WALLMAN COMPACTIFICATIONS ON $E$-COMPLETELY REGULAR SPACES

Norma Mary Piacun and Li Pi Su
WALLMAN COMPACTIFICATIONS ON $E$-COMPLETELY REGULAR SPACES

NORMA PIACUN AND LI PI SU

The Wallman space on $E$-completely regular spaces is considered. Let $\mathcal{F}$ be the family of all $E$-closed subsets of an $E$-completely regular space $X$. Then the Wallman space $\mathcal{W}(X, \mathcal{F})$ is a compactification of $X$. In particular, if $E$ is such that $I = [0, 1]$ is $E$-completely regular, then $\mathcal{W}(X, \mathcal{F})$ is an $E$-compactification. An example is given to show that $I$ being $E$-completely regular is necessary.

Recently, the relations between Stone-Čech compactifications and Wallman compactifications, and those between realcompactifications and Wallman compactifications have been studied by Frink [7], Njåstad [11], the Steiners [12], [13], Alo and Shapiro [1], [2], [3], [4], and some others.

Frink [7] introduced the concept of a normal base. (A normal base in a $T_\beta$-space $X$ is a base, $\mathcal{F}$, for the closed subsets of $X$ such that (i) $\mathcal{F}$ is disjunctive, i.e., given any closed set $F$ in $X$ and any point $x$ in $X\setminus F$, there is a member $A$ of $\mathcal{F}$ which contains $x$ and is disjoint from $F$; (ii) $\mathcal{F}$ is a ring, i.e., $\mathcal{F}$ contains all finite unions and intersections of its members; and (iii) any two disjoint members $A$ and $B$ of $\mathcal{F}$ are separated by disjoint complements of two members of $\mathcal{F}$, i.e., there exist elements $C$ and $D$ of $\mathcal{F}$ such that $A \subset X\setminus C$, $B \subset X\setminus D$, and $(X\setminus C) \cap (X\setminus D) = \emptyset$.) Frink showed that if $X$ has a normal base $\mathcal{F}$, equivalently $X$ is Tychonoff, then the Wallman space $\mathcal{W}(X, \mathcal{F})$, consisting of the ultrafilters, is a Hausdorff compactification of $X$. Hence, the Stone-Čech compactification is always such a Wallman compactification. Njåstad [11] came along and gave a condition for a Hausdorff compactification to be of the Wallman type as defined by Frink. The condition is that the corresponding proximity admits a productive base consisting of closed subsets. Alo and Shapiro [2]* used another approach for the results. While Alo and Shapiro in [1]* imposed some conditions on the normal base $\mathcal{F}$ (see Theorem 2, [1]), and gave similar results for a wider class of compactifications, Njåstad showed that Alexandroff, Stone-Čech, Freudenthal [6], Fan-Gottesman [5], and Gould [9] compactifications satisfy the conditions in his theorem.

In [3]*, Also and Shapiro used a delta normal base on a Tychonoff

* The authors wish to express their thanks to the referee for calling these articles to their attention.
space $X$. (A delta normal base $\mathcal{F}$ is a normal base which is closed under countable intersections, and such that for each $A \in \mathcal{F}$ there exist $B_i, B_k, \ldots \in \mathcal{F}$ with $Z = X \setminus \bigcup_{i=1}^{\infty} B_i$). They show that the sub-
space $\rho(X, \mathcal{F})$ of $\mathcal{W}(X, \mathcal{F})$ which consists of all $\mathcal{F}$-ultrafilters with the countable intersection property assigned is realcompact. They [4] also used the notion of $\mathcal{F}$-ultrafilters in a countably productive normal base $\mathcal{F}$ to introduce a new space $\eta(X, \mathcal{F})$ consisting of all those $\mathcal{F}$-ultrafilters with the countable intersection property. They showed that if $\mathcal{F}$ is the collection of all zero-sets, then $\eta(X, \mathcal{F})$ is precisely the Hewitt realcompactification. However, the Steiners [13] provided an example to show that not every real-
compactification can be obtained as an $\eta(X, \mathcal{F})$. They also gave an example of a space which is an $\eta(X, \mathcal{F})$ but not realcompact.

E. F. Steiner [12] generalized Frink's results and established the necessary and sufficient conditions for a Wallman space to be a compactification. The Steiners [13] used the notion of separating (see Definition 3) nest generated intersection rings (see (1.1), [13]) and studied the Wallman compactification $\mathcal{W}(X, \mathcal{F})$ and the Wallman realcompactification $\nu(X, \mathcal{F})$. Incidentally, the concept of a delta normal base, introduced by Alo and Shapiro [3], is equivalent to that of separating nest generated intersection rings for collections $\mathcal{F}$ of closed sets.**

This note is to consider the Wallman compactification of an $E$-
completely regular space. (See [10].) We have found a class of Hausdorff spaces, $E$, for which the Wallman compactification arising out of the ring of all $E$-closed subsets of $X$ is an $E$-compactification. In light of the examples in [13], we know that not every $E$-compactification can be obtained as a Wallman compactification.

