**/> = <ft e:*f**f*ea> = <Λ ^**^> ^ 0

where # = /*βα; thus φa is a continuous positive definite function on
G. For such a function <p, it is well known that φ{x) ~ ^(ar1) on G;
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thus φ*(x) = φ(x~~1)ΔG(x~1) = φ(x) ΔG(x)~\ and μ* = J j 1 - ^ for all α.
By continuity, we get

μ* =

In reaching this conclusion, it is essential that μ > 0.

Proof of Theorem A. 1. Suppose that μ > 0; then

/i*(4,») - AG.((Δ?μ)*ι>) = Δβ.(μ**v) = Ja.(v**μ)* .

Since Pβ(J5Γ)* = Pe(K), and μ* = /̂J1/̂ , we easily conclude that

v*μ = μ (all v e PC{K)) <==φ j"*(4^) = μ (all v e PC(K) .

Now let us consider the relationship between a measure μ > 0
and Kerπ^.

THEOREM A. 4. Lei K be a closed normal subgroup in G, and μ
any positive definite measure. Then K g Ker πμ <=* μ is constant on
right cosets K\G of i f « μ is constant on left cosets G/K.

COROLLARY A. 5 Let μ> 0 on G. Then Ker πμ is the largest
closed, normal subgroup K £ G such that μ is constant on left (or
right) cosets of K.

Proof. The last (<=>) follows immediately via Theorem A. 1, so
we only prove the first one.

Note that y e Ker πμ <=> πζ = I <=>

(7) (*;[/], [g])μ = μ(g**8y*f) = ([/], [g])μ - μ(g**f)

for all f,geCc(G), since vectors [/] are dense in £ίfμ. Obviously
K S Ker πμ <=> (7) holds for all yeK; however this happens <=>

(8) μ(g**v*f) = μ(g**f) all f,ge CC(G) ,

where v is any convex sum v — X \dy. of point masses (^ e K). Let
PC{K) be the probability measures on K with compact support.

In the space M^G) of 2Ά finite (i.e., finite total variation) measures
v on G we introduce a strong operator topology by letting measures
v act by left convolution on L\G); thus, by definition,

^ - ^ y < = - l l ^ * / - y * / l l i - 0 all fzL\G).

On any compact set Q g G , the (so)-closed convex hull of the point
masses [dy: yeQ} is equal to the weak-* closed hull, which is exactly
the set of probability measures supported on Q. (Details: Greenleaf
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[4], §1.) Let vePe(K), and Q = supp(υ); there is a net of finite

convex combinations vα = Σ {Ma> k)δk: keQ} such that va —̂ -> v, which
implies that | |v a*f-v*f | | t -+0 and ||g**v*f - g**v*f\\<a->0 for f,ge
Ce{G). At the same time, all supports lie within a single compact set

supp (g**va*f) S supp (flr)"ι Q supp (/), all a ,

so that g**va*f —• g**v*f in the inductive limit topology on Ce(G).
Thus (7) holds for all yeK<=>

(9) μ(g**v*f) - μ{g**f) all v e P.(J5Γ), all / , g e CC(G) .

Now examine left/right-hand sides in (9). We have

<μ,g**v*f> = J Jflr*(β)(i>*/)(β-1a?)dβ dj£ί(»)

= (ί \g*(s)f(y-ίs-ίx)dv(y)ds dμ(x)

—= j J J g(s)f(y-ίsx)dv(y)ds dμ(x)

while

(11) {μ, g**f} =

Therefore, (μ, g**v*f) = <.μ, g**f} for all / , geCc(G), if and only if

<δ,Ψ, /> = \f{sx)dμ{x) = ^f(y-1sx)dv(y)dμ(x)

= ^f(ysx)dv*(y)dμ(x)

= \\f(yx)d[v**8.](y)dμ(x)

= <v**δs*μ, />

for all s e G, f 6 CC{G), which is the same as saying that

δ,*U = v**δ,*β
(12) s μ ' .v all p6P.(K) , all s e G .

Note t h a t this equality holds for all seG (not just mG-a.e.), because
the expression [•••] in (10) and (11) vary continuously in s for each
choice of / . The map v —> δ8-ι*v*δ8 is a convolution automorphism of
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PC{K) since K is normal in G; furthermore, ve PC{K) <=> v* e PC(K).
Thus, δs-i*Pc(K)**ds = PC{K), so that (9) holds ~

(13) μ = v*μ all v e PC{K) .

