Pacific Journal of Mathematics

SPLITTING OF GROUP REPRESENTATIONS

ROBERT PATRICK MARTINEAU

Vol. 45, No. 2 October 1973

SPLITTING OF GROUP REPRESENTATIONS

R. PATRICK MARTINEAU

Let G be a finite group, and V, W two modules over the group-ring KG, where K is some field. In this note is described a method for proving that every KG-extension of V by W is a split extension. The method is applied to the groups $PSL(2,2^{\alpha})$ when $K=GF(2^{\alpha})$, giving in this case an alternative proof of a theorem of G. Higman.

1. The method. Fix the finite group G and the field K. If A is any left KG-module, we let Cr(G, A) denote the K-vector space of crossed homomorphisms from G to A, that is,

$$Cr(G, A) = \{f: G \longrightarrow A \mid f(gh) = gf(h) + f(g), \text{ all } g, h \in G\}$$
.

Suppose G is generated by the elements g_1, \dots, g_s with relations w_1, \dots, w_t . Here w_1, \dots, w_t are elements of the free group F, freely generated by x_1, \dots, x_s , and we say that g_1, \dots, g_s satisfy the relation w if $\alpha(w) = 1$ where α is the homomorphism from F to G defined by $\alpha(x_i) = g_i, i = 1, \dots, s$.

We shall devise a criterion, in terms of w_1, \dots, w_t , to decide whether or not a map from G to A is a crossed homomorphism. Let $\mathscr C$ be the set of maps $f\colon\{g_1,\,\cdots,\,g_s\}\to A$ which satisfy the following condition: for any $i\in\{1,\,\cdots,\,s\}$ for which $g_i^{-1}\in\{g_1,\,\cdots,\,g_s\}$, $\mathbf{f}(g_i^{-1})=-g_i^{-1}f(g_i)$.

Now let $w \in F$ and $f \in \mathscr{C}$. We shall define, by induction on the length of w, an element $w^*(f)$ of A. If w=1, put $w^*(f)=0$. If $w=x_k^{\varepsilon}$ for some $\varepsilon=\pm 1$, then we define $w^*(f)=f(g_k^{\varepsilon})$ if $g_k^{\varepsilon} \in \{g_1, \dots, g_s\}$, and if $g_k^{\varepsilon} \in \{g_1, \dots, g_s\}$, we put $w^*(f)=-g_k^{-1}f(g_k)$. Finally, if $w=v.x_k^{\varepsilon}$ for some $\varepsilon=\pm 1$, we define $w^*(f)=\alpha(v)\cdot f(g_k^{\varepsilon})+v^*(f)$.

Notice that we do not need w to be in reduced form, since according to the definition,

$$egin{aligned} (wx_ix_i^{-1})^*(f) &= lpha(w)\!\cdot\! g_if(g_i^{-1}) + lpha(w)f(g_i) + w^*(f) \ &= lpha(w)g_i[f(g_i^{-1}) + g_i^{-1}f(g_i)] + w^*(f) \ &= w^*(f), \end{aligned}$$

and similarly for $wx_i^{-1}x_i$.

[As an example, if $w = x_1x_2^2$, then $w^*(f) = g_1g_2f(g_2) + g_1f(g_2) + f(g_1)$.]

LEMMA 1. If $v, w \in F$ and $f \in \mathcal{C}$, then

$$(wv)^*(f) = \alpha(w) \cdot v^*(f) + w^*(f)$$
.

Proof. This is true by definition if v=1 or $v=x_i^\epsilon$, $\varepsilon=\pm 1$. If we have $(wv)^*(f)=\alpha(w)\cdot v^*(f)+w^*(f)$ for two elements w,v of F, and $\varepsilon=\pm 1$, then we have

$$egin{aligned} (wvx_i^\epsilon)^*(f) &= lpha(wv)f(g_i^\epsilon) + (wv)^*(f) \ &= lpha(w) \cdot lpha(v)f(g_i^\epsilon) + lpha(w)v^*(f) + w^*(f) \ &= lpha(w)[lpha(v)f(g_i^\epsilon) + v^*(f)] + w^*(f) \ &= lpha(w)(vx_i^\epsilon)^*(f) + w^*(f) \ . \end{aligned}$$

Thus the lemma holds by induction on the length of v.

LEMMA 2. If $f \in Cr(G, A)$, then

- (i) f∈ €
- (ii) if $w \in F$ then $w^*(f) = f(\alpha(w))$, and
- (iii) for $i = 1, \dots, t, w_i^*(f) = 0$.

Proof. If $f \in Cr(G, A)$ then $f(1 \cdot 1) = 1 \cdot f(1) + f(1)$, so f(1) = 0. Then $0 = f(1) = f(g_i \cdot g_i^{-1}) = g_i f(g_i^{-1}) + f(g_i)$, so that $f \in \mathscr{C}$.

The equation $w^*(f) = f(\alpha(w))$ holds if w = 1 or x_i , by definition. If $w = x_i^{-1}$, then $w^*(f) = -g_i^{-1}f(g_i) = f(g_i^{-1})$ since $f \in Cr(G, A)$. If now $w = vx_i^{\epsilon}$, $\epsilon = \pm 1$, and $v^*(f) = f(\alpha(v))$, then

$$\begin{split} w^* &(f) = \alpha(v) f(g_i^\epsilon) + v^*(f) \\ &= \alpha(v) f(g_i^\epsilon) + f(\alpha(v)) \\ &= f(\alpha(v) \cdot g_i^\epsilon) \quad \text{since } f \in Cr(G, A) \\ &= f(\alpha(w)) \; . \end{split}$$

Thus (ii) holds by induction on the length of w. (iii) now follows immediately, since $\alpha(w_i) = 1$ and f(1) = 0.

