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Renormalized products of the generalized free field and
its derivatives are shown to exist as continuous sesquilinear
forms on the C=~-vectors of the adjusted free Hamiltonian.
Smeared in space and time, with some restrictions on the
time smearing, and mild restrictions on the generalized free
field, they are shown to be densely defined operators, admit-
ting a self-adjoint extension when the smearing is even in
time. Lorentz covariance of these products is shown.

In [4, 5], Segal has given an intrinsic characterization for the
renormalized powers of field operators, which were first introduced
by G. C. Wick as a procedure for standardizing the removal of in-
finities from products of field operators. Segal characterizes these
“Wick products” by their commutation relations with the field oper-
ators plus the requirement of zero vacuum expectation. He also
shows their existence and uniqueness in the case of the “neutral
scalar free field” associated with a locally compact abelian group
with a given energy operator. They have the property that the
field operators at a fixed time generate a maximal abelian self-
adjoint algebra. We extend Segal’s results to the case of a more
general field, commonly called the “generalized free field”, intro-
duced by Greenberg [2]. In the case of the generalized free field,
the fleld at a fixed time is not an operator in general, and the field
operators must be smeared in time as well as in space, and thus the
field operators do not commute. Nevertheless, we show that the
methods of [5] still apply, and we extend them to products also
involving derivatives of the field. In particular, these extend the
results of [5] for products of the form :9x) 9 (x)*: in the case of the
neutral scalar free field over R™ with the usual energy operator.
The renormalized products of the generalized free field and its de-
rivatives are shown to exist as continuous sesquilinear forms on the
C>-vectors of the adjusted free Hamiltonian. Moreover, under very
mild restrictions on the generalized free field, these renormalized
products are shown to be densely defined operators having the C=-
vectors of the adjusted free Hamiltonian in its domain, when the
smearing in time is done by a function whose Fourier transform
goes to zero fast enough at o, and admits a self-adjoint extension,
when the smearing function is also real and even in time. This was
done in [6] for powers of the neutral scalar free field. We also show
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Lorentz covariance of these renormalized products.

B. Simon has pointed out to the author that the result on the
existence of self-adjoint extensions follows from Wightman [7, Theorem
3, p. 592]. However, in the case of the renormalized products of the
generalized free field and its derivatives it is straightforward to prove
it directly, without appealing to the PCT theorem.

It should be noted that the renormalized products of the neutral
scalar free fleld have been studied by Wightman and Garding [8].
Our work is more on the spirit of Segal [4, 5, 6].

1. Preliminaries., We shall use the convention that the inner
product in a complex Hilbert space is antilinear in the first coordinate,
and linear in the second.

If 57 is a given complex Hilbert space, the corresponding free
Weyl process (2%, W, I, v) consists of

(i) a complex Hilbert space .22

(ii) a continuous map W from 2% to the unitary operators on
%" satisfying the Weyl relations:

W W) = exp{—(/2)Im(z, 2)}W(z + 2"), for all 2,2 € 57.

(iii) a continuous unitary representation U— I'(U) of the group
of all unitary operators on 5%, such that:

(a) '(UO)WRRI(U)™ = W(Uz) for all U and z.

(b) dI'(A) = 0 for any self-adjoint operator A = 0 in 5#, where
dI'(A) denotes the self-adjoint generator of the continuous unitary
one-parameter group I"(¢**), t € R.

(iv) a unit vector v e .9 which is cyclic for the W(z) and such
that I"(U)v = v for all U.

The foregoing properties determine (27; W, I", v) uniquely, with-
in unitary equivalence.

This definition is due to Segal.

2. The generalized free field. Let M denote 7 +1 dimensional
Minkowskian space-time, with relativistic scalar product

x'y:moyo_i'?ﬂ/-

If f is a function on M, f(p) = (271)‘(”“”25e“ip'xf(x)dm will denote
its Fourier transform, when it makes sense. If & is a set of func-
tions on M, with Fourier transforms, & will denote the set of their
transforms.

Let o be a given Lorentz invariant positive measure over M,
such that the support of p is contained in {keM|k-k> 0}, and



RENORMALIZED PRODUCTS OF THE GENERALIZED FREE FIELD 277

peﬁ "(M), the space of tempered distributions over space time. By
[3, p.97], pe & if and only if Sa + | kD do(k) < e for some
r> 0 where || k| =k + k- k. Equivalently,

do(k) = 6(—F + mdkdp(m?) ,

where g is a positive measure on (0, ), such that
S (L + 2K + md)~"(m? + k) ~'2dkdp(m?) < o« for some » > 0.