If K is a compact subgroup in G, then normalized Haar measure
mκ e PC(K). It is easily seen that a measure μ e M(K) is constant on
right (resp. left) cosets of K <=>

(14) mκ*μ = μ (resp. μ*mκ = μ) .

Note that ΔG(k) = 1 on K since ΔG: K-+R is a homomorphism.

LEMMA A. 6. If K^ G is a compact subgroup, and if μ > 0 on
G, then μκ — mκ*μ*mκ is positive definite. For any μ e M(G) we have:

(mκ*μ, /> - (μ, mκ*f)

<μ*mκ, /> = <μ, f*mκ)

<VK, /> = (mκ*μ*mκ, /> - (μ, mκ*f*mκ)

moreover,

f*mκ(s) = \ f{st)dmκ{t)
JK

mκ*f(8) = \f{t~ιs)dmκ{t) .

Proof. To get the above formula for f*mκ, we note that ΔG{k) =
+ 1 on K, so that

f*mκ(s) = \ fist-^Δ^t-^dm^t) - ί f(st~ι)dmκ(t)
JK JK

- ( f(st)dmκ(t) .

Now the above formulas follow by routine calculations.

To see that μκ > 0, use these formulas, and the obvious fact
mκ = mi, to conclude that (μκ, /**/> = <)", m#*/**/*rax>=:<μ, g**g}^
0, where # = f*mκ.

Shifting measures to quotient groups. Suppose that if is a closed
normal subgroup on G, and let left Haar measures dk and dg be fixed.
Then left Haar measure dβ(xK) on G/K can be normalized so that

( f(x)dx = [ φ'f{xK)dβ{xK) all / e CC(G)
JG JGIK
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where

φff{xK) = \ f{xk)dk a l l xeG.

The mapping φ'\ CC(G) —> CC(G/K) is a surjection. (See Bourbaki [1],
Ch. 7 §§2.2 and 2.8.)

THEOREM A. 7. The map φτ is a *-homomorphism between con-
volution algebras with involution.

Proof. Recall that f*(x) = f{x~ι)ΔG{x ι). Note that modular func-
tions agree, ΔG \ K — Δκ; furthermore, if ocx = K—* K is the automorphism
ax(k) = xkx"1 for xeG, ke K, this map alters Haar measure on K by
a scalar, mod (ax), which is given by AGlκ{xK) = AG(x)-moά (ax) (Bourbaki
[1], Ch. 7, §2.7). Thus φ'(f*) = (<P'/)*, because

φf(Γ)(xK) - ί f*(xk)dk - ( f{k-ιx~^)AG{k-ι)AG{x^)dk
JK JK

f(x~ί-ax(k))dk
K

mod (a-1^ f{x~ιk)dk

As for convolution, let π: G —> G/iΓ be the quotient homomorphism;
by routine calculations, φ'(δy*f)(xK) = δn{y)*φrf(xK) — φ'f{y~ιxK) for
x, y e G. Now represent convolution of function with compact support

as a weak vector valued integral f*g — \ f(y)δy*gdy; the continuity
JG

properties of φf easily lead to the formula

9'{f*g) - ί
J

thus,
*>(/*£) - ί f(y)

JG

= ί Γ(
Jσ/A LJx

= ί φ'f{yK)(δyK*φ'g)dβ{yK) = {<?f)*Wg) ,
JO/A'

for /, flf e C.(G).
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THEOREM A. 8. Defining φ'\ CC(G) —> CC(G/K) as above, let μ be
any Radon measure constant on right K-cosets. There exists a unique
Radon measure μf on G/K such that

<μ',<p'f> = <μ,f> ail fecc(G).

Furthermore, μ > 0 on G => μ' > 0 on G/K.

Proof. Uniqueness is clear since φf is surjective; positivity, since
φf is a *-homomorphism between convolution algebras. The existence
of μf is proved (in a more general context) as Proposition 4, in Bourbaki
[1], Ch. 7, §2.2.

Our final results in the appendix constitute a slight, but useful,
generalization of a result of Glushkov [6] (G compactly generated)
which in turn slightly generalizes the corresponding result of Mont-
gomery and Zippin [8] (G/GQ compact). It is to be hoped that this is
the final generalization of this result.