We first recall some terminologies from [10].

** The authors wish to thank the referee for pointing out this fact.

** The authors wish to thank the referee for pointing out this fact.

** The authors wish to thank the referee for pointing out this fact.
subset of $X$ if there is a positive integer $n$ and a continuous function $f \in C(X, E^*)$ such that $A = f^{-1}[F]$ for some closed subset $F$ of $E^*$.

One can easily show that a finite union and a finite intersection of $E$-closed subsets of $X$ is $E$-closed. (See 3.18 [10].) That is, the family of all $E$-closed subsets of $X$ forms a ring.

Combining these two definitions, we have:

**Lemma 1.** A $T_\gamma$-space $X$ is $E$-completely regular if and only if each closed subset $F$ of $X$ and each point $x \in X \setminus F$ are separated by disjoint $E$-closed sets; i.e., there are disjoint $E$-closed subsets $A$ and $B$ of $X$ such that $x \in A$ and $F \subset B$.

**Proof.** Necessity. By definition of $E$-complete regularity, there is a positive integer $n$ and a continuous function $f \in C(X, E^n)$ such that $f(x) \in \text{cl}_{E^n} f[F]$. Let $A = f^{-1}[f(x)]$ and $B = f^{-1} \left[ \text{cl}_{E^n} f[F] \right]$. Then $A \cap B = \emptyset$ and $A$ and $B$ are $E$-closed subsets of $X$.

**Sufficiency.** Let $F$ be a closed subset in $X$ and $x \notin F$. By assumption, there are disjoint $E$-closed sets $A$ and $B$ such that $x \in A$, $F \subset B$ and $A \cap B = \emptyset$. Since $B$ is $E$-closed, there exist a positive integer $n$, and an $f \in C(X, E^n)$ such that $B = f^{-1}[D]$, for some closed subset $D$ in $E^n$. Now, since $x \notin B = f^{-1}[D]$, $f(x) \notin D$. This implies that $f(x) \notin \text{cl}_{E^n} f[B]$ as $\text{cl}_{E^n} f[B] \subset D$. Hence, $X$ is $E$-completely regular.

Before stating our next result, we give the following:

**Definition 3.** A family $\mathcal{F}$ of closed subsets of a space $X$ is called separating if for each closed subset $F$ of $X$ and each point $x \in X \setminus F$, there are disjoint elements $A$ and $B$ of $\mathcal{F}$ such that $x \in A$ and $F \subset B$. (See [12].)

E. F. Steiner in [12] proved:

**Theorem 2.** If $X$ is a $T_\gamma$-space and $\mathcal{F}$ is a separating family, then the Wallman space $W(X, \mathcal{F})$ is a compactification. If the Wallman space $W(X, \mathcal{F})$ is a compactification, then $X$ is $T_\gamma$ and the ring generated from $\mathcal{F}$ is separating.

Now, suppose $X$ is $E$-completely regular. Then there is a cardinal $\alpha$, and a homeomorphism, $h$, from $X$ into $E^\alpha$. Let $\mathcal{F}$ denote the family of all $E$-closed subsets of $E^\alpha$, and $\mathcal{F} = \{F \subset X: F = h^{-1}(F')$, for some $F' \in \mathcal{I}\}$. Then we have:

**Theorem 3.** The Wallman space $W(X, \mathcal{F})$ is a compactification of $X$. 
Proof. By Theorem 2, we only have to show that $\mathcal{F}$ is a separating ring. However, by remark of Definition 2, $\mathcal{F}$ is a ring, so that $\mathcal{F}$ is a ring. Now, let $F$ be any closed of $X$, and $x \in X \setminus F$. Then that $h(x) \in \text{cl}_{E^\alpha} h[F]$ is clear. Since $E^\alpha$ is $E$-completely regular, $h(x)$ and $\text{cl}_{E^\alpha} h[F]$ are separated by two disjoint $E$-closed sets, say $A_1$ and $A_2$, where $h(x) \in A_1$ and $\text{cl}_{E^\alpha} h[F] \subset A_2$. Then $B_i = h^{-1}[A_i]$, $i = 1, 2$ are in $\mathcal{F}$ and $x \in B_i$ and $F \subset B_i$.

