SELF-ADJOINTNESS FOR MULTI-POINT DIFFERENTIAL OPERATORS

JOHN STEWART LOCKER
SELF-ADJOINTNESS FOR MULTI-POINT DIFFERENTIAL OPERATORS

JOHN LOCKER

In this paper the adjoint operator is derived for a multi-point differential operator in a Hilbert space. This characterization is used to study self-adjointness. In particular, a simple proof is given of some recent results of Neuberger and Zettl.

1. Introduction. The adjoint of a multi-point differential operator has been studied by many authors, beginning with Wilder [7] and most recently by Krall [3]. In §2 we characterize the adjoint of an \(n \)th order multi-point differential operator. The development is in the Hilbert space \(L^2[a, b] \), and it generalizes the setting of Dunford and Schwartz [2, Ch. XIII] for two-point differential operators. The essential feature of this development is the necessity for discontinuities at the interior boundary points, a feature which has been pointed out by Wilder [7] and Loud [4].

In §3 we characterize self-adjointness for multi-point differential operators, generalizing some classical results of Coddington and Levinson [1]. For the special case of continuity at the interior boundary points, we give an elementary proof of the results of Neuberger [6] and Zettl [8] who have shown that the boundary conditions can not involve the interior boundary points.

2. Multi-point differential operators and their adjoints. For a closed interval \([a, b] \) let \(S \) denote the real Hilbert space \(L^2[a, b] \) with standard inner product \((f, g)\). Let

\[
\tau = \sum_{i=0}^{n} a_i(t) \left(\frac{d}{dt} \right)^i
\]

be an \(n \)th order formal differential operator, where we assume that the coefficients \(a_i(t) \) are real-valued functions belonging to \(C^n[a, b] \) and that \(a_n(t) \neq 0 \) on \([a, b]\). Let \(H^*[a, b] \) be the linear subspace of \(S \) consisting of all functions \(f(t) \) in \(C^{n+1}[a, b] \) with \(f^{(n+1)} \) absolutely continuous on \([a, b]\) and \(f^{(n)} \) in \(S \).

We are going to study differential operators which are obtained by applying the operator \(\tau \) to appropriate linear subspaces of \(L^2[a, b] \) determined by imposing boundary conditions which involve interior points of \([a, b]\). The following example illustrates some of the problems inherent in determining the adjoint of such an operator.
EXAMPLE 1. Let L be the differential operator in $L^2[-1,1]$ define by

$$\mathcal{D}(L) = \{ f \in H^1[-1,1] | f(0) = f'(0) = 0 \}, \quad Lf = f''.$$

Since the domain of L is dense in $L^2[-1,1]$, the adjoint operator L^* exists. Let $f(t)$ be any function in $\mathcal{D}(L)$, and let $g(t)$ be a sufficiently smooth function in $L^2[-1,1]$ which possibly has a jump discontinuity at $t = 0$. Integrating by parts we obtain

$$\int_{-1}^{1} f''g - \int_{-1}^{1} fg'' = f'(1)g(1) - f'(-1)g(-1) + f(-1)g'(-1) - f(1)g'(1) + f(0)[g'(0^+) - g'(0^-)] - f'(0)[g(0^+) - g(0^-)].$$

The last two terms are eliminated by the boundary conditions on f, and in the process, the expressions which would have forced continuity on g and g' at $t = 0$ are also removed. In fact, we see the $g(t)$ belongs to the domain of L^* if g is sufficiently smooth on the intervals $[-1, 0)$ and $(0, 1]$ with $g(1) = g(-1) = g'(1) = g'(-1) = 0$. Note that g and g' need not be continuous at $t = 0$. Thus, the adjoint operator L^* appears to have a different structure than the original differential operator L. We will show that this difference is only superficial.