Let 57= {fe LM, do) | fk) = J(—F) for all k in M}). 57 is a
real Hilbert space, with inner product (f, §) = S F(k)gk)do(k). We
make 57 into a complex Hilbert space by deﬁlning multiplication by
1 to be the operator j given by (5/)(k) = (k) f(k), e(k) = 1 if £k, > 0,
anNd —1 if ~k0 < 0. VYe can now introduce thg cgmplex inne;r product
{f, 8> = (/, 9) +i(f, ). More explicitly, if A(f, §) = Im<f, §), then
A7, 9) = —i | cBFWFdp0), and (T, 7> =2 | FRT W00 do0),
where 6(k) = 1 if k, > 0, and 0 otherwise.

Let R (M) = {fe (M) | f real-valued}. Then

RPM) = {fe FM)|F) = F(—hk)} .

Moreover, as pe&', &(M)CLZ(M, dp), and is dense in L,(M, dp),
so R& M) c 57 and dense in it (actually, we have to identify func-
tions in &7 that are equal almost everywhere with respect to o, but
we will leave this understood). As the Fourier transform is an iso-
morphism from .&” onto L?; we can transfer to R.$7(M) the Hilbert
space structure, and let 5% be the completion of RS”(M). Then we
can extend the Fourier transform to 5%, and it is a unitary map
from 57 onto SZ Thus if f, g€ S {f, 9>~ = <J, 9>, and we will
write A(f, 9) = Im {f, 9} = A(F, §).

DEFINITION. The generalized free field associated with p is the
free Weyl process over 5%

Let (2%, W, I', v) be the free Weyl process over 5Z Then the
field operators @(f) are defined by e’ = W(tf), for fe 54 Then
[2(f), (9)]” = ©A(f, 9). For f,ge RS (M), we have

A(f, 9) = —i@m)~+Y Se(k)e“‘"”“”’f (@)g(y)dzdydo(k)

Let D() = —i(2n:)“"‘+"Se(k)e"’“dp(k). D() is not a function, but



278 ABEL KLEIN

D(x) e &7, as pe?'.
Then A(f, g) = SD(x — W f@ g dady, so if we write O(F) =

| 2@/ @, [#), )] = Dl — 1),

ExaMpPLE. The neutral scalar free field with mass m,: let
dp(m? = o(m* — mYdm?, or, equivalently, let do(k) = 6(—k* + midk.
Then 27 can be identified with the space of solutions of the Klein-
Gordon equation with mass m, []® = m*p. In this case, D(x) = 4, (%)
where 4,,, is the solution of the Klein-Gordon equation, in the sense
of distributions, satisfying the Cauchy data

4, (8,0) = 0; 2 4,5, 0) = 0@ -
We recall that in the general case, do(k) = o(—& + m)dkdp(m?), so
D(z) = gdm(x)dp(mz). That is the way generalized free fields were

first introduced by O. W. Greenberg in [2], by requiring the field
commutation relations to be an integral with respect to the mass of
the commutation relations of the neutral scalar free fields.

We would like now to introduce a particular representation of the
generalized free field, which we are going to use in the computations.

Let do,.(k) = 6(k)do(k), and 5?1 = LM, do,). Then the mapping
F—1"2 6f is unitary from 57 onto éf%ﬁ, and so we can represent

the free Weyl process over 57 as the free Weyl process over %Nﬁ,
and we are going to use the Fock-Cook representation (see [1]), in
which 2= Y2, @ 5%,, where %, is the symmetrized n-fold tensor

product of é’:ﬂ with itself. In particular, as
S, = LM, dp,) , 5%, = SL(M", I dp.) ,

where do.; = dpo. for i =1, ..+, n, and SL, means the symmetric
functions in L,. If we 2, we will write w~ F(k,, ---, k,) to mean
w corresponds to the square-integrable symmetric function

Fly «oey k)

In this representation the annihilation operator C*(g), for ge 57 is
given by

(CHOF) sy ==+, ko) =V 2V + 1 S GRVF (k, sy +++, ka)do(F)

for Fe 27, (the V2 factor comes from the isomorphism between
27 and ;ﬁ;).
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3. Derivatives of the field. The map
fe RS — 0(f) = S P (@) f (r)d

can be considered as a tempered operator valued distribution, as the
topology of RS is finer then the topology of 24 Thus we can define
the derivatives of the field in the same way as for distributions.
More precisely, let 0 be a linear differential operator with constant
coefficients on M, and let 0* be its formal adjoint. We define

00(f) = @(0*f) ,
for fe R%. Symbolically,

00(7) = | () f s = | pa)*f@)ds .

