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A generalization of the concept of asymptotic equivalence
of two systems of ordinary differential equations is investigated.
This extension of asymptotic equivalence is novel in two ways.
First, the dimensions of the linear asymptotic subspaces of
the differential equations are uftilized. Secondly, the two
Banach spaces L= and L7, that are implicitly used in the usual
definition of asymptotic equivalence, are replaced by two (arbi-
trary) Banach spaces that are stronger that I.(X). The main
theorem establishes a functional asymptotic relationship be-
tween the solutions of two perturbed linear differential equa-
tions that utilizes the above modifications.

Consider the systems of ordinary differential equations
(1) y =A@y + £,y ,
(2) o' = Az + fu(¢, @),

where x and y are vectors in an #n-dimensional vector space X, A(t)
is an » X n matrix defined on J = [0, =), and f,(¢, ) and f,({, x) are
n-dimensional vector functions defined on J x X.

The equations (1) and (2) are said to be asymptotically equivalent
if for each bounded solution y = y(f) of (1) there exists a bounded
solution x = x(¢) of (2) such that

(3) lim (&) — ¥} = 0;

and, conversely, for each bounded solution 2 = x(¢) of (2) there exists
a bounded solution y = %(¢) of (1) such that (3) holds. If two nonlinear
systems are just known to be asymptotically equivalent then very
little information can be obtained about the dimensions of the corres-
ponding asymptotic subspaces of solutions. To remedy this situation,
we formulate in §2, a definition that takes advantage of the dimensions
of certain linear asymptotic manifolds of solutions of equations (1)
and (2). A general Banach space setting for the equivalence is exploited
in this new definition.

The principal tool used in this work is a result of P. Hartman
and N. Onuchic [6] on the asymptotic integration of ordinary differen-
tial equations.

As corollaries to our main theorem, several recent results on the
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asymptotic equivalence of perturbed linear systems are obtained. In
particular, we obtain extensions of results in the articles by F. Brauer
and J. S. W. Wong [1] and T. G. Hallam [4]. Applications in new
directions are also given. Results related to this problem that are
found by using the same methods may be found in the papers [8]
and [9] by N. Onuchic.

2. Preliminary material and definitions. In this section we
state definitions, indicate notation, and summarize the results needed
in our development of this problem. Additional details may be found
in [6].

The symbol || -|| will denote a norm on X. The symbol g = g(J,
R) denotes a Banach space of real-valued functions defined on J with
the norm of ¢ ¢ g denoted by |¢l;. By B = g(J, X) we represent the
space of measurable functions z = x(¢) defined on J with values in X
such that ||z(¢)|| € 8, and with [x(t) |, = | [|z®)]|| ;. We let L = L(J,
R) denote the space of locally Lebesgue integrable real-valued functions
defined on J, with the topology of convergence in the mean of order
one on bounded subintervals of .J, and let L(X) = L(J, X) represent
the space of measurable functions x from J to X such that ||z(?)]] €
L({J, R). A Banach space B is stronger than L(X) if B is algebraically
contained in L(X) and convergence in B implies convergence in L(X).
Every Banach space of measurable functions from J to X used below
will be tacitly assumed to be stronger than L(X).

The class H = H(R) consists of all Banach spaces g8 = Q(J, R) of
measurable functions from J to R with the four properties

(i) B is stronger than L(J, R);

(ii) if ¢ € B, 4 is measurable, and [(t)| < |4(t)], then ¢ € g and
[vls = 9155

(iii) if &, is the characteristic function of the interval I, then
h; € g for all intervals I = [0, T}, for T > 0;

(iv) B is lean at infinity; that is, if ¢€ B8, then hy,n6 — ¢ as
T— oo,

For example, the spaces L*(J, R), 1 < p < oo, are contained in
H(R). The same is true of Ly(J, R), the subspace of L=(J, R) whose
elements x satisfy the condition ess lim,_ 2(f) = 0. However, L=(J, R)
itself is not contained in H(R).

Another useful class of Banach spaces in H(R) consists of spaces
B defined in the following manner. Let + = (f) > 0 be a measurable
function on J such that + and 1/+r are locally bounded on J. The
space B = Ly (J, R) contains all measurable functions ¢ = ¢(¢f) such
that ¢/y € Ly(J, R) with [g; = ¢/ [r=.