To obtain a theory for multi-point differential operators in which the operator and its adjoint have similar structures, we must extend the concept of such operators by giving up continuity at the interior boundary points of $[a, b]$. Suppose $\tau = \{a = x_0 < x_1 < \cdots < x_m = b\}$ is a given partition of $[a, b]$. Let $H_n(\tau)$ denote the collection of all functions $f(t)$ in S with the following two properties:

(a) On each subinterval $[x_{i-1}, x_i]$ the function $f(t)$ possesses both right-hand and left-hand limits at the endpoints x_{i-1} and x_i, respectively. For $i = 1, \cdots, m$ let f_i be the function defined on $[x_{i-1}, x_i]$ by $f_i(t) = f(t)$ for $x_{i-1} < t < x_i$, $f_i(x_{i-1}) = f(x_{i-1}^-)$, and $f_i(x_i) = f(x_i^+)$. We call the functions f_1, \cdots, f_m the components of f and denote this by writing $f = (f_1, \cdots, f_m)$.

(b) The components f_i belong to $H^1[x_{i-1}, x_i]$ for $i = 1, \cdots, m$. Note that $H^1(\tau)$ is a linear subspace of S containing $H^1[a, b]$, and we can apply τ to any function $f(t)$ in $H^1(\tau)$ to obtain a new function $\tau f(t)$ in S.

We define a multi-point boundary value to be a linear functional B on $H^1(\tau)$ of the form

$$B(f) = \sum_{i=1}^{m} \sum_{j=0}^{n-1} [\alpha_{ij}f_i^{(j)}(x_{i-1}) + \beta_{ij}f_i^{(j)}(x_i)].$$
for $f = (f_1, \cdots, f_m) \in H_n(\pi)$, where the α_{ij} and β_{ij} are given real numbers. Clearly the space of all such boundary values is a $2mn$-dimensional linear space.

Suppose we are given a set of k linearly independent multi-point boundary values

$$B_i(f) = \sum_{l=1}^{m} \sum_{j=0}^{n-1} [\alpha_{ij} f_i^{(j)}(x_{l-1}) + \beta_{ij} f_i^{(j)}(x_l)] , \quad i = 1, \cdots, k .$$

Let L be the linear operator in S defined by

$$L(f) = \{ f \in H_n(\pi) \mid B_i(f) = 0, \quad i = 1, \cdots, k \}, \quad Lf = \tau f .$$

The operator L is called a multi-point differential operator. Since $D(L)$ is dense in S, we know that L has a well-defined adjoint L^*. We are going to obtain an explicit formula for L^*, showing that it is also a multi-point differential operator which is obtained from the formal adjoint τ^* and a set of $2mn - k$ linearly independent multi-point boundary values.

The principal tool used in studying L^* is Green’s formula [2, p. 1288]: if $f(t)$ and $g(t)$ are functions in $H_n(\pi)$, then

$$\tau f, g - (f, \tau^* g) = \sum_{l=1}^{m} \sum_{p=0}^{n-1} \left[\frac{\partial}{\partial \tau} \left(F_{ij}^{(p)}(\tau) f_i^{(p)}(x_l) g_j^{(p)}(x_l) \right) \right] ,$$

where $F_\tau = [F_{ij}^{(p)}(\tau)]$ denotes the $n \times n$ boundary matrix for τ at the point $t \in [a, b]$. Consider the linear system of equations

$$\sum_{l=1}^{m} \sum_{j=0}^{n-1} [\alpha_{ij} x_l + \beta_{ij} y_l] = 0 , \quad i = 1, \cdots, k .$$

Since the boundary values B_1, \cdots, B_k are linearly independent, the system (2) has rank k, and hence, the solution space of (2) has dimension $2mn - k$. Let $[x_{ij}, y_{ij}]$, $i = 1, \cdots, 2mn - k$, be a set of solutions to (2) which form a basis for the solution space.

