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A strictly cyclic operator algebra S/ on a complex Banach
space X(dim X ^ 2) is a uniformly closed subalgebra of
such that J*f% = X for some x in X. If A# = 0, A e
implies that A = 0, then J^sf is separated. In this paper it is
shown that i) if Sf is strictly cyclic and separated, then

has a maximal, proper, closed invariant subspace, ii) if
is strictly cyclic, then S/1 (the commutant of J$O is

intransitive, iii) if A e £f(X), A ψ zl and {A}' is strictly cyclic,
then A has a hyperinvariant subspace, and iv) that a transitive
subalgebra of JS^(X), containing a strictly cyclic algebra
which contains /, is strongly dense in £f(X). An example
demonstrates the existence of abelian and nonabelian strictly
cyclic, separated operator algebras on each Banach space of
dim Ξ> 2. A second example classifies the strictly cyclic weight-
ed shifts on li and shows that the commutant of each such
operator consists of uniform limits of polynomials of the
operator.

If S/ is a strictly cyclic operator algebra on X and
Sxfx — X, then x is called a strictly cyclic vector for j^C
If it is also true that Ax = 0 implies A = 0 for A in j%f, we
say that x is a separating vector for Sf. For many results
in this paper it is not required that JZ/ be separated or that
the identity operator / on X be an element of

J*f{X) is the set of all continuous linear operators on X. If
& c £f(X), then the commutant of & is &' = {E: Ee£?(X) and
EB = BE for all B in ^} and &" - (0')'. We shall use the ter-
minology of "invariant" and "transitive" as follows: if MaX and
& c £f{X), then (i) M is invariant under & if &M = {Bm: B e &
and m e M} c M, (ii) Λf is an invariant subspace for ^ if M is in-
variant under ^ and Λf is a closed, nontrivial {Φ {0}, X) linear sub-
space of X, (iii) & is transitive if ^ has no invariant subspaces and
intransitive if ^ has an invariant subspace. Further, if A € -2̂ (0?)
and {AY is intransitive, then each invariant subspace of {AY is called
a hyperinvariant subspace of A. Finally an invariant subspace of &
is maximal if it is not properly contained in another invariant sub-
space of ^ .

If A e £?(X)9 then ker A denotes the null space of A, &(A) the
closure of the range of A, and σ(A) the spectrum of A. s*fA is the
weakly closed algebra generated by A and /. If MaX, then M
denotes the closure of M in the norm topology of X.
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2Φ A basic lemma* Almost all of the results in this paper con-
cerning invariant subspaces of a strictly cyclic operator algebra s^
stem from the following lemma.

LEMMA 2.1. Let x be a strictly cyclic vector for Szf. Then
( i ) there exists a positive number K such that \\ E\\ ̂  K\\ Ex\\

for all E in j&9

9

(ii) if lim^oa xn = 0, there exists a sequence {An} of elements of
Szf such that Anx = xn and l im^^ 11 An 11 = 0,

(iii) if x is separating for J ^ there exists a positive number K
such that || A || ^ J5Γ||Aa?|| for all A in

Proof. In the proof of each of the three statements we shall
make use of the mapping T of s^f onto X defined by T(A) = Ax.
Note that T is continuous, linear and onto. In Case (iii) T is also
one-to-one and hence by the Open Mapping Theorem has a continuous
linear inverse. Thus || A || ^ K \\ Ax\\ for some positive K and all A
in JX?.

Consider now Assertion (i). Since T is onto, we know that T*
has a continuous inverse and there exists a positive number K such
that || α* || ^ if || T*x* \\ for all continuous linear functionals x* on X.
Assume now that Ezsif' and that Aej^f, \\A\\ — 1. The following
computation will lead to the desired conclusion:

I T*(E*x*)(A) I = I (E*x*)(Ax) | = | x*(EAx) |

- I x*(AEx) I - I (A*x*)(Ex) \

^ | | A ^ * | | | | ^ | | ^ | | ^ | | | | ^ | | .