**Theorem 4.** Let $X$ be a $T_1$ space and $\mathcal{F}$ be the family of all $E$-closed subset of $X$. Then the Wallman space $\mathcal{W}(X, \mathcal{F})$ is a compactification of $X$ if and only if $X$ is $E$-completely regular.

**Proof.** Sufficiency. We know that $\mathcal{F}$ is a ring, and by Lemma 1, $\mathcal{F}$ is separating. Hence, $\mathcal{W}(X, \mathcal{F})$ is a compactification.

**Necessity.** If $\mathcal{W}(X, \mathcal{F})$ is a compactification of $X$, then the ring $\mathcal{F}$ is separating by Theorem 2, and, and by Lemma 1, $X$ is $E^\alpha$-completely regular.

In general, we do not know if $\mathcal{W}(X, \mathcal{F})$ is $E$-completely regular.

Next, we would like to determine under what conditions the Wallman compactification defined by the ring of all $E$-closed subsets of an $E$-completely regular space is an $E$-compactification.

We recall that an $E$-completely regular space $X$ is $E$-compact if and only if $X$ is homeomorphic to a closed subset of $E^\alpha$ for some cardinal $\alpha$. Hence, each compact $E$-completely regular space is $E$-compact. Then we have:

**Theorem 5.** If $E$, a Hausdorff space, is such that $I = [0, 1]$ with the usual topology is $E$-completely regular, then if $X$ is an $E$-completely regular space, the Wallman space $\mathcal{W}(X, \mathcal{F})$ generated by the ring $\mathcal{F}$ of all $E$-closed subsets of $X$ is an $E$-compactification of $X$.

**Proof.** By Theorem 2, $\mathcal{W}(X, \mathcal{F})$ is $T_\delta$-compact. Since $I$ is $E$-completely regular and compact, $I$ is $E$-compact and $\mathcal{W}(X, \mathcal{F})$ is $I$-compact. Thus, $\mathcal{W}(X, \mathcal{F})$ is $E$-compact by (4.6) [10]. Hence, it is an $E$-compactification of $X$.

**Remark.** (1) We know that there exists a space $E$ such that $I$ is $E$-completely regular. For example, let $E_i$ be any Hausdorff space. Define $E$ to be the topological sum of $I$ and $E_i$. Then $I$ is clearly $E$-completely regular, as $I$ is homeomorphic with a subspace (namely $I$) of $E$. Note that as long as $E_i$ is Hausdorff and not completely regular, $E$ is not completely regular.
Next we point out that the condition that $I$ be $E$-completely regular cannot be omitted, for consider $E = X$, where $X$ is the space of Knaster and Kuratowski. We still recall it here (see p. 210 of [14]). Let $C$ denote the Cantor middle third set, and $Q$ the end points in $C$. Let $p = (1/2, 1/2) \in R^2$, and for each $x \in C$, denote by $L_x$ the straight line segment joining $p$ and $x$.

Define

$$L_x^* = \begin{cases} \{(x_1, x_2) \in L_x : x_2 \text{ is rational}\}, & \text{if } x \in Q \\ \{(x_1, x_2) \in L_x : x_2 \text{ is irrational}\}, & \text{if } x \in C \setminus Q. \end{cases}$$

Then $E = X = \bigcup_{x \in C} L_x^* \setminus \{p\}$. Here $\bigcup_{x \in C} L_x^*$ is connected, while $E = X$ is $T_2$, totally disconnected, and $\dim X = \dim E \neq 0$ (see 29.8 [14]). It is then clear that $I$ is not $E$-completely regular, since $E^*$ is totally disconnected and so is any subset of $E^*$. (See 29.3 [14].)

Now, $X$ is $E$-completely regular, a metric space (see 29.8 [14]), and is hence normal. Consider $\mathcal{F}$, the family of all $E$-closed subsets of $X$. $\mathcal{F}$, in fact, consists of all closed subsets of $X$. Thus, the Wallman compactification $W(X, \mathcal{F})$ is $\beta X$, the Stone-Čech compactification (see [8], p. 269).

Finally, $\beta X$ is $T_2$ compact space, but $\beta X$ is not totally disconnected, for otherwise by Theorem 16.17 in [8], we would have $\dim \beta X = 0$. But Theorem 16.11 [8] says that $\dim \beta X = \dim X$, and we know that $\dim X \neq 0$.

Therefore, $X = W(X, \mathcal{F})$ cannot be $E$-completely regular, and is thus not an $E$-compact space.