THEOREM A. 9. Let G be a locally compact group. If G is σ-
compact and {Wi} is a countable family of nbds. of 1 then there exists
a compact normal subgroup K of G such that if ϋ OiWi and G/K is
second countable.

Proof. Let G equal the union of compact sets Fm. By induction
choose a sequence {Um} of compact symmetric nbds of 1 in G such
that Ul £ !7m_i Π Wm and (since each Fm is compact) such that FmΔ
Um £ #m~i> where Δ is the action of G on itself by conjugation. Let
K — Γ\Z=ιUm. Then K is a compact subgroup of G contained in Π ί ^
By taking finite unions we may also assume the FJs are nested. If
x e G and y e K then x e Fmo and therefore xeFm for all m ̂  m0. It
follows that xΔy e Um for m ̂ > m0 — 1. But the J74 are also nested
so xΔy e Um, i = 1, , m0 — 2; i.e, xΔy e K. If V is an open set in G
containing K then

ΓL(um n(G- V)) = nmum n(G-v) = κn(G-v) = 0.

By the finite intersection property and the fact that the Um are nested,
it follows that Um Π G - V = 0 , i.e., Um£ V. Thus {π(Vm)} are a nbd.
basis in G/K where π: G —* G/K is the canonical epimorphism. Since
G is σ-compact so is G/K. The metrization theorem [8] now completes
the proof.

From A. 9 it follows immediately that 2nd countable groups are
characterized as those which are σ-compact and first countable. (Al-
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though this can, of course, be seen in a more elementary way.) In
addition, A. 9 enables one to characterize σ-compact groups.

COROLLARY A. 10. Let G be a locally compact group] then G is
σ-compact if and only if G is the projective limit of second countable
groups.

Proof. If G is σ-compact then simply take a single neighborhood
W and apply A 9. Conversely, if G is the projective limit of second
countable groups consider a single approximating group G/K. Since
it is σ-compact and K is compact, the result follows.

COROLLARY A. 11. Let G be a locally compact σ-compact group
and {hn} be a sequence of continuous functions on G with values in
the separable metric space (X, d). Then there exists a compact normal
subgroup K of G such that G/K is 2nd countable and each hn is
constant on cosets of K.

Proof. Let G — Um=i Fm where Fm are compact sets. By local
compactness of G each Fm is contained in a compact neighborhood so
we may, assume they are also nbds. As in the proof of A9 we may
also assume the FJs are increasing. Let {^} be a basis for open
sets of X and consider the sets Anjm = h"1^) Π Fm where n, j , m =
1,2, , which are nonempty and then those pairs (n, j , m) and
(n'f j ' , m') for which (Anjm)~~ Γ) (A%Ί,m)~ — 0 . For each such pair choose
a neighborhood W of 1 in G such that AnjmWΠ AnΊ,m,W = 0 . From
this one obtains a family of nbds. {Wi\ of 1 in G. Choose K as in
A.9. We show hn(xy) — hn{xz) for each xeG, y, ze K and integer n.
If not then for some choice of the variables 8 = d(hn(xy), hn(xz)) > 0.
Since xK is compact and {Fm} are nested, xK £ Fm for m sufficiently
large. Let <^ and έ?j, be basis elements of diam < <5/3 which contain
hn(xy) and hn(xz) respectively. Then by continuity of hn and the fact
that the Anjm are precompact, Anjm and Anj,m have disjoint closures
and contain xy and xz respectively. They therefore determine a W as
above. It follows that xe An5my~~ί ϋ Anjm KQ Anjm W. Similarly x
is also in Anj,m W, a contradiction.

COROLLARY A. 12. Let G a σ-compact locally compact group and p
a continuous finite dimensional representation (not necessarily unitary)
or even a weakly continuous representation of G on a separable Hilbert
space. Then p actually lives on some 2nd countable quotient group
of G. (This automatically extends the Mackey theory from 2nd count-
able groups to σ-compact groups.)
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Proof. Let {vt} be an orthonormal basis of ^f and p{j(x) = (px(Vi),
Vj), x e G; then {pid} is a countable family of continuous functions.
By all there exists a K such that piά are all constant on cosets of
K. Since if x e G and y e K, paixy) = fti(^) for all i, j , we get ρ(xy) =
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