Next, let α_{ij} and β_{ij} be the constants defined by

$$\alpha_{ij} = -\sum_{p=0}^{n-1} x_{ij} F_{ij}^{(p)}(\tau) \quad \text{and} \quad \beta_{ij} = \sum_{p=0}^{n-1} y_{ij} F_{ij}^{(p)}(\tau) ,$$

for $i = 1, \cdots, 2mn - k$; $j = 0, \cdots, n - 1$; $l = 1, \cdots, m$. Let $B_1^*, i = 1, \cdots, 2mn - k$, be the multi-point boundary values defined by

$$B_i^*(f) = \sum_{l=1}^{m} \sum_{j=0}^{n-1} [\alpha_{ij} f_i^{(j)}(x_{l-1}) + \beta_{ij} f_i^{(j)}(x_l)] .$$

These new boundary values are called adjoint multi-point boundary values.
Theorem 1. The adjoint operator L^* is the multi-point differential operator defined by

$$\mathcal{D}(L^*) = \{ f \in H^s(\pi) \mid B^s_i(f) = 0, i = 1, \ldots, 2mn - k \}$$

$$L^*f = \tau^*f$$

Proof. Let L_0 be the linear operator in S whose domain consists of all functions $f \in H^s(\pi)$ satisfying $B^s_i(f) = 0$ for $i = 1, \ldots, 2mn - k$ with $L_0 f = \tau^*f$. We want to show that $L_0 = L^*$. Fix a function $g \in \mathcal{D}(L_0)$ and set $g^* = L_0 g = \tau^*g$. Take any function $f \in \mathcal{D}(L)$. Since the numbers

$$x_{ji} = f^{(j)}(x_{i-1}), \quad y_{ji} = f^{(j)}(x_i)$$

form a solution to the linear system (2), there exist constants c_1, \ldots, c_{2mn-k} such that

$$f^{(j)}(x_{i-1}) = \sum_{i=1}^{2mn-k} c_i x_{ij}, \quad f^{(j)}(x_i) = \sum_{i=1}^{2mn-k} c_i y_{ij}.$$

Using these equations and Green's formula, we get

$$(L f, g) - (f, g^*) = (\tau f, g) - (f, \tau^*g) = \sum_{i=1}^{2mn-k} c_i B^s_i(g) = 0.$$}

Since this is true for each $f \in \mathcal{D}(L)$, we conclude that $g \in \mathcal{D}(L^*)$ with $L^*g = g^* = L_0g$. Thus, $L_0 \subseteq L^*$. To complete the proof it is sufficient to show that $\mathcal{D}(L^*) \subseteq \mathcal{D}(L_0)$. Take any function $g \in \mathcal{D}(L^*)$, and fix an integer l with $1 \leq l \leq m$. Let \bar{g} denote the restriction of g to the subinterval $[x_{l-1}, x_l]$. If \bar{f} is any function in $H^s[x_{l-1}, x_l]$ having its support in the open interval (x_{l-1}, x_l), then we can extend \bar{f} to a function f defined on $[a, b]$ by making it zero outside of $[x_{l-1}, x_l]$; the extension f belongs to $\mathcal{D}(L)$, and hence,

$$0 = (L f, g) - (f, L^*g) = \int_{x_{l-1}}^{x_l} (\tau \bar{f}) \bar{g} - \int_{x_{l-1}}^{x_l} \bar{f}(L^*g).$$

By Theorem 10 of [2, p. 1294] we conclude that \bar{g} is equal a.e. to a function in $H^s[x_{l-1}, x_l]$ and that $L^*g = \tau^*\bar{g}$ a.e. on $[x_{l-1}, x_l]$. Thus, $g \in H^s(\pi)$ and $L^*g = \tau^*g$. Next, fix an integer i with $1 \leq i \leq 2mn - k$, and choose a function $\sigma = (\sigma_1, \ldots, \sigma_m) \in H^s(\pi)$ such that $\sigma^{(i)}_{\alpha}(x_{i-1}) = x_{ijl}$ and $\sigma^{(i)}_{\alpha}(x_i) = y_{ijl}$. Clearly $\sigma \in \mathcal{D}(L)$, and from Green's formula

$$0 = (L \sigma, g) - (\sigma, L^*g) = (\tau \sigma, g) - (\sigma, \tau^*g) = B^s_i(g),$$

so $g \in \mathcal{D}(L_0)$. This completes the proof.