Thus

\\E*x*\\ ^K\\T*(E*x*)\\

T*(E*x*)(A)\:Aej#;\\A\\ - 1}

and finally \\E\\ = | | ^ * | | ^ || JBΓ||
To prove (ii) we shall consider the quotient space J^JM where

M = ker T and the mapping T of j^/M onto X defined by T'[A] =
-4a?. Since T" is one-to-one, onto and continuous, there exists a positive
number K such that || [A] || ^ K\\ T'[A\ \\ =• K\\ Ax\\. Assume that
l im^^ xn = 0 and let Enx = xn,En e Szf. The preceding inequality im-
plies that l i m _ || [En] || - 0. Since || [En] || - inf {|| An \\ : Anx = Enx},
it is now obvious that we can choose a sequence {An} with An in [En]
and lim^o,, 11 An 11 = 0. The proof is complete.

3* Invariant subspace theorems* Since J*f(X) is a strictly cyclic
operator algebra, it is obviously not the case that every strictly cyclic
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operator algebra has an invariant subspace. However, if an operator
algebra J ^ is both strictly cyclic and separated, then not only can
we show it to be intransitive, but we can show the following stronger
result.

THEOREM 3.1. Every strictly cyclic, separated operator algebra
Ssf has a maximal invariant subspace.

Proof. We shall make use of the terminology and results on
Banach algebras found in [4, pp. 680-705]. Let x be a strictly cyclic,
separating vector for s%f and let Ao be the unique element of j y
such that Aox = x. Then AAox = Ax for each A in Jϊf and since x
is separating, we have AA0 = A. In particular Ao is a nonzero idem-
potent. Thus AQ is not in the radical of Jzf and by [4, Theorem
24.9.2, p. 704], j ^ contains a left regular maximal ideal N. By defi-
nition of "regular maximal", N is neither the zero ideal nor all of j y
and thus by [4, Theorem 24.6.4, p. 695] N is a proper closed maximal
left ideal of jzf. Let M — {Ax: A e N). M is invariant under jzf
and Lemma 2.1 (iii) guarantees that M is a maximal invariant sub-
space for s/.

Theorem 3.1 is obviously of interest in the general invariant sub-
space problem, for if Ssf satisfies the hypotheses of the theorem and
operates on a reflexive space Xand if ikf is a maximal invariant subspace
for Ssf, then M1 is a minimal invariant subspace for jy* . (By M1

we mean the set of continuous linear functionals x* on X such that
x*(M) = 0, and j&* is the set of ad joints of elements of Jtf.)

We now return to the problem of invariant subspaces and strictly
cyclic, but not necessarily separated, operator algebras.

THEOREM 3.2. If szf is strictly cyclic, then s/r is intransitive.

Proof. We may assume that there is a nonzero, noninvertible
element E of jy" (for otherwise jy" = {zl} and the assertion is trivial).
Let M — j^Έx, where # is a strictly cyclic vector for Szf. If xeM,
then x = lim^oo EnEx for some sequence {En} in s*f'. Thus by Lemma
2.1 (i) \imn^\\ EnE - I\\ = 0, and for n sufficiently large EnE is in-
vertible. Consequently, E% is onto, but not one-to-one (since E is not
invertible). Let N — j%f'Enx. A repetition of the same argument
shows that x&N. Thus either M or N is an invariant subspace for

COROLLARY 3.3. // & c £f(X) and &' is strictly cyclic, then
is intransitive.
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Proof. By Theorem 3.2 &" is intransitive and since & c ^ " ,
we know that & is intransitive.

Before presenting the rest of the invariant subspace theorems we
shall prove a series of lemmas which parallel those proved by Lam-
bert in [6]. Throughout the remainder of this section we shall assume
that x is a strictly cyclic vector for sf and that s%f contains the
identity operator I. After this development we shall be able to show
that if & satisfies the hypotheses of Corollary 3.3 and έ%? <£ {zl}, then
&f is intransitive.