We represent by H(X) the class of all Banach spaces B = gB(J,
X) where g(J, R) is in H(R).
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In the equations
(4) 2 =A@z,
(5) w = A{)w + b(?) ,

A(t) is a locally Lebesgue integrable n x » matrix defined on J, and
be L(X).

We assume that the Banach spaces in the sequel consist of meas-
urable functions from J to X unless the contrary is specified. For
such a Banach space D, let X,, denote the set of initial points %(0) €
X of solutions = = z(t) of equation (4) which are in D. Let X,, be
any subspace of X complementary to X,, and P,, the projection of
X onto X,, which annihilates X,,. A pair of Banach spaces (B, D)
is called admissible for A(t) if for every be B, (5) has at least one
solution w = w(¢) in D. A function 2 = z(f) from [T, =) to X, T =
0, is asymptotically in the Banach space B if there is a function % =
Z(t) from J to X which is in B and such that %) = x(¢) for ¢t = T.
Whenever the function x is asymptotically in B and z is also a solution
of a differential equation then we will say that x is an asymptotic
B solution of the differential equation.

Let p and q be integers that satisfy the inequalities 0 < p < =,
0 < q < n. Equations (1) and (2) are (p, q)-asymptotically related with
respect to the ordered pair {D,, D,} of Banach spaces if the following
two conditions hold:

(i) There exists a family F, of asymptotic D, solutions of (1)
which depends upon at least p parameters.

(ii) For each solution y = y(f) of (1) in F,, there corresponds a
family F, of solutions x = «(f) of (2), which depends upon at least ¢
parameters, such that y — x is asymptotically in D, for each x¢ F,.

We adopt the convention that a family which depends upon 0
parameters must consist of at least one member.

If the family of all bounded solutions of (1) is a p-parameter
family and the family of all bounded solutions of (2) is a g-parameter
family then the concept of asymptotic equivalence may be formulated
as follows: Equations (1) and (2) are (p, 0)-asymptotically related with
respect to {L~, Ly} and equations (2) and (1) are (q, 0)-asymptotically
related with respect to {L>, L{}.

Let C = C(X) denote the space of continuous functions from J
to X with the compact open topology. Let 3, , be the closed ball
of radius pin D andlet S,, = X,,N C and S,,, be the closure of S,,,
in C(X).

A bagic requirement imposed upon the functions f; of (1) and
2) is
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(6) fi{t, x)(@ = 1, 2) is a measurable function of ¢ for fixed
ze X and a continuous function of x for fixed telJ.
Furthermore, the continuity of f, in z is uniform for ¢
in compact subintervals of J.

The matrix A(t) will always satisfy the condition
(7) A(t) is locally Lebesgue integrable on J .

The next lemma is a consequence of Theorem 1.1 of [6].

LemMma. Suppose that equation (1) has the following properties.

(i) Condition (6) is satisfied for the function f, and condition
(7) is satisfied.

(ii) The Banach space B = B(J, X) is wn H(X) and the pair (B,
D) is admissible for A(t).

(iil) There ewists a constant p > 0 and a function r, = r.(t) <
B(J, R) such that

(8) L1t y@) ] = 7o(D)

for all teJ and all yeS,,.

Let & e X,,. Then, there exist positive constants C,, K depending only
upon A(t), B, D, X,, (but not on f, nor &) such that whenever | &
18 sufficiently small and T is sufficiently large so that

Colléll + Kl bppyerrols = 0

then (1) has an asymptotic D solution y = y(t) valid on [T, o) with
the properties

(iv) P, Z ' (TYy(T) = &, where Z(t) is the fundamental matric of
4) with Z(0) = I,; and

(v) The solution y has an extension ¥ which ts valid on J and
18 a solution of

(9) ¥ =AY + hirew (L, Y)
such that §(T) = y(T) and &), < 0.