Then [00(f), @(9)]” = 1A(0%f, 9), so [0P(®), P(y)] = 0. D(x — y) =
10D — y). Recall D(z) e.&”’, so 6D(x) is well defined and is again
in &7,

In R(?;‘ 0 is just multiplication by a polynomial, which we will
denote by 4. On the support of p, |3 < c|k,|?, where d is the
degree of 6 and ¢ is a constant depending on 4, as k* = k2 — k*> 0.

4. Action of the Lorentz group on &%, There is an action of
the inhomogeneous Lorentz group on 57 by unitary or antiunitary
operators, depending on whether time is not or is reversed. Explicit-
ly, translation by we M is represented by the unitary operator whose
action on R.%” takes f(x)— f(x — a), and the corresponding action
on a%’i, takes f(k) — e~*° f(k); the action of a pure Lorentz trans-
formation 4 that preserves the direction of time is unitarily im-
plemented by f(x) — f(47'x) in R.%, and by f(k) — f(47'k) in gz’ﬁ;
and if 7 is a pure Lorentz transformation reversing time, it is re-
presented by the antiunitary operator that takes f(z)— f(z7'x) in
R, and f(k) — f(—77'k) in 57.. These actions are unitary or anti-
unitary, as o is Lorentz invariant. We will call it the natural
representation.

5. Renormalized products. Let ¢, -+, 0, be linear differential
operators in M with constant coefficients. We want to define re-
normalized products of the form 0,9(x)d,»(x) -+ 0,2(x). As shown
by Segal in [4, 5], the right thing to ask is for these renormalized
products to behave in an algebraic sense like ordinary products, i.e.,
behave under commutation like ordinary products, and have zero
vacuum expectation. Proceeding formally, we have
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[6.P@0.P@) -+ - ,2(2), 2(w)]
=i 3,00(@) -+ 5P(@) -+ 0,2@0,D@ — 1) -

Thus, if ge 57

e“"g’ap(x) cee ar¢(x)e—i¢(g)
= 0,p(®) + -+ 9,9(x)

+ 3100 -+ F9(@) -+ 0,9@)0,(D+0)(@)

»

+ 3 0@+ (@) -+ 5p() - -+ 0,9@D 5 ) (@0AD ) @)

<j=

+ oo +0,(D*g)®) -+ 0,(Dxg)x) ,

where by D+ g we mean gD(x — y)g(y)dy. In general this is an

element of 57, but not necessarily a function on M. But with the
right restrictions on ¢ it will be a bounded C=-function.

PROPOSITION 1. Let ge 5% be such that §e L, (M, do). Then
D x g is well-defined as a bounded continuous function on M. More-
over, if k;ge L,(M, do) forall r=10,1,2, -+, D+ g is a C>-function.

Proof. If §eL,(M,dp), Dxg is the Fourier-Stieltjes transform
of the complex measure —ie(k)F(k)do(k). To show it is continuously
differentiable just recall | k| < | k| on the support of p.

DErFINITION. For any positive operator A in a Hilbert space,
2.(A) will denote the common part of the domains of the A7, r =
1,2, --- and [, (4)] denotes this set as a topological vector space
in the topology in which a generie neighborhood of 0 consists of all
2 such that || 4"z|| < e for » < 7, for some & and 7.

We are now ready to state our first theorem.

THEOREM 1. Let B be a given positive self-adjoint operator in
5%, such that B 1is given by multiplication by a function B in %’,
where B e L,(M, dp) for pelp, o] for some p, =1, and there exists a
constant ¢ > 0 and a positive rational number q such that

[kl = c|B(k) |

on the support of p. Let H= dI'(B). Then, for any given linear
differential operators with constant coefficients 6,, -+, 0, on M, and
every © € M, there exists a continuous sesquilinear form @(0,,++-,0,; x)
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on [2.(H)] such that:

(i) the map (x, u, w) — @, -+, 8,; ©)(u, w) is continuous from
M x [2.(H)] x [Z.(H)] into C.

(i) 2(@; 2)(w, w) = u, w) for every u, we|[D.(H)], where Q@
stands for an empty set of linear differential operators; and

POy, ¢++,0,; X)(0,v) =0 ifr=1.
(iii) for arbitrary g€ 2.(B),
g)(al’ *t% ar; x)(e—w(g)u, e—id’(o)w)
r r N\ N\
= Z . Z A @(aly MY a.’l'p %y a.’is’ °tcy ar; x)(u’a w)ah(D * g) (x)
8=0 j1<5g< +"<Jg=1

* 05,(D x )(®) +++ 0;,(D % g)(x)

Furthermore, the @0, ++-,0,; ¥) are wuniquely determined by these
conditions.