LEMMA 3.4. If MczX, j^MczM and xeM, then M = X.

Proof. We shall show that xeM and thus X = j^fx c j / I c M.
Let {xn} be a sequence in M such that lim^*, xn = x. By Lemma 3.1
(ii) we may assume the existence of a sequence {An} in j ^ such that
Anx = x — xn and lim^^ || An || = 0. Thus for n sufficiently large,
|| An || < 1 and (I - An)~ι = Σ*U(A»)*. Therefore (I - An)~ι e s*f and
since (/ — An)x = xn, we have x = (/ — An)'ιxn e M.

We say that a linear transformation T commutes with s>f if and
only if the domain £&{T) of T is invariant under jzf and ATy —
TAy for all y in ^r(T) and all i in

LEMMA 3.5. If T is a densely defined linear transformation
which commutes with s$f, then T is everywhere defined and continuous.

Proof. Since &(T) is dense in X, we know by Lemma 3.4 that
— X. We shall now prove that T is closed and thus continuous

by the Closed Graph Theorem. Assume that lim^^ xn — y and
lim^^ Txn = w. By Lemma 2.1 (ii) we may assume the existence of
a sequence {An} in Szf such that Anx = (xn - y) and lim^^ \\An\\ = 0.
Then w = lim^o. Txn = lim^^ T(Anx + y) = \imn^ (AnTx + Γy) = Ty,
proving that T is closed.

LEMMA 3.6. If Ez<Sϊfr and z e σ(E), then either ker (zl — E) Φ

{0} or &{zl - E) Φ X.

Proof. Assume that zl — E is one-to-one. Then (zl — E)~ι is
a linear transformation which commutes with j y . Since zeσ(E),
zl — E is not onto and thus by Lemma 3.5 (zl — E)~ι is not densely
defined: that is, &(zl - E) Φ X.

In [2] it was shown that if A e £f(X) and {A}' is strictly cyclic,
then A has an invariant subspace. We can now generalize that
theorem.
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THEOREM 3.7. // A is not a scalar multiple of I and {Ay is
strictly cyclic, then A has a hyper invariant subspace.

Proof. Let zeσ(A). Applying Lemma 3.6 to {A}', we see that
either ker (zl - A) φ {0} or &(zl - A) Φ X. Each of these sets is
invariant under {A}' and thus in either case {A}' has an invariant
subspace.

Assume now that & c £f(X), & φ {zl} and &' is strictly cyclic.
Then some element A of & satisfies the hypotheses of Theorem 3.7
and has a hyperinvariant subspace. Thus since £%' c {A}', έ%?' has an
invariant subspace and we have arrived at the promised adjunct to
Theorem 3.3.

In [1] Arveson proves that a transitive algebra J7~ of operators
on a Hubert space X containing a maximal abelian self-adjoint algebra
is weakly dense in J2?(X). In [6] Lambert shows that the same
conclusion is true if ^?~ contains a strictly cyclic abelian algebra.
To these results we add the following Banach space application of
Arveson's results.

THEOREM 3.8. If S~~ is a transitive subalgebra of £/f(X) and
,S>/c^ then ^7~~ is strongly dense in J

Proof. Assume that JϊΓ is a transitive subalgebra of J
It follows from [1, p. 636 and Cor. 2.5, p. 641] that ^Γ is strongly
dense in S^f(X) if each densely defined linear transformation com-
muting with Jf is everywhere defined and is a scalar multiple of I.
We shall show that the latter occurs. If T is densely defined and
commutes with j?~, T also commutes with j>X Thus by Lemma 3.5
T is everywhere defined and continuous. Now let zeσ(T). Both
ker (zl — T) and &(zl — T) are invariant under j?~~. By Lemma 3.6
either ker (zl - T) Φ {0} or &{zl - T) Φ X. Since ^ ' is transitive,
the first case implies that ker (zl — T) = X and the second that

— T) — {0}. In either case zl — T = 0 and the proof is complete.