Proof. The only hypotheses of Theorem 1.1 of [6] which are
not explicitly given aboven above are the conditions denoted by (b)
and (c) in [6]. For (9), condition (b) states that the transformation

Y(t) = F(t, ) = hp,eDF2(E, 9(2)

is a continuous map of the subset S,, of C(X) into B. This is a
consequence of the facts that Be H(X) and f, satisfies conditions (6)
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and (8). To establish this, let ¢ > 0 be given; then 7 =0 can be
chosen sufficiently large so that |hp. ., (6)r.(t)|s < e/4. By virtue of
(6), there exists a & = d(¢, 7) > 0 such that if v, v,€S,,, and |y.(¢) —
Y,(t)| < 0 for te]0, z] then

| Bio s LA 9.(8) — Fult, w5 < &/2 .
Therefore, if y, and vy, are in S,, with

[h[o,rl(t)[yl(t) - yz(t>” < 0 ’

then

|7ty 9(8) — Filt, 9:0) |5 < [ hoo, Doty 1:0) — Folt, 9] |
+ B () F2(E, 92(D) |5
+ gy (0 F o8, YD) |5
< &/2 4 2] he, ;)76 [
<e.

This shows that (b) is satisfied.

For (9), condition (c) states that there exists a constant » > 0
such that |fi(¢, 2(t)|, < » for =2(t)eS,,. This follows by taking
r= |h'[T,°o)7'.0]ﬁ'

Theorem 1.1 of [6] may now be applied to system (9) to establish
the existence of a D solution ¥ = %(f) of (9) which satisfies |7(t)], <
0 and P,,7(0) = &. Since fi(t,y) =0 for 0 <t < T, it follows that
Y(T) = Z(T)y(0) and hence

ng(O) = PODZ—l(T)g(T) =& .

The function y(¢) = %(t), t = T, is an asymptotic D solution such that
P, Z7(T)y(T) = &. This completes the proof of the lemma.

REMARK 1. If m = dim X,,, this lemma implies the existence of
a family of asymptotic D solutions of (1) which depends at least upon
m parameters.

REMARK 2. Condition (iii) of the Lemma is sometimes difficult
to establish. In the instance where D = L* or D = Ly, a simple
sufficient condition for (iii) is that there exists a X, = \,(¢) in B(J, R)
such that || f(¢, )| £ () (ted; ||z]] < p). A sufficient condition for
(iii), without specifying D, is that there exists a \ = \(t) € B(J, R)
such that || f(¢, 2)|| < Me)(ted; v € X). Theorem 4 below gives a suf-
ficient condition for inequality (8) to hold whenever B and D are
certain spaces of L* type.
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3. Asymptotic relations. This section contains our main result
and some applications.

THEOREM 1. Suppose that equations (1) and (2) satisfy the following
conditions.

(i) Assumptions (6) and (7) hold.

(i) The space B; = p;(J, X) 1is in H(X) and the pawr (B;, D))
s admissible, 1 = 1, 2.

(iii) There exist comstants 0; > 0 and functions

’r’,,z.E’/‘pi(t) € Bz(Jy R)

such that

(10) L, y@ 1 = 70, (B)

for all teJ and all yeS, ,; and

(11) a8, @) + y(@) — fFult, y@) | = 70,(0)

for all ted, all yeS,p,,, and all we Sy,

(iv) The dimensions of X,p, and X, are p and g respectively.
Then, under these hypotheses, equations (1) and (2) are (p, Q)-asymp-
totically related with respect to {D,, D,}.

Proof. The existence of a family F, of asymptotic D, solutions
of (1), which depends upon at least p parameters, is an immediate
consequence of the Lemma. Let y = y(f) be a solution of (9) where
T and ye F, are as given by the Lemma. It follows that [y, Zp..

The change of variable u = z — y(f) leads to the differential
equation

12) w = Alu + f(t, w) t=T,ueX)
where

It is convenient to consider equation (12) as
u' = At)u + by ) f (&, u) (ted).
From (11) it follows that for all uegpz,pz,
1z, (8) S (&, W] = Popg,em (D)7, (), (ted).

The lemma now implies that there exists a family F, of asymptotic
D, solutions of (12) that depends upon at least ¢ parameters. For
each we F,, x(t) = u(t) + y(t) is a solution of equation (2); hence, there
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is a family G, of solutions of (2), which depends at least upon ¢
parameters, such that & — y is asymptotically in D, for each zeG,.
This completes the proof of Theorem 1.