Proof. We first notice that if ge =.(B), then §e L,(M, dp), for
d = B*95?, so if we take p large enough so that 8¢ L,,(M, dp), it
follows § is the product of two functions, each of which is in L.(M,
dp), and thus it is in L,(M, dp). Similarly kg e L,(M, dp) for all s=
1,2, .-, as | k] =< ¢|B]? on the support of p. Thus by Proposition
1, Dxg is a bounded C=-function, so condition (iii) has a non-
ambiguous meaning.

The uniqueness part of the theorem follows from Theorem 3.2 of
[5], by the argument that given 4, +--, d,, if the products

PO, +++, 0;,5 %)

are unique for s < r, and there exists another form with the same
properties as ®(d,, ---,d,; ), then the two forms have a difference
which is invariant under the unitary transformations ¢*'?, g € &Z.(B),
and has zero vacuum expectation.

The proof of the existence proceeds by the establishment of ex-
istence and properties of the limit of {u,: 6.9(g,) *++ 9,9(g.): w), as ¢
converges to the ¢ function, where g¢.(y) = g(y — ©), w, u € 2. (H),
and : : is the renormalization map with respect to the normal vacuum
studied by Segal in [4, pp. 426-34].

We will divide the proof in several lemmas. But before proceed-
ing with it we need to introduce some notation: we will write

Bulley -+, T) = 33 80k3) -
Thus, if weF,N=2Z(H) and w~ Fk, +--, kn),
Hw ~ Bm(ku *t km)F(kly ey km) .
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LEMMA 1. Letwe 28, u€ 9%, w~F(ky««-, k), u~G(ky, +++, k).
Then for every ge RS”(M),

{uyt 0,9(g) « -+ 0,9(9): w)
=m-(m—1)e(m—s+1))*n-(n—1) -+ (n— (r—s)+ 1))'?

* Sg(kl) e g(ks)’g:(ks+l) °ee E(kr)PGCl: Sy kr)é(kl’ M) kn Dis o°°, pm-—s)
* F(ks—l-ly R kr: ply tcy p’m—s)dto-}-(kl) b d(o+(kr)d(o+(p1) e dp+(pm-—s) [y

where P(kl’ MR} kr) = 2050(1)(151) e ga(s)(ks)éo(a+1)(ks+1) b 5a(r)(kr)’ where
the sum 1is over all permutations ¢ of {1, ++ -1}, if there exists an integer
0 < s < r such that 2s = m + r — n, and equals zero otherwise.

Proof. ®(g) = 27*C(g) + C*(g))~, so
00(g) = 27C(9*g) + C*(6*9))~ -
Thus
:0,0(g) - -+ 0,9(g):
=278 515, CO3g) -+ CONC*@larnd) =+ C*@2n0) -
Recalling that if we 9%, u € 5%, then
Cu, C(g,) +++ C(@)C*(guss) =+ C*(g)w) = 0

unless m — s = n — (r — s), and how C(g) acts on .7, in this repre-
sentation, we get the lemma.

LEMMA 2. There exists a constant A, and a positive integer a,
independent of g, such that for arbditrary w, u € Z.,.(H),

u,: 0,0(g) -+ - 9,0(g): w)
= | [ 000 Kalhs, -, k)00 -+ dos (k)
where

[ 1 Eaallty -+, ) [ dou(l) -+ dou (k)
<A@+ Brull- @+ Hywll.

Proof. Consider first the special case of Lemma 1, i.e.,
we %, DJ(H), ue N D.(H).

Then, by Lemma 1, the conclusion is equivalent to
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Ku,w(kly c* %y kr)
= (me(m—1) e (m = s+ D) - (0= 1) o+ (0= (r — ) + 1)

* %(ka+1) A %(kr) g -P(kly ty kr)é(kn M) ks: Diy e, pm—s)

* F(ka+1’ 0ty kr: Dy ey Pm—s)d(0+(p1) e dlo+(pm—a) ’
where 27(k) = §(k)g(k)™ if §(k) # 0, and 1 otherwise, be integrable,
with absolute integral dominated as indicated. To show that, notice
me+@m—1)--+(m—s+ 1) <m", and

ne(m—1-++(n—@r—-—9g+1l)=n,
and Pk, «++, k,) < C.R(kyy «++, k)?Br—s(Fesry *++, k,)* on the support of
o for a positive constant C, and positive integer d, as
k| < |kl < cp(k)

and 8= ¢ > 0 for some ¢ > 0. Thus it suffices to prove the required
estimate for Com™*n"2B,(k") B, _.(k")* S G, p)F(k", p) do,(k)dp.(p) where

k’ = (kls ey ks)’ k' = (ks-i—l’ cty kr)’ p = (pu **cy pm—-s)’ and dp-}-(k) =
do. (k) -+« do.(k,), do.(p) = do.(p,) * -+ A0+ (Pn_.). By Lemma 4.2 of [5],
we can estimate this by