4. Examples* In the first example we shall show that on every
complex Banach space X there exists an abelian strictly cyclic, sepa-
rated algebra of operators, and if dim X :> 2, there exists a nonabelian
strictly cyclic, separated operator algebra. The technique used in this
example is essentially the same as that used by Lambert in [6]. In
the second example we shall characterize the strictly cyclic one-sided
weighted shifts A on Zlβ Our characterization is the same as that
given in [3, Theorem 21, p. 78] for two-sided shifts on ϊ1# We present
this example again because of the different context and because we
are able to characterize
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EXAMPLE 1. Let X be a Banach space, x0 e X, x0 Φ 0. Let each
of &* and y* be a continuous linear functional on Xsuch that x*(x0) =
y*(x0) = 1. For each a; in I define Ax by

4*2/ = x*(x)[y - ί/*(ί/)»ol + !/*(!/)»

Let Sf = {A,: α; 6 X}.
Straightforward computation shows that
(1) each Axe£f(X),
(2) Jϊf is linear,
(3) A2AX — AAzX for x and 2 in X, so that J ^ is an algebra,
(4) Axx0 — x for each x in X, so that J ^ is strictly cyclic and

separated, and
(5) if T is in the uniform closure of J^ in £f(X), then T =

ATXQ SO that J^f is uniformly closed.
If dim X Ξ> 3, a simple argument shows that J ^ is abelian if

and only if x* = y*. However, if dimX— 2, we have a different
situation which we shall state as a general proposition: if s/ is a
strictly cyclic, separated algebra of operators on a Banach space of
dimension 2 and Ie Jtf, then szf is abelian.

Proof. Let x0 be a strictly cyclic, separating vector for j%f and
let xγ be any element of X such that {xQ, xx) is a basis for X. Let
4 G j ^ , A#o = ^i Then using the fact that s%? is strictly cyclic and
separated, it is an easy task to show that J ^ is the algebra generated
by I and A and hence is abelian.

An example of a strictly cyclic, separated, nonabelian algebra j ^

on a two dimensional vector space is Szf = Ί ( J Q) : α ' ^ complex

numbers L

EXAMPLE 2. Let ^ be the Banach space of absolutely summable
sequences y = {yn}u=o of complex numbers. {eΛ}£=0 is the natural basis
for lt. Let {an}~=1 be a sequence of nonzero complex numbers and let
A be the linear transformation defined by Aen — an+1en+ι(n ^ 0) and
extended linearly to all finite linear combinations of {en}. For con-
venience in manipulation we define 60 = 1 and bn = Π?=i ai f° r n ^ l

PROPOSITION. A can be extended to a continuous linear operator
on h such that eQ is a strictly cyclic, separating vector for SzfA if and
only if

(*) sup
bX

Furthermore, in this case
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= {AY = \±ψA": {yn} e l\

and thus every element of {A}r is the uniform limit of a sequence of
polynomials in A.

Proof. Note that Awe< = (bi+jbi)ei+n for n, i :> 0. Assume first
that A has a continuous extension to lx and that e0 is a strictly cyclic,
separating vector for s*fA. By Lemma 2.1 (iii) there exists a K > 0
such that || JK|| ^ K\\ Eeo\\ for all E in j ^ . Therefore for each i
and ^

-K 6.
bo

= K

and (*) holds
Assume now that (*) holds First we shall prove that A is

bounded. Let y = {yn} be an element of lx with at most a finite
number of nonzero terms. Then

Ay\\ =

- Σ».-

showing that A is bounded on a dense linear manifold of lγ and has
a continuous extension to all of lx.

Now let x — {xn} and 7/ = {?/%} be elements of Zx and p and g be
integers, p ^ q Then

> Un An™
L~τΓ

Σ°° r V _ί±2L/
i0 OO

and consequently, || Σi=p (vJK)An || ^
completeness of j^ίZO Σ~=o {yJK)An e
^ = {ΣΓ=o (vJh)A" {Vn} e k}. Note that

2/ l Therefore by the
) for each {?/,} in I,. Let

Σ ^ A % - Σ ^h-~en = y

so that .^eQ = ϊlβ Since ^ c J ^ , e0 is strictly cyclic for <SzfA and
thus e0 is also separating for {A}'. However since έ$ aj^fAci{A}\ g&e^ — l^
and e0 is separating for {A}', it is immediate that & = J ^ = {A}' and
our proof is complete.

