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The main theorem of this paper offers necessary and
sufficient conditions for a solvable group G to be covered by
a finite union of certain types of isolated subsets. This result
will have applications to the study of the semisimplicity problem
for group rings of solvable groups.

Let H be a subgroup of G. We define
YH = vV H={zxeG|z"e H for some m =1} .

Observe that VH need not be a subgroup of G even if G is solvable.
We say that H has locally finite index in G and write [G: H] = L.f.
if for every finitely generated subgroup L of G we have [L: L N H] < o,
Suppose [G: H] = l.f. and let € G. Then [{(x): {x) N H] < so s c H
for some m =1 and xe1VH. Thus G =1 H. The main result of
this paper is a generalized converse of this fact for solvable groups G.

THEOREM. Let G be a solvable group and let H, H, ---, H, be
subgroups with

G =UrvH,.
Then for some © = 1,2, +--, n we have [G: H] = l.f.

This paper constitutes one third of the solution of the semisim-
plicity problem for group rings of solvable groups. The remaining
two thirds can be found in [1] and [4]. Moreover a description of
this latter result as well as an analogue of the above theorem for
linear groups will appear in [3].

We first list some basic properties of subgroups of locally finite
index.

LEMMA 1. Let G2 W2 H, G2 W, 2 H, and let N <G.

(i) [G: H]l=1l.f. implies [G: W] = I.f.

(ii) [G/N: HN/N] = l.f. implies [G: HN] = L. f.

(iii) [W: H] = l.f. implies [WN: HN] = l.f.

(iv) [W:H]=l.f.and [W: H]=L.f. implies[WN W,: HN H]=1.f.
(v) [G:W]=Lf.and [W: H] = 1.f. implies [G: H] = L. f.

Proof. (i) If L& G then [L: WN L] < [L: HN L] so this is clear.
(ii) Let L be a finitely generated subgroup of G. Then LN/N
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is finitely generated so
[LN/N: (HN/N) O (LN/N)] < .

Thus [LN: HNNLN] < . Since L < LN this yields [L: HN N L] < .

(ili) Let L be a finitely generated subgroup of WN. Then there
exists a finitely generated subgroup S& W with LN = SN. Now
[S: SN H] < « so [SN: (SN H)N] < c. Qbserve that (SN HYNS
SNN HN so [SN:SNN HN]< «. Finally LS LN = SN yields
[L: LN HN] < = and [WN: HN] = L. f.

(iv) Let L be a finitely generated subgroup of W N W,. Then
L< W yields [L: HN L] < o and similarly [L: H, N L] < . Thus
[L:(HNH)NL]< o and [WN W HN H] = L.f.

(v) Finally let L be a finitely generated subgroup of G. Since
[G: W] =1Lf. we have [L: LN W] < «. Thus by [1, Lemma 6.1]
L N W is finitely generated and since [W: H] = l.f. we have

[LAW:LNWNH]< .
This yields [L: L N H] < « and the lemma is proved.

LEMMA 2. Let AH be a group with A a normal abelian sub-
group. Set

B={acA|[H:Hn H] = I.f.} .

Then we have
(i) ANH<AH
(ii) 4 ac A then HN H* = Ny(a(H N 4))
(iii) B s a subgroup of A and B <] AH.
(iv) if [A: B] < = and B/(AN H) is torsion, then [AH: H] =1.f.

Proof. (i) Since A <] AH we have AN H <| H. Since A is abelian
we have AN H<]A. Thus AN H<]AH.

(ii) Let he HN H°. Then he H and h* 'c H so h'h* e HN 4
since A is normal. Thus % centralizes ¢ modulo HN A so h normalizes
ao(HN A) and HN H*S Ny(a(H N A)).

Let he Ny(@(HN A)). Then he H and h* = h modulo HN A.
Since HNA<]{AH we have H°2HN A and he H*(HN A) = H".
Thus he HN H°.

(iii) Clearly 1€ B. Since [a(HN A)]™ = a(HN A) we see that
Ny(a(HN A)) = Ny(a ' (HN A)). Thus a€ B implies a'e B. Finally
let a,be B. Then [H: HN H°] = l.f. implies [H* H*N H*] = I.f.
so by Lemma 1 (iv), [HN H* HN H*' N H®}=1.f. Now [H: HN H'] =
l.f. so Lemma 1 (v) yields [H: HN H* N H*®] = L.f. Since HN H*2
HN H*N H*® we have [H: HN H*®] = l.f. and B is a group. Clearly
B <] AH.
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(iv) By Lemma 1 (ii) since AN H<{AH ANHESB, ANH<EH
it clearly suffices to work in AH/(A N H) or in other words we may
assume that AN H = {1). Thus AH is the semidirect product of A
by H. Now [AH: BH] < o so by Lemma 1 (v) it suffices to show
that [BH: H] = L.f.