In view of Remark (2), we have:

**Corollary 6.** For a Hausdorff space $E$, if $X$ is a $T_1$ zero-dimensional normal space having more than one point and such that every closed subset of $X$ is $E$-closed, then the Wallman space $W(X, \mathcal{F})$ generated by the ring of all closed subsets of $X$ is an $E$-compactification of $X$.

**Proof.** Since $\dim X = 0$, $\dim \beta X = 0$. Also, $\beta X = W(X, \mathcal{F})$ since $X$ is normal. Now, $W(X, \mathcal{F})$ is $T_1$ and zero-dimensional. One can easily show that it is $E$-completely regular. Hence, $W(X, \mathcal{F})$ is $E$-compact.

**Corollary 7.** If $X$ is discrete, then $W(X, \mathcal{F})$ is an $E$-compactification of $X$, where $\mathcal{F}$ is the family of all closed subsets of $X$. 
REFERENCES


Received November 3, 1971 and in revised form May 1, 1972. This article was written during the summer of 1971 while Miss Piacun was a participant in Research participation for College Teachers held at the University of Oklahoma and sponsored by the National Science Foundation.

LOUISIANA STATE UNIVERSITY IN NEW ORLEANS
AND
THE UNIVERSITY OF OKLAHOMA
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON
Stanford University
Stanford, California 94305

C. R. HOBBY
University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH  B. H. NEUMANN  F. WOLF  K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan
Pacific Journal of Mathematics
Vol. 45, No. 1 September, 1973

William George Bade, Complementation problems for the Baire classes ............... 1
Ian Douglas Brown, Representation of finitely generated nilpotent groups ............................... 13
Hans-Heinrich Brungs, Left Euclidean rings ................................................................. 27
Victor P. Camillo and John Cozzens, A theorem on Noetherian hereditary rings ................................. 35
James Cecil Cantrell, Codimension one embeddings of manifolds with locally flat triangulations ................................. 43
L. Carlitz, Enumeration of up-down permutations by number of rises ................................. 49
Thomas Ashland Chapman, Surgery and handle straightening in Hilbert cube manifolds ................................. 59
Roger Cook, On the fractional parts of a set of points. II ............................................. 81
Samuel Harry Cox, Jr., Commutative endomorphism rings ............................................. 87
Michael A. Engber, A criterion for divisioriality ............................................................. 93
Carl Clifton Faith, When are proper cyclics injective ................................................. 97
David Finkel, Local control and factorization of the focal subgroup ................................. 113
Theodore William Gamelin and John Brady Garnett, Bounded approximation by rational functions ................................. 129
Kazimierz Goebel, On the minimal displacement of points under Lipschitzian mappings ................................. 151
Frederick Paul Greenleaf and Martin Allen Moskowitz, Cyclic vectors for representations associated with positive definite measures: nonseparable groups ................................. 165
Thomas Guy Hallam and Nelson Onuchic, Asymptotic relations between perturbed linear systems of ordinary differential equations ................................. 187
David Kent Harrison and Hoyt D. Warner, Infinite primes of fields and completions ................................. 201
James Michael Hornell, Divisorial complete intersections .............................................. 217
Jan W. Jaworowski, Equivariant extensions of maps ................................................... 229
John Jobe, Dendrites, dimension, and the inverse arc function ................................. 245
Gerald William Johnson and David Lee Skoug, Feynman integrals of non-factorable finite-dimensional functionals ................................. 257
Dong S. Kim, A boundary for the algebras of bounded holomorphic functions ................................. 269
Abel Klein, Renormalized products of the generalized free field and its derivatives ................................. 275
Joseph Michael Lambert, Simultaneous approximation and interpolation in $L_1$ and $C(T)$ ................................. 293
Kelly Denis McKennon, Multipliers of type $(p, p)$ and multipliers of the group $L_p$-algebras ................................. 297
William Charles Nemitz and Thomas Paul Whaley, Varieties of implicative semi-lattices. II .................................................. 303
Donald Steven Passman, Some isolated subsets of infinite solvable groups ................................. 313
Norma Mary Piacun and Li Pi Su, Wallman compactifications on E-completely regular spaces ................................. 321
Jack Ray Porter and Charles I. Votaw, $S(\alpha)$ spaces and regular Hausdorff extensions ................................. 327
Gary Sampson, Two-sided $L_p$ estimates of convolution transforms .................................. 347
Ralph Edwin Showalter, Equations with operators forming a right angle ................................. 357
Raymond Earl Smithson, Fixed points in partially ordered sets ................................. 363
Victor Snaith and John James Ucci, Three remarks on symmetric products and symmetric maps ................................. 369
Thomas Rolf Turner, Double commutants of weighted shifts ................................. 379
George Kenneth Williams, Mappings and decompositions ................................. 387