Cll 8, ()L + BulK) + BasD)’CF, D) s
8, (KN + Bos(B) + Bucs W) F (O, )]l
csup (| @+ £.06) + BuraB) ™A + B s") + Bucif2) ™
do,()dp. (k") " -
Noticing that

| m B )L + Bul) + Bacs(D) G, 1) I
< (L + Bl + Bansl®)) G, ) Il
= | NP+ Hy*ul| < Gl (L+ H)*rul],

as B=||8]|z* > 0, and similarly for the term in F), all that remains
to show is that the last term in the estimate is bounded by a con-
stant independently of m and n. In fact,

S (1 =+ Bs(kl) + Bm-—s(p))—zb(l + Br—s(k”) + Bm—-s(p))—%d(o+(k')dp-i—(k")
= S A + Bk + Br—i(K")) 0. (K)o (k")

which if 0 < s < r, is less than equal to

| 8.0 do.w) | 8-k do. ")
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which in turn can be bounded by (S (Blg)™ + B(q)““’“)dm(q))z, as

we will show, and that is bounded independently of m and =, if we

choose b large enough so that 2b/r > p,, as e L, for pe[p,, ].
It suffices thus to show that

[ Billey <o, Ty do.e) -+ dou(l) < | (8@ + £@ )o@ ,
fo<yi<r.
But this follows from the inequality

Ay vor @ = (@, + dy + oo + ), ifa;,>0,i=1,.--,7

and the fact G(g) ™" =< B(g)™ + B(g)™™/", for 0 < j < 7.

If s =0 or s = r, trivialized versions of the above argument are
applicable.

Now let w and u be arbitrary in < (H), and write w = 3, w,,
U = .U, where w,, u,c 5,. As ¢*# and ¢*¥ commute, each w,
and u,, is again in < (H), and the estimate just derived is applicable.
Thus each K, ,, is integrable, and the question reduces to the
integrability of >.,. K. ,.,, and to the estimate of its L, norm.
Now :0.0(g) +-- 0.9(g): w, is orthogonal to u,, in case |m — n| > »,
so the sum in question can be expressed as >i-_, >\, K, ,.,,. .. The
sum over s being finite, it suffices to establish the integrability and
estimate for >, K, It is evidently enough to show

S Ky o

m Wm+s®

is finite and satisfies the required inequality. Now

=AA -+ H)wnll - 1A+ H) wao ]

moomss |t =

SO
2 Koy e = AL+ H) s [« [ (L A+ H) W ||

=a(SI@+ Heu,lf) (S1a+ Hyw, )
= A0+ Hyul - |+ H)wll .
It follows || K, . = 2rA || (1 + H)wl|| || (1 + H)*wl|, as required.

172

LeMMA 3. The limit lim,_; {(u,: 0,9(g,) +++ 0,9(g,): w)y exists, and
is a continuous function of xe M, u, we |2 (H)].

Proof. As §.(k) = e **§(k), we have, by Lemma 2

s T

G 0,0(0.) ++ 0,00 wy = | T Fk) -4 K, (0 dp. (1)
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where k = (k,, -+, k,), do. (k) = do.(k,) --- do.(k,), and
[ Kuwlh = AllL + Hywl|| | + H)wl],

K and a being constants independent of g, u, w. If g— 0, then
§—1, and by dominated convergence the limit as g — ¢ exists and

equals ge—‘i‘ﬁf"i)'”Ku,w(k)dp+(k). Let us call this limit (@, -« -, 8,; )

X (u, w). Then |9, +++,0,; @)(u, w) | =< A[[ (1 + H)*u|/ || + H)*w]],
and this reduces the question of its continuity as a function of z, u,
w to the question of its continuity as a function of 2, and this is
clear from its representation above as an absolutely convergent
integral.