Let L be a finitely generated subgroup of BH. Then there exists
a finitely generated subgroup B, of B and a finitely generated sub-
group H, of H such that L & BFi. H,. By definition of B and by (ii)
each element of B, has only finitely many conjugates under the ac-
tion of H,. Thus B is a finitely generated abelian group. Since
this group is torsion by assumption we have

|B%| < oo and [BM.Hg: H] = |Bf|< .

Finally L& B*:- H,so [L: L N H] < . Since LN H=L N (B* - H) N
H = L N H, the result follows.

We can now obtain the main result.

Proof of the Theorem. By induction on d(G), the derived length
of G. If d(G) =0 then G = (1) so the result is clear. Assume the
result for all groups G with d(G) < d. For any group G let DG =
G'Y be the dth derived subgroup of G.

Suppose d(G) = d + 1. Since G = UV H; we have clearly

6/(D&) = () v HDODE -

By induction some of these groups have locally finite index in G/(DG).
Thus by Lemma 1 (ii) we have for a suitable ordering of the H]s
that [G: H(D@)] =1lf. fort=1,2, ---, s (some s =1) and [G: H(DG)] #
l.f. for ¢ > s. We call s the parameter of the situation and we prove
the d(G) = d + 1 case by induction on the parameter starting with s =0
which does not occur.

Assume the result for all groups G with either d(G) < d or d(G) =
d + 1 and parameter < s. Now fix G and suppose d(G) =d +1, G =
UI‘VF{ and the parameter of this situation is s. Set 4 = DG so
A is a normal abelian subgroup of G and say H A, H,A, ---, H A have
locally finite index in G. For each ¢ < s set

B, = {ac A|[H;: H;N Hf] = L.f.}.
By Lemma 2 (iii) B; is a subgroup of A.
Step 1. For each 7 < s set

Ai ={acAl|[H: Hi N H] = Lf}.
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Then A = Ui 4.

Proof. Fix ae A and let e H,. Then (aza™)™ ¢ H; for some j
so 2™ e Hy N H,. Thus

H="HH .

If d(H)) <d then by induction [H;: Hf N H,] = l.f. for some 7 and as in
the argument below i <s so ac A,;. Assume that d(H,) = d + 1 and
consider the parameter of this situation. Observe that DH, € AN H,.

Suppose [H,: (H' N H)DH||=1.f. Now H, 2 DH, and H* 2 (DH,)* =
DH, since A is abelian. Thus (H N H,)DH, = H* N H, so [H;: H* N
H]=1f. and ac A,.

Thus we may suppose that [H;: (H'N H)DH] =+ l.f. Let [H;:
(H N H)DH,] = l.f. Since A is normal in G and A2 DH, we have
by Lemma 1 (iii)

[H.A: (Hf 0 H)A] = [HA: (Hf 0 H)(DH)A] = L.f.

Now [G: H A] = l.f. so by Lemma 1 (v) we have [G: (H N H)A] = I.f.
Now H;A2(H, N HH)A so [G: H;Al = l.f. by Lemma 1 (i) and 5 < s.
Since j # 1 the parameter of this situation is < s.

By induction [H;: H, N Hf] = l.f. for some ¢ < n. But then by
Lemma 1 (i) [H: (H.N H)DH,] = l.f. so 1 < s by the above. Thus
ac A,

Step 2. If A, + © and a,¢ A,; then A,; = Ba,.

Proof. Suppose A,;# @ and fix a;€4,; and let ac A,;,. Then
[H: Hf N H] = Il.f. and [H: H* N H] = l.f. yield by Lemma 1 (iii)
(iv) first [H: H, N Hf N HE] = 1.f. and then [H A: (H, N Hf N HH)A] =
{.f. Since [G: HA] = l.f. we have by Lemma 1 (v) [G: (H, N HfN
HiHAl = 1.f. Now

(H.N Hfn HHYHYAS (HF NHHA = (H. 0 HTHA
so we have by Lemma 1 (i) (iv) [G: (H; N H*7)A] = I.f. and
[H: H; N (H; N HeTHA] = LS.
Observe that H, N H#*7'2 H; N A and thus
H,N(H, N H*"YA = (H; N HF*")H; N A) = H, N He' .

Therefore the above yields [H;: H, N Hf*'] = l.f. so aa;'e B; and ae
B,a;. Hence A,; & Ba,.

Now let be B;. Then [H;: H’ N H;} = l.f. yields [H: H* N H -
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l.f. so by Lemma 1 (iv) [H,N Hg: H N H* N H) = L.f.  Since
[H: H N H% = lf. Lemma 1 (v) yields [H: H, N H* N H) = L.f.
Since H, N H*2 H, N H* N H} we have [H;: H N H/*] = l.f. and
ba;c A,;. Thus B,a, S A,; and this fact follows.