For calculating adjoints and for studying self-adjointness, it is
convenient to introduce the following matrices. Let M_i and N_i be the $k \times n$ matrices defined by

$$M_i = [\alpha_{ij}] \quad \text{and} \quad N_i = [\beta_{ij}],$$

let P_i and Q_i be the $(2mn - k) \times n$ matrices defined by

$$P_i = [\alpha_{il}'] \quad \text{and} \quad Q_i = [\beta_{il}'],$$

and let X_i and Y_i be the $(2mn - k) \times n$ matrices defined by

$$X_i = [x_{ij}] \quad \text{and} \quad Y_i = [y_{ij}],$$

for $l = 1, \ldots, m$. From (3) we have

$$P_i = -X_i F_{x_{i-1}} \quad \text{and} \quad Q_i = Y_i F_{x_i},$$

for $l = 1, \ldots, m$. Finally, let X and X^* be the $(2mn - k) \times 2mn$ matrices

$$X = [X_1 Y_1 \cdots X_m Y_m] \quad \text{and} \quad X^* = [P_1 Q_1 \cdots P_m Q_m],$$

and let F be the $2mn \times 2mn$ matrix

$$F = \begin{pmatrix}
-F'_{x_0} & 0 \\
F'_{x_1} & \ddots \\
& \ddots & \ddots \\
0 & \cdots & -F'_{x_{m-1}} & F'_{x_m}
\end{pmatrix}.$$

From (5) we have

$$X^* = XF.$$

REMARK. We know that X has rank $2mn - k$ because system (2) has rank k, and that F is nonsingular because the boundary matrix F_i is nonsingular at each point $t \in [a, b]$, and hence, X^* must have rank $2mn - k$. Since the rows of X^* are the coefficients of the adjoint multi-point boundary values, it follows that $B_i^*, \ldots, B_{2mn-k}^*$ are linearly independent.

We conclude this section by giving two examples. In the first we reexamine Example 1, while in the latter we look at an example due to Loud [4, p. 316].

EXAMPLE 2. The first example can be reformulated as follows: let $S = L^2[-1, 1]$, let $z^f = f''$, let $\pi = \{-1, 0, 1\}$, and let
\[B_i(f) = f(0^-) - f(0^+) = f_i(0) - f'_i(0) , \]
\[B_4(f) = f^*(0^-) - f^*(0^+) = f_i^*(0) - f'_i^*(0) , \]
\[B_5(f) = f(0^-) = f_i(0) , \]
\[B_6(f) = f^*(0^-) = f_i^*(0) , \]

so the operator \(L \) is given by

\[\mathcal{D}(L) = \{ f \in H^2(\pi) \mid B_i(f) = 0, \ i = 1, \cdots, 4 \}, \]

\[Lf = f'' . \]

For the adjoint operator we have \(\tau^*f = f'' \) and

\[F_t = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \] for all \(t \in [-1, 1] \).

The linear system (2) is given by

\[
\begin{align*}
0x_0 + x_{11} + 1y_{01} + 0y_{11} - 1x_{02} + 0x_{12} + 0y_{03} + 0y_{12} &= 0, \\
0x_0 + x_{11} + 0y_{01} + 1y_{11} + 0x_{02} - 1x_{12} + 0y_{03} + 0y_{12} &= 0, \\
0x_0 + x_{11} + 1y_{01} + 0y_{01} + 0x_{02} + 0x_{12} + 0y_{03} + 0y_{12} &= 0, \\
0x_0 + x_{11} + 0y_{01} + 1y_{11} + 0x_{02} + 0x_{12} + 0y_{03} + 0y_{12} &= 0,
\end{align*}
\]

which has as its general solution

\[x_{11}[00000000] + x_{11}[01000000] + y_{02}[00000010] + y_{01}[00000001]. \]