Conclusion of proof of theorem: We have only to show that
@(0,, +++, 0,; x) satisfies conditions (i), (ii), and (iii). Condition (i) was
proved in Lemma 3, (ii) follows from (v,: 6,@(g) -+- 0,0(g): v> = 0 if
r > 0 for all g, together with the definition of ®(g; ). To prove
(iii), notice that

ei'D(h) 181@(9) cee ar@(g): e~ 0h)
T T T S
=2, 2. :0:0(g) -+ 0;0(g) +++ 9;,9(9) + -+ 3,0(g):

8=0 §1<jp<--+<gg=1

X A@%g, h) -+ A©0Fg, h) .

This follows from e”*@(g)e~** = @(g) + A(g, k), which follows from
the Weyl relations, together with an induction using Theorem 1.3 (a)
of [4].

If we now apply the expression above to w, and take its inner
product with %, having substituted g, for g, and then take the limit
as g — 0, we obtain (iii), noticing that lim,;, A(0*g., h) = (D = h)(x),
and using ¢**we Z,(H), if he 2,.(B) (Theorem 3.2 of [5]). End of
proof.

REMARK. As an example of the operator H involved in the
theorem, we can take H as the free Hamiltonian, i.e., g(k) = k,, if
k, is bounded away from zero in the support of o, and otherwise
take B(k) = e(k) + k.. In any case we will denote this operator by
H,, and call it the adjusted free Hamiltonian.

COROLLARY. With the same hypothesis as in the theorem, there
exists for every feL,(M) and linear differential operators with
constant coefficients 0,,+++,0,, a continuous sesquilinear form
D0y, +,0.5 f) on [Z(H)] such that

(i) @@, ---,0,; f) is a linear function of f, and the map
(f, u, w) — @@, +++, 0,; )(u, w) is continuous from
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L(M) x [Z.(H)] x [Z.(H)]
wnto C.

(ii) o(@; fHu, w) = {u, wy, where O stands for an empty
set of linear differential operators, and @@, +++,0,; H(w,v) =0 if
r=1.

(iii) For arbitrary g <.(B),

0@y -+, 0,3 ), &)

=2 > @(aly"'3ajl’"'9ajs"";ar; fajl(D*g)"'aJ's(D*g)) (’U/,’LU)

520 j1<jg< - <fg==t

Sor all w, we[=Z.(H)].
Furthermore, the @0, «+-,0,; f) are uniquely characterized by
these conditions.

Proof. Let 0@, -+, 0, ), w) = | 93, -+, 0.5 o) (u, w)f @)de.
Then (i), (i), (iii} follow from Theorem 1, and uniqueness is proved
as in the theorem. End of proof.

We have by now established the existence of the renormalized
products as continuous sesquilinear forms. We can now look at their
existence as operators in 977

DEFINITION. Let R be a densely defined sesquilinear form on a
Hilbert space 24, with dense domain <. The operator R,, associated
with B will be defined as having domain

Z(R,,)) = {we Z || B, w) | = ¢(w) || u]|| for all ue =z,
where c¢(w) is a finite constant},

and for all we 2 (R,,), R.,w is given by <{u, R,w) = R(u, w) for all
ue 2. We will also write R for R,,, when it cannot cause confusion.

PROPOSITION 2. Let # be any class of integrable functions on
M, which is imvariant under multiplication by 0;,(Dxg), t =1, «+-, 7,
g€ Z.(B). Then if there exists we Z..(H) in the domain of

@(aily tt a«;s; f) fOT all feﬁ: {aily Yy azs}c {aly M) ar} ’
these operators are densely defined.

Proof. Let & be intersection of the domains of the
@(ah? ct azs; f)’ for feﬁ: {alp M als} C{ap tt ey ar} .
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It suffices to show e <y < <r for all g € <. (B), for then o= %
or {0}, as the ¢, ge < (B), form an irreducible set of operators.

The proof of e c &, ge Z.(B), goes by induction, using
condition (iii) of Corollary. End of proof.

REMARK. Our next theorem will be to the effect that the
®(0,+++9,: ; f) are indeed densely defined operators, with some mild
restrictions on p, for a certain class of f’s, and have <, (H,) on its
domain, where H, is the adjusted free Hamiltonian. Another way
of getting that kind of result, would be to prove that the vacuum
v is in the domain of the @@, ---,d,; f), for a certain class &, that
could be taken as .“(M), which is invariant under the 9;(D = g), by
Proposition 1, and then apply Proposition 2. The proof that v is in
all those domains, is contained in the proof of Theorem 2, and we
would need condition (ii) of Theorem 2, but (iii) is not needed. Of
course, the result is somewhat weaker than Theorem 2, as our oper-
ators would have a smaller domain.