Step 3. We may assume that for all ¢ =1,2,-.+, s we have
[A: B;] < -« and B;/(A N H;) not torsion.

Proof. By Steps 1 and 2 we have
A= UBa; over all A,+ @

and hence by Lemma 5.2 of [1]

A=UBa; overall A, @, [A:B] < oo .

In particular since 1€ A there exists k¥ <s with [A: B,] < « and
leA,.

Suppose k£ = 1. Then 1e A,, implies that [H,: H, N H] = l.f. and
hence as we observed earlier this yields “yH, N H, = H,. Since this
clearly yields ¥ H, =V H, we then have G = |J; vH;. Observe that
here [G: H(DG)] = l.f. precisely for ¢ = 2,8, -+, s so that parameter
of this new situation is s — 1. By induection [G: H;] = l.f. for some
% and the result follows. Thus we may assume that %k = 1. Hence
[A: B} < co.

Note that B2 AN H, since AN H, <{AH,. If BJ/(ANn H) is
torsion then Lemma 2 (iv) implies that [H,A: H] =l.f. Since [G: H Al =
l.f. we conclude by Lemma 1 (v) that [G: H] = l.f. and the result
follows again. Thus we may assume that B,/(A N H,) is not torsion.

In a similar manner for each j < s we can define sets A; for
1=1,2,+--,8 and conclude that we may assume [A: B;] < «~ and
B;/(AN H;) is not torsion.

Step 4. Completion of the proof.

Proof. Now A is abelian so ¥AN H; is a group. Since 4 #
YA N H, for i <s by Step 3 we cannot even have [A: VAN H;] < co.
Thus by Lemma 1.2 of [2], A= U:YAN H, so choose ac A4, a¢
VAN H, for all i <s.

Let B=B NB.N---NB,. Then [A:B] < « andsay o' = beB
with ¢ > 1. Then clearly be ¥A N H,; for all i <s. For each i < s
let E; = H;N H’ = Ny, (b(H;N A)) by Lemma 2 (ii). Then beB;
implies that [H;: E;] = l.f. so by Lemma 1 (iii) (v) since [G: H;A] = l.f.
we have [G: E;A] =1.f. Observe that A abelian implies that
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E,AS Ny(b(H;N A)). If E=(; E,A then by Lemma 1 (iv), [G: E] = L.f.
Let ec E. Now G = Ur Vv H; so for the n + 1 elements e, be, b,
«++, b"e there exists integers m,, k; = 1 with

(Yeyie H,, for j=0,1,.-+,m.

By the pigeon hole principle there exists ¢ == j with (b%e)™, (ble)™i
both in H,. Thus if m = m;m; then (be)™, (b’e)™ both belong to H,.

Suppose that kt < s. Now ec ES E,AS H,A so ¢ normalizes the
cosets O(H, N A) and (H,N A). Thus

(Be) e bime™(H, N A), (Ve e H,

so bime™ ¢ H,. Similarly b’”e™ ¢ H, and hence b ™ = (b*me™)(b™e™) ™ €
H,, a contradiction since (1 — j)m = 0 and b¢ V' H,N A. Thus k > s.

Since (be)"c H, for k > s and be A we see that e™e H,A and
hence E = Uz, YH,ANE. Thus E/A = U,V (HAN E)/A. Since
DEZ A we have d(E/A) £d so by induction and Lemma 1 (ii),
[E: H AN E] = Lf. for some k> s. Since [G: E] = l.f. we then have
by Lemma 1 (v) (i) [G: H,A] = l.f. for some k > s. However this
contradicts the definition of the parameter s and the theorem is proved.

We close with a few comments about the theorem and proof.

First, some assumption on G is obviously needed in the theorem.
For example let G be the finitely generated infinite p-group constructed
by E. S. Golod (see Corollary 27.5 of [2]). Then G =1/{) but
[G: D] = LS.

Second, one might be tempted to guess that the appropriate defi-
nition of locally finite index should be [G: H] = ff/ if and only if
[(H, S): H] < « for every finite subset S of G. However this is not
the right condition here. For example let G = Z, } Z,. and let
H = Z,.. Then G is solvable and periodic so G = V'H but

KH, Z,): H] = oo .

Third, it is interesting to observe in the proof that if G == (1)
is abelian, then G = A so the results of the first three steps are
trivial in this case. The proof for G = A is contained in the first
paragraph of the fourth step.

Finally, we remark that the proof of the special case of this
result in which G is assumed to equal V' H is very much simpler.
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