Thus,

\[
X = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}
\quad \text{and} \quad
XF' = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}.
\]

It follows that adjoint multi-point boundary values are given by

\[B_1^*(f) = f^*(-1) = f'_1(-1) , \]
\[B_2^*(f) = -f(-1) = -f_1(-1) , \]
\[B_3^*(f) = -f^*(1) = -f'_3(1) , \]
\[B_4^*(f) = f(1) = f'_4(1) , \]

and hence, the adjoint operator \(L^* \) is given by

\[\mathcal{D}(L^*) = \{ f \in H^2(\pi) \mid f(-1) = f^*(-1) = f(1) = f^*(1) = 0 \}, \]

\[L^*f = f'' . \]

Example 3. Let \(S = L^2[-1, 1] \), let \(\tau f = f'' \), let \(\pi = \{-1, 0, 1\} \), and let
For the operator L determined by these conditions, we find that

$$X = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0
\end{bmatrix}, \quad X^* = \begin{bmatrix}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix},$$

and hence, adjoint multi-point boundary values are given by

$$B_i^+(f) = -f(-1) = -f_i(-1),$$

$$B_i^+(f) = f(0^-) - f'(0^-) + f'(0^+) = f_i(0) - f_i'(0) + f_i''(0),$$

$$B_i^+(f) = f(1) = f_i(1).$$

Thus, $L = L^*$.

3. Self-adjointness. Since the rows of the matrix X are solutions of the linear system (2), we have

$$\sum_{i=1}^{m} [M_i X_i + N_i Y_i] = 0,$$

and hence, substituting (5) into this equation we get

$$\sum_{i=1}^{m} [M_i (-F_{x_{i-1}})^* P_i + N_i (F_{x_i})^* Q_i] = 0.$$

(7)

We are going to use this equation to characterize the self-adjoint multi-point differential operators. In case $m = 1$ equation (7) reduces to equation (3.3) of Coddington and Levinson [1, p. 289].

Theorem 2. Let $\tau = \tau^*$ and let $k = mn$. The multi-point differential operator L is self-adjoint if f

$$\sum_{i=1}^{m} [M_i (-F_{x_{i-1}})^* M_i + N_i (F_{x_i})^* N_i] = 0.$$

(8)

Proof. First, assume $L = L^*$. Since the boundary values B_1, \cdots, B_{mn} are equivalent to the boundary values B_1^*, \cdots, B_{mn}^*, there exists an $mn \times mn$ nonsingular matrix A_i such that

$$[P_1 Q_1 \cdots P_m Q_m] = A_i [M_1 N_1 \cdots M_m N_m],$$
and hence, $P_i = A_iM_i$ and $Q_i = A_iN_i$ for $l = 1, \cdots, m$. Substituting these results into equation (7) yields equation (8).

Conversely, assume equation (8) is true. This implies that the rows of the $mn \times 2mn$ matrix $[M_1N_1 \cdots M_mN_m]F^{-1}$ are solutions to the linear system (2). Because these rows are linearly independent, there exists an $mn \times mn$ nonsingular matrix A_2 such that

$$[X, Y_1 \cdots X_m Y_m] = X = A_2[M_1N_1 \cdots M_mN_m]F^{-1}.$$

Therefore,

$$[P_1Q_1 \cdots P_mQ_m] = XF = A_2[M_1N_1 \cdots M_mN_m].$$

This implies that the boundary values B_1, \cdots, B_m, and B_1^*, \cdots, B_m^* are equivalent. Thus, $L = L^*$ and the proof is complete.