COROLLARY 1. Suppose that conditions (i), (ii), and (iv) of Theorem
1 are satisfied for the spaces B; = B= pB(J, X)e HX),1=1,2. In
addition, suppose that there exists a N = ME) € B(J, R) such that || fi(t,
)| EAE) for all ted and all xeX,i=1,2. Then, equations (1)
and (2) are (p, q)-asymptotically related with respect to {D,, D,} and
equations (2) and (1) are (g, p)-asymptotically related with respect to
{D2y Dl}'

Proof. Taking into account Remark 2, we have that (10) is
satisfied with », = and (11) is satisfied with », = 2\. Since the
hypotheses are symmetric for both the cases 7= 1,2, Theorem 1
yields the desired conclusion.

For the particular case in which D, = L= and D, = L7 we obtain
the following results.

THEOREM 2. Suppose that equations (1) and (2) satisfy the follow-
ing conditions

(i) Assumption (i) of Theorem 1 holds.

(i1) The function V(t, r) is nonnegative for (t,r)ed x J, nonde-
creasing in r for fived t, and

(14) I ft, )| S V&, |lx]), @ =1,2ted;ze X) .

(iii) The space B = B(J, X) ts in H(X); V(&, r) is in G(J, R) for
each fized r > 0; and, (B, L) is admissible for A(t).

(iv) The dimensions of Xy~ and X, are p and q respectively.
Then, under these hypotheses, equations (1) and (2) are (p, 9)-asympto-
tically related with respect to {L~, L7}.

Proof. Theorem 2 is a consequence of Theorem 1 provided we
show that the inequality (14) implies that the inequal_ities (10) and
(11) hold. Let p; > 0 (i =1, 2) be given. For all yeS;=,,

therefore, (10) is satisfied because V{(¢, o) is in B, R). To see that
(11) holds, we only need observe that for all w € S;~,,, and all y € S,

1 fa(t, u(®) + y(@) — £, y@) || = 2V, 0, + 05) -

As Corollaries to the above theorem, we obtain extensions of
some results of Brauer and Wong [1, Theorem 1] and Hallam [4,
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Theorem 2].

COROLLARY 2. Suppose that equations (1) and (2) satisfy the
following conditions.

(1) There exist supplementary projections P,, P, and a constant
K > 0 such that

NZOPZ7 ()| = K,0Ss < ¢;

1) NZz®)PZ7 ()| £ K, 0=t <.

(ii) The function f, =0, f, satisfies (6) and
(16) e, @) || < V&, llzl)), Ced;ze X)

where V(t, r) satisfies hypothests (ii) of Theorem 2.
(i) S Vit, r)dt < o for all >0 .
(iv) Assumption (7) and condition (iv) of Theorem 2 hold. Then,

under these hypotheses, the equations (1) and (2) are (p, q)-asymptotically
related with respect to {L>=, Ly},

Proof. It is known [7, p. 331] that if (L', L=) is admissible for
A(t) then (L', Ly) is also admissible for A(f). It is also known that
(L', L~) is admissible if and only if (15) is satisfied. The corollary
now follows from Theorem 2 with B = L.

COROLLARY 3. Suppose that the assumptions (i) and (iv) of
Corollary 2 hold. Suppose that there exist sypplementary projections
P, P, and a constant K > 0 such that

o) = (|11 200P2 @ lds)"
an + ([ 1z0pz @i a) s K,
(ted;1 <7< o).

Let SW[V(t, r]‘dt < o, for all r > 0, where o+t =1. Then,

equations (1) and (2) are (p, q)-asymptotically related with respect to
{L7, Lgh

Proof. Conti [2, Theorem 1] has shown that condition (17) is
necessary and sufficient for the pair (L°, L*) to be admissible for
A(t). However, condition (17) is equivalent to the stronger result
that (L°, LY) is admissible for A(t). To verify this statement, we
note that (17), b€ L°, and the Holder inequality imply that
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(18) w(t) = g:Z(t)RZ“‘(s)b(s)ds -~ SjZ(t)PZZ'l(s)b(s)ds

is a solution of (5) with ||w(®)| < K|blw, ted.
It will now be shown that lim,., w() = 0. For a given ¢ > 0,
T, = Ty(¢) can be chosen so that

(19) | iz, bl < /2K .