THEOREM 2. Let H, be the adjusted free Hamiltonian, 1t.e.,

H, = dI'(B), where B acts in 5 as multiplication by £, where
Bk) =k, in case | k,| = 0 > 0 on the support of o, or Bk) = e(k) + k,
otherwise. Suppose also

(1) [Fk)| < g(b)h(ky), where ge L,(R") 0 L.(R"), he & (R).
(ii) 5(1 + m)y~mdp(m?) < <o, for some q = 1.
(iii) gzm”‘dy(mz) < ¢2%, for some ¢, > 0, ¢, > 0.

Then D (H) < 290, +++,0,; f)) for all linear differential oper-
ators with constant coefficients 0,, «+«, 0,.

Proof. We have to show [@(@, <+, d,; /)y, w)| = e(w) [|w]|| for
all w, we 2.(H), where c(w) < . It suffices, by the argument
given in the end of the proof of Lemma 2, to show

00, -+, 0 [, w)| = Al + H)*wl| - || %]

for we 24, N D(H), ue %, e Z.(H), for suitable constants A4, an, in-
dependent of u, w, n, m.
From the proof of Theorem 1, with the same notation

@(81) R ar’ f)(u, 7/{))
= @my | F(S1 ks = k) Kialh, « o, k) dou(k) -+ do. (k)

where
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K;,W(kly b kr)
=m-(m—1)+++(m— s+ 1) (n— (r —s) + D42,

P, -+, k) | G, D)F W, p)dpy(p), 25 = m + 7 = m,

if such an 0 < s < r exists, or equals zero otherwise. We only need
to consider the case when such an s exists. The factors in m and »
can be bounded by A,n", where A, is a constant, as

lm - nl é r P(kly cy, kr) é Azﬁs(k’)dﬁr—s(lcu)d$

for constants A4,, d, as in the proof of Lemma 2.
Thus, using Lemma 4.2 of [5], in the same way as in the proof
of Lemma 1, we get

| @@, «++, 0 f)u, w) | = A | N'H' (L + H)'w|l[|u] Q,

where A, is a suitable constant and

12

Q = sup( [ B0t + B, + Bucao) ™ |7 (S — S )| dos(h)

It suffices to show @ is bounded with a bound independent of n, m,
and 0 <s < 7.
Recalling B,._.,(p) > 0, we have

@ =< S Bul)? Bya(k")y 2 | F (UL, — [, | dp.. (k)
< S BUIY: Bos(k) 2 | g(UFL, — [Blod) * - | Rleels — [Bolo_s) 204 ()

Where [k]s = kai, [k]r—a = Z:-H ki'

Since he . (R), | (&) ]| < c;(r + (§))7 for some constant ¢; for
i=1,2,.--.

We will estimate the last integral in two regions:

L I [ko]s - [ko]f—-—c] = 1/2 [kO]s

It | [ko]s — [Kolr—e | < 1/2 [Ko]
In region I, the integral in question is bounded by

i | .06 + Uel) 8, | 9B, — [F],-) Fdo, (@)
< e | @+ Uel) 806 | 9([R, — [F],-.) Pdo. (0
as B8(ky =k, or 1 + k, on the support of p,.

Recalling (a, + a, + +++ + @,)" = a,a;, - -+ @,, and choosing 5 such
that —2j 4+ d < 0, we can bound the above expression by
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o | T+ ky=eor T1 gy [ g1, — (Bl I'do, ()
<o | 1@+ k)™ 198, - (], Fdp.e)

for suitable constants ¢, ¢”, a < (25 — d)/r, a < 2b/r, which as p, is
invariant under the proper Lorentz group, is equal to

|11 @+ oy |o () do.)
= [T+ ko (S| 120 ;; ks B i, )

fl

r . 2 r —
(ST ke
Now

| @+ w4 Ty A
m; + ki
< (14 k™ S (1 + m)—myidp(m?) < constant (1 + | ;)=
by condition (i), if @ = a, + a;,, and we choose a large enough so

that a, can be chosen equal to g¢.
Thus we only have to bound

[fLa+ 1mp

r 2 r —
o(SE)[ Tk = [ax - s a@) 9 Fdp,

1 1 \..._—-::-——_/
by Fubini’s theorem, where a = (1 + [P )™

If now we choose a large enough so that a, is sufficiently large
for ae L,(R") for all p = 1, by the Young inequality

axesexaxeL (R,
and thus, as g€ L,(R"), we get a bound for the above integral.
In region II, [k], < 2[k,).—., S0 the integral in question is bound-
ed by ¢ Bk B, (k") ®dp,.(k), where ¢’ is a suitable

Lkols=2lkyl,_s
constant, as ¢ and & are bounded. This is

IA

Br—s(k") _2b+ddp+ (k)

" S
[kgle=lkgly—s

— rn—2bid [ T [ *eolr—s dla 2 (It
st (W)L, N e dem) o)

= o | gy (@l [ Y go, ey

which, if we use (iii), can be bounded by
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e | ooyl swdo. (7)< ¢ | g (0o rredo, ()

which we can bound, if we choose b large enough, as in the proof of
Lemma 2, independently of m and n. End of proof.