Remark 1. In case $m = 1$ this theorem reduces to Theorem 3.2 of Coddington and Levinson [1, p. 291].

Remark 2. Loud [4, Theorem 1, p. 309] has also obtained a characterization of self-adjoint multi-point differential operators. In applying his results one must know a fundamental matrix for the homogeneous problem and know that a Green's function exists. These restrictions do not apply to Theorem 2, and consequently, it may be easier to use in practical problems.

We conclude this paper by examining self-adjointness in the special case of continuity at the interior boundary points. Suppose L is a self-adjoint multi-point differential operator determined by τ and multi-point boundary values B_1, \cdots, B_m, and assume that the last $(m-1)n$ of these boundary values specify continuity for the functions and their derivatives at the interior boundary points:

$$f_i^{(j)}(x_i) - f_i^{(j)}(x_i^*) = f_i^{(j)}(x_i) - f_i^{(j)}(x_i^*) = 0,$$

for $l = 1, \cdots, m - 1, j = 0 \cdots, n - 1$. Note that the boundary values B_1, \cdots, B_n can be rewritten in the form

$$B_i(f) = \sum_{l=0}^{m-1} \sum_{j=0}^{n-1} \gamma_{ijl} f_i^{(j)}(x_i), \quad i = 1, \cdots, n,$$

and L can be represented by

$$\mathcal{D}(L) = \{f \in H^s[a, b] \mid B^t(f) = 0, i = 1, \cdots, n\}, \quad Lf = \tau f.$$

We assert that the coefficients γ_{ijl} in (10) which correspond to interior boundary points are all 0.

Fix integers i, j, l with $1 \leq i \leq n$, $0 \leq j \leq n - 1$, $1 \leq l \leq m - 1$, and suppose $\gamma_{ijl} \neq 0$. Let L_0 be the multi-point differential operator
determined by \(\tau \) and the boundary conditions (9) together with the additional boundary condition \(B_0(f) = 0 \). Clearly \(L \subseteq L_0 \), and hence, \(L^*_0 \subseteq L^* = L \). Also, since \(L_0 \) is given by \((m - 1)n + 1\) linearly independent boundary conditions, the adjoint \(L^*_0 \) is determined by precisely \(2mn - (m - 1)n - 1 = mn + n - 1 \) linearly independent boundary conditions.

Choose a function \(f \in H^n[a, b] \) with

\[
[f(a)f'(a) \cdots f^{(n-1)}(a)] = [-1 \, 0 \cdots 0] F^{-1},
\]

\[
[f(b)f'(b) \cdots f^{(n-1)}(b)] = [0 \, 0 \cdots 0],
\]

\[
f^{(j)}(x_i) = -(\gamma_{ij})^{-1} \sum_{p=0}^{n-1} \gamma_{ip} f^{(p)}(a),
\]

and with all other values for \(f, f', \cdots, f^{(n-1)} \) equal to 0 at the interior boundary points. Note that \(f \in \mathcal{D}(L_0) \). Take any function \(g \in \mathcal{D}(L_0) \). Since \(\mathcal{D}(L_0) \subseteq \mathcal{D}(L) \), it follows that \(g \) and its derivatives are continuous at the interior boundary points, and hence, using Green's formula we get

\[
0 = (L_0 f, g) - (f, L_0^* g)
\]

\[
= [f(a)f'(a) \cdots f^{(n-1)}(a)] F[a] [g(a)g'(a) \cdots g^{(n-1)}(a)]'
\]

\[
- [f(b)f'(b) \cdots f^{(n-1)}(b)] F[a] [g(a)g'(a) \cdots g^{(n-1)}(a)]'
\]

\[
= g(a).
\]

Using this same argument we can show that \(g^{(p)}(a) = 0 \) and \(g^{(p)}(b) = 0 \) for \(p = 0, 1, \cdots, n - 1 \) for all functions \(g \in \mathcal{D}(L_0^*) \). These \(2n \) boundary conditions together with the \((m - 1)n\) boundary conditions (9) account for a total of \(2n + (m - 1)n = mn + n \) linearly independent boundary conditions satisfied by the functions \(g \in \mathcal{D}(L_0^*) \). This contradicts the earlier statement that \(\mathcal{D}(L_0^*) \) is determined by \(mn + n - 1 \) linearly independent boundary conditions. Therefore, we must have \(\gamma_{ij} = 0 \), and we have established the following theorem.