Since lim,_., ||Z®#)P.|| = 0 (see [4, p. 859]), T, = T, may be chosen so
that

(20) 1 Z@)P,]] < s/ZS:lHZ‘l(s)b(s) llds, t = T, .
Therefore, for ¢ = T, it follows from (19) and (20) that
”S:Z“)PIZ“@ b<s>dsH = S:‘HZ@RH 1 Z-(s)b(s) || ds

+ <S;H Z()P.Z7(s) H’dsylt

([ 1@ 1ras)”
<e¢

This shows that the first term of w in (18) tends to zero as ¢ approa-
ches infinity. The last term in (18) also tends to zero as ¢ approaches
infinity since

1fa

Hfz(t)ﬂz—l(s)b(s)ds” < K(f]; b(s) H"ds)
The corollary now follows from Theorem 2.

REMARK 4. The asymptotic equivalence result analogous to Corol-
lary 2 is Theorem 2 of [4]. It yields an (p, 0)-asymptotic relation
with respect to {Lg, Ly}, It should be noted that we have taken the
weight functions 4, ¢ of [4] as 4 = ¢ = 1. The proof that (17) implies
(L°, Lg) is admissible for A(f) is essentially contained in [4].

We point out that the statement—equations (1) and (2) are (p, ¢)-
asymptotically related with respect to {D, D}—yields only a natural
correspondence between the solutions of (1) and (2). Namely, that
correspondence given by y — x is asymptotically in D whenever
ye€ D. This means that x is asymptotically in D; hence, the above
statement says that (1) {(2)} has a family of asymptotic D solutions
depending upon at least p{q} parameters.

The above corollaries extend known results. The next results
are applications of Theorem 1 in a new direction. For this purpose
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consider the Banach space D = L"N Ly, 1 £ 9 < o, where 2 € D implies
weL” and w € Ly with ||, = max [|2]., |#|;2]; see [7, p. 336]. Later
in the paper we will utilize the Banach space D = L? N L* which is
defined in an analogous manner.

THEOREM 3. Suppose that equations (1) and (2) satisfy the
following conditions.

(i) Assumption (i) of Theorem 1 holds.

(ii) There exist supplementary projections P,, P, and positive
constants a, K such that

IZQ)P.Z7 ()| = Ke™™, 0=s < ¢

& 1 ZO) P27 (s)]| = K, 0st<s.

(iii) There exists a monnegative function N = A({t) measurable on
J such that

(22) N, ol =Mt (G=1,2ted;2eX).
and
(23) S”m(t)dt < oo

(iv) The dimensions of Xyo, Xopr(r = 1), and X, ,(D = L* N LY,
s=1) are v, q, and m respectively.
Then, under these hypotheses, equations (1) and (2) are (p, m)-asymp-
totically related with respect to {L=, L* N\ Ly} and equations (2) and
D) are (q, m)-asymptotically related with respect to {L", L* N Lg}.

Proof. Let ¢ = ¢(t) be chosen so that ¢ is a positive continuous
function satisfying

Smtx(t)qs(t)dt < oo
and
lim g(t) = e .

It will be shown that (Ly,., L* N LY)(k = 1) is admissible for A(f)
where + = \g.

If be Ly,, then w(t), as defined by (18), is a solution of (5) since
(21) implies that there is a positive constant K, such that

1Z@) P.Z7(s)b(s) || = K |[b(s) || = KM(s)g(s)

where
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| Merseds < o .
Also, from (21), it follows that
@ wl s K] e neeeds + K vosds -
We obtain from (24) that we Ly because

| Mos)ds < -

and

lim e“"”Ste”x(s)ng(s)ds =0
t—oo 0

(see [3], Lemma 1).