Our next theorem looks at how these renormalized products
transform under Lorentz transformations.

PROPOSITION 3. Let V be the natural representation of the
Poincaré group P (or inhomogeneous Lorentz group) by unitary or
antiunitary operators in 5. Then, if Te P, I'(V(T))=..(H,) C 2..(H,)

Proof. H, = dI’'(B), where B acts on 5%, as multiplication either
by k, or 1 + k.. Let we 2 (H)N 2%, w~F(k, +++, k). Let TeP.
Then T = 74, where 7 is a translation and 4 a homogeneous Lorentz
transformation. Writing I"(T) for I'(V(T)), we have

H D(Twl|]* = S Bu(k) | F (A7 kyy <+, £47k,) [P do. () ,
k= (k, ++-, k,), which is equal to
S B Aley, + o+, s A | F(ly -+, ) [2dps (k)
=C S Bullesy =+, k) | F(kyy +++, k) Pdoy(k) = C|| H¥*w|[*

for some integer s, depending only on 4, as B(*+4k) = *(4k), or
1+(4k), on the support of p., and thus is a polynomial in %k and so
can be bounded by a constant times a power of B(k), say B(k)’. End
of proof.

THEROREM 3. Let T be an tnhomogeneous Lorentz transforma-
tion. Then, for every 0, «+-,0,,

@) for all xe M, @0, +--,0,; )T (TY 'u, I'(T)"'w) = PO,y +++,0,;
Tx)(w, w) for all w, we 2. (H,).

(b) for all feL,(M), @@, --+,0,; HL(T)u, I'(T)"'w)=
DOy, + =+, 0y fr)(u, w), for all u, we D(H,), where fr(x) = (T x).

(c) If D(HYC (PO, +++,0, [)), then D(H)C 2 (PO, +++, 0,
/), and [(T)0@, ---,0,; fII(T)"w= @@, --+,0,; fHw for all
w e D (H).

Proof. By Proposition 8, I'(T)Y'=2.(H)< 2.(H,), and so the
theorem makes sense.
To prove (a), it is enough to show

I'(T) :0.9(g) + -+ 0,9(g): I'(T)™* = :0.0(g7) « -+ 0,D(g):



RENORMALIZED PRODUCTS OF THE GENERALIZED FREE FIELD 291

which follows from I'(T)®(9)I"(T™) = &(gr), and the fact that the
renormalization operator : : is invariant under transformations by
an operator of the form I'(V), where V is a unitary operator in 5%
since I'(V) preserves commutation relations and vacuum expectations,
in terms of which : : is uniquely defined (see [4]).

Since if g —6(+ —x), gr— (- — Tx), (a) follows from the explicit
construction in the proof of Theorem 1. (b) follows from (a), and (c)
follows from (b) plus the fact that || I'(T)"w|| = ||#]||. End of proof.

COROLLARY. Let f be a real-valued function in L,(M) such that
(HYC @@, +++,0,; ). Then, if there exists o tranmslation T
and homogeneous Lorentz transformation A which preserves the
direction of time, such that f., is an even function on the time variable,
D0, +++, 0, )| Z(H) admits a self-adjoint extension.

Proof. It is clear from the explicit construction of @@, +--, d,;
f) that it is a symmetric operator if f is real. By last theorem (c),
@0, +++,0. f) = ['(zA)~'®@,, +++, 0,; fon'(t4), where I'(rA) is unitary,
as A preserves the direction of time. Thus it is enough to show
0@, +++,0,; /)| 2.(H) admits a self-adjoint extension, if f is even
in time. Let 2 be time reversal, i.e. 2(x,%) = (, —t). Then
I'(%) is an antiunitary operator on .2, such that

rey=rzy9=ra)=1,
so I'(#") is a conjugation on .27 By Theorem 3 (¢),

D(Z)P0,, +++, 0,5 NH(S2) W = 0@, +++, 0,5 f)w
=00, +++, 0, HHw

for all we < (H,), as f is even in time, and so,
@(aly i ', ar; f) lgw(HO) ’

being a densely defined symmetric operator commuting with a con-
jugation, admits a self-adjoint extension. End of proof.
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