Theorem 3. Let \(L \) be a self-adjoint multi-point differential operator determined by \(\tau \) and multi-point boundary values \(B_0, \cdots, B_{mn} \). If the last \((m - 1)n\) of these boundary values specify continuity for the functions and their derivatives at the interior boundary points as in (9), then in the representations for the boundary values \(B_0, \cdots, B_n \) given in (10) the coefficients \(\gamma_{ij} \) which correspond to interior boundary points are all 0.

Remark. This theorem has been established by Neuberger [6] and Zettl [8]. Our proof seems simpler and more natural. It is a
consequence of Green's formula, which is the basic principle used in studying self-adjointness.

REFERENCES

Received February 24, 1972.

COLORADO STATE UNIVERSITY
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial “we” must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $48.00 a year (6 Vols., 12 issues). Special rate: $24.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
Kenneth Paul Baclawski and Kenneth Kapp, *Induced topologies for quasigroups and loops* .. 393
D. G. Bourgin, *Fixed point and min – max theorems* 403
J. L. Brenner, *Zolotarev’s theorem on the Legendre symbol* 413
Jospeh Atkins Childress, Jr., *Restricting isometries of spheres* 415
John Edward Coury, *Some results on lacunary Walsh series* 419
James B. Derr and N. P. Mukherjee, *Generalized Sylow tower groups. II* 427
Paul Frazier Duvall, Jr., Peter Fletcher and Robert Allen McCoy, *Isotopy Galois spaces* .. 435
Mary Rodriguez Embry, *Strictly cyclic operator algebras on a Banach space* 443
Abi (Abiadbollah) Fattahi, *On generalizations of Sylow tower groups* 453
Burton I. Fein and Murray M. Schacher, *Maximal subfields of tensor products* . . 479
Ervin Fried and J. Sichler, *Homomorphisms of commutative rings with unit element* ... 485
Kenneth R. Goodearl, *Essential products of nonsingular rings* 493
George Grätzer, Bjarni Jónsson and H. Lakser, *The amalgamation property in equational classes of modular lattices* 507
H. Groemer, *On some mean values associated with a randomly selected simplex in a convex set* ... 525
Marcel Herzog, *Central 2-Sylow intersections* .. 535
Joel Saul Hillel, *On the number of type-k translation-invariant groups* 539
Ronald Brian Kirk, *A note on the Mackey topology for (C^b(X)^*_*, C^b(X))* 543
J. W. Lea, *The peripherality of irreducible elements of lattice* 555
John Stewart Locker, *Self-adjointness for multi-point differential operators* 561
Robert Patrick Martineau, *Splitting of group representations* 571
Robert Massagli, *On a new radical in a topological ring* 577
Fred Richman, *The constructive theory of countable abelian p-groups* 621
Edward Barry Saff and J. L. Walsh, *On the convergence of rational functions which interpolate in the roots of unity* 639
Harold Eugene Schlais, *Non-aposyndesis and non-hereditary decomposability* 643
Mark Lawrence Teply, *A class of divisible modules* 653
Edward Joseph Tully, Jr., *ℵ-commutative semigroups in which each homomorphism is uniquely determined by its kernel* 669
Garth William Warner, Jr., *Zeta functions on the real general linear group* 681
Keith Yale, *Cocycles with range {±1}* .. 693
Chi-Lin Yen, *On the rest points of a nonlinear nonexpansive semigroup* 699