Operators such as the one discussed in the preceding proposition
are called (one-sided) weighted shifts. It is easy to see by condition
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(*) that every weighted shift on lt with monotone nonincreasing
weights is strictly cyclic. An example of a strictly cyclic weighted
shift with nonmonotone weights is au = 1 and a2i+1 = 1/2. Other such
shifts are discussed in [3].

Weighted shifts on separable infinite dimensional Hubert space
have the subject of several recently published papers. In [8] Shields
and Wallen show that if A is a weighted shift with nonzero weights,
then every operator commuting with A is the limit in the strong
topology of a sequence of polynomials in A. In [7] Nordgren shows
that every element of the commutant of a Donoghue operator A is
the uniform limit of a sequence of polynomials in A; Lambert [5]
generalizes Nordgren's result by showing that every Donoghue operator
is a strictly cyclic weighted shift and that for each strictly cyclic
weighted shift A the commutant consists of uniform limits of poly-
nomials in A. This parallels the result in our example.

5* Structure of s*Z\ If x is a strictly cyclic vector for
then certainly x is separating for jy" and by Lemma 2.1 (i) Ssf'x is
a closed linear subspace of X. However, little else can be said about
the structure of s$f'. Thus in this section we shall assume that <Ssf
has a strictly cyclic, separating vector x. For each y in X let Ay

be the unique element of j y such that Ayx = y. Note that Ax is an
idempotent.

THEOREM 5.1. Eej^f' if and only if there exists an A in
such that Ey — AyAx for each y in Y. That is, s>f* is the set of all
right multiplications of S>/ by elements of

Proof. If E e j&", then Ey = EAyx = AyEx = AyAExx. Conversely,
if E is the linear transformation defined by Ey = AyAx, then by
L e m m a 2 . 1 (i i i) || Ey\\ ^ || A y \ \ Ax\\ ̂  K\\ A y x \ \ \\Ax\\ = K\\ y\\ \\ Ax ||
and E is bounded. Note that if y and z are in X, then AyAzx ~
Ayz — AAyZx so that AyAz = AAyZ. Therefore AzEy = AzAyAx = AA%yAx —
EAzy, proving that E e

THEOREM 5.2. x is a strictly cyclic separating vector for s%ff if
and only if I e Szf. In this case Sxf —

Proof. In any case x is a separating vector for j&" since x is
a cyclic vector for jzf. By Theorem 5 1

.Sϊ/'x = {Ex: Ey = AyAx, A e j^} = Ax{^fx) = AX(X).

Thus x is strictly cyclic for j&" only in case the idempotent Ax maps
X onto X. This last occurs only if Ax = /.
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Assume now that I e s&. Then since x is a strictly cyclic, separat-
ing vector for sf' and / e J^r, we know that x is also a strictly cyc-
lic, separating vector for sf". Therefore j& = j ^ " since sf c sxί",
x is strictly cyclic for j ^ 9 and x is separating for j y " .

One consequence of Theorem 5.2 is that a uniformly closed, strictly
cyclic, separated operator algebra containing / is also closed in the
weak operator topology. A second consequence is that an operator
algebra j y satisfying these conditions is abelian if and only if szff

is abelian. In [5] Lambert shows that an abelian strictly cyclic,
separated operator algebra is maximal abelian. Thus if J^" is abelian,
j ^ ' = szf" and therefore by Theorem 5.2 J ^ = j y \ If we apply
this last conclusion to {A}', we arrive at the assertion that if {Ay is
strictly cyclic and separated, then {Ay is abelian (since {A}" is always
abelian).
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