To see that w = w(¢) is also in L* k = 1, it is sufficient to show
that w is in L' since we have established that we L. We note that
an integration in (24) leads to

Stu w(e) || de < KIStdrsre‘“"“’x(s)gb(s)ds
(25) 0 o t 0 )
+ Klgodz'grk(s)gﬁ(s)ds X

The integral Swdz'rx(s)qi(s)ds converges because rtx(t);zs(t)dt converges.
0 T

An integration by parts gives

) S:e—ar[gzeum(s)gé(s)ds]dz' = — a*ie:atszeasx(s) 4(s)ds
+ a“‘goh(s)gé(s)ds .

The right side of (26) is bounded which implies that the first integral
in the right side of (25) converges as t — . This implies that we L.

The corollary follows from Theorem 1 provided that A € Ly o(J, R);
but, A4 = ¢ and lim,..¢7'() = 0.

REMARK 5. A sufficient condition for (21) is that A be a constant
matrix where all eigenvalues of A with zero real part have linear
elementary divisors.

THEOREM 4. Suppose that equations (1) and (2) satisfy the following
conditions.

(i) The function f, = 0; f, satisfies (6); and (7) is satisfied.
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(ii) There exist positive functions a = a(t) and b = b(t) that are
continuous on J and a constant 6 > 0 such that

27) 1ot @) || = a@ ]| 2] 4 b(), teJ;ve X) .

(iii) The pawr (L°, D) is admissible for A(t), where 1 < o < oo,
and D = L" N L™ with 66 <70 < oo,

(iv) The function aec L™(J, R) where o = no/(n — 06) and the
function be L°(J, R).

(v) Let p =dimX,r and ¢ = dim X,,.
Then, under these hypotheses, equations (1) and (2) are (p, ¢)-asymp-
totically related with respect to {L7, D}.

Proof. First, we observe that S,, = S,,,. This equality is evident
if it is shown that xS, implies that v D and |2, < 0. If x¢ D
then either x¢ L” or ¢ L=. Since z¢S,,, there exists a sequence
{x,} with 2,€8p,, n = 1,2, --- such that {x,} converges uniformly to
xz on compact subintervals of J.

Suppose that x ¢ L7; then, corresponding to any & > 0 there is a
T = T(¢) > 0 such that

[S:Haxt)undt]””:> o+e.

Corresponding to the positive number 1/27, there exists an N such
that whenever # = N then ||z,(f) — x(t)|| < &/2T'", t€[0, T]. There-
fore, for n = N,

o+e<|[awira] " = [[1w@ira]”

S IRECEEXCI
<po+e¢2.

This contradiction shows that xe L. Because |z,|;~ < p, it is clear
that © e L=; hence xe D = LN L~

It remains to show that |z|, < p. It is immediate that |z~ <
©. The argument given in the above paragraph shows that |z|;» <
0. Thus, 2], = p.

For any two functions u, y, (27) implies that

(28) I Fa(t, u(t) + y@) Il = a@®llju@) + yOI" + b(t)

Let 0, >0 and o, > 0 be given; then for ueS,,, and yeSy,,, we
assert that the right side of (28) is in L°. The Holder inequality and
the fact that D = L7 N L= implies that

| fa(t, (@) + y(@) e = la(®) el (@) 7 + [y@) 21" + [0() [1o .



ASYMPTOTIC RELATIONS BETWEEN PERTURED LINEAR SYSTEMS 199

Sinece

u€8Sp,, and yeS;r, then |ul, <0, and |yl < 0, .

104

The result now follows from Theorem 1.

REMARK 6. If f, satisfies the global Lipschitz condition
”fz(t, x) — fz(t, xz)” = a(t) ||x1 - xz” (tGJ, HAS X)

where a € L* and f.(t, 0)e L° then f, satisfies condition (27) with
0 =1,a = a(t), and b(t) = f.(¢,0) .

REMARK 7. A sufficient condition for (L°, L” N L) to be admissible
is that p(¢) as defined in (17) be in L7 N L~. Indeed, for each be L,
the solution w(t) of (5) defined by (17) satisfies the estimate

lw@ll < [blo0() (te ).

(Related as well as supplementary comments on this topic may be
found in [5].) Hence, if o€ L7(J, R) and (17) is satisfied, then (L°, L'N
Ly) admissible for A(t).
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