We remark, though we shall not need this, that a converse of this result is also true, namely:

LEMMA 3. If w_1, \dots, w_t are defining relations for G, and if $f \in \mathscr{C}$ satisfies $w_i^*(f) = 0$ for $i = 1, \dots, t$, then f can be extended (uniquely) to an element of Cr(G, A).

Proof. First of all we show that if $u \in \ker \alpha$, then $u^*(f) = 0$. Now $\ker \alpha = \langle w_1, \dots, w_t \rangle^F$, that is, the subgroup of F generated by all elements of the form $v^{-1}w_iv$, $v \in F$. By definition, $1^*(f) = 0$, so by Lemma 1, $\alpha(v^{-1}) \cdot v^*(f) + (v^{-1})^*(f) = 0$. Again by Lemma 1,

$$(r^{-1}w_iv)^*(f) = \alpha(v^{-1}w_i) \cdot v^*(f) + (v^{-1}w_i)^*(f)$$

= $\alpha(v^{-1}) \cdot \alpha(w_i) \cdot v^*(f) + \alpha(v^{-1})w_i^*(f) + (v^{-1})^*(f)$.

Since $\alpha(w_i) = 1$ and $w_i^*(f) = 0$, we have $(v^{-1}w_iv)^*(f) = 0$. Finally by Lemma 1, if $w^*(f) = 0$ and $v^*(f) = 0$ then $(wv)^*(f) = 0$. Thus $u^*(f) = 0$ for all $u \in \ker \alpha$.

Now if g is any element of G, then $g = \alpha(w)$ for some $w \in F$. Define $f(g) = w^*(f)$. Then this definition depends only on g, for if $g = \alpha(v)$ also, then $wv^{-1} \in \ker \alpha$, say $wv^{-1} = u$. But now w = uv, so by Lemma 1, $w^*(f) = \alpha(u) \cdot v^*(f) + u^*(f) = v^*(f)$ since $\alpha(u) = 1$ and $u^*(f) = 0$.

Now if $g, h \in G$, say $g = \alpha(w)$, $h = \alpha(v)$, then $f(gh) = (wv)^*(f) = \alpha(w)v^*(f) + w^*(f)$ by Lemma 1 so f(gh) = gf(h) + f(g), as required.

The uniqueness of f is immediate from the fact that f is already defined on a set of generators of G.

Lemmas 2(iii) and 3 tell us how to find $\dim_K (Cr(G, A))$: we look in A for elements a_1, \dots, a_s satisfying the relations $w_j^*(f) = 0$ which are necessary if f is to be an element of Cr(G, A) with $f(g_i) = a_i$, $i = 1, \dots, s$. The point of doing this is explained in the next result.

Let V, W be two left KG-modules. The dual module W^* is given the structure of a left KG-module by defining $(gw^*)(w) = w^*(g^{-1}w)$ for $g \in G$, $w^* \in W^*$ and $w \in W$. Then $V \bigotimes_K W^* = A$ is a left KG-module if we define $g(v \bigotimes w^*) = gv \bigotimes gw^*$. Let $C_A(G)$ denote $\{a \mid a \in A \text{ and } ga = a \text{ for all } g \in G\}$.

LEMMA 4. If $dim_{\kappa}(Cr(G, A)) \leq dim_{\kappa}(A) - dim_{\kappa}(C_A(G))$, then every KG-extension of V by W is a split extension.

Proof. By Theorem 10, page 235, of [2], there is a one-to-one correspondence between classes of equivalent KG-extensions of V by W, and elements of $H^1(G,A)$, and by [2], page 231, $H^1(G,A)$ is the quotient space Cr(G,A)/P, where P is the subspace of principal crossed homomorphisms, that is, $P = \{f: G \rightarrow A \mid \text{for some } a \in A, f(g) = ga - a \text{ for all } g \in G\}$.

To prove Lemma 4, therefore, if suffices to show that dim $P \ge \dim(Cr(G,A))$, and so by the hypothesis, we need only prove dim $P \ge \dim A - \dim(C_A(G))$.

Let $\{a_{r+1}, \dots, a_n\}$ be a basis for $C_A(G)$, and extend it to a basis $\{a_1, \dots, a_r, a_{r+1}, \dots, a_n\}$ for A. For $i=1, \dots, r$ define $f_i(g)=ga_i-a_i$ for all $g \in G$, so that $f_i \in P$. If we have $\sum_{i=1}^r \alpha_i f_i = 0$ with $\alpha_i \in K$, $i=1, \dots, r$, then for all $g \in G$, $\sum_{i=1}^r \alpha_i (ga_i-a_i) = 0$, so that for all $g \in G$, $\sum_{i=1}^r \alpha_i a_i = g(\sum_{i=1}^r \alpha_i a_i)$.

Thus $\sum_{i=1}^r \alpha_i a_i \in C_A(G)$, so $\alpha_i = 0$ for $i = 1, \dots, r$. Hence f_1, \dots, f_r are linearly independent, and the Lemma is proved.

2. $SL(2, 2^n)$. As an application we take $G = SL(2, 2^n)$ and $K = GF(2^n)$. Let $V = V_0$ be the 'natural' 2-dimensional representation of G over K. Then G is generated by elements g_1, g_2, g_3 whose action on V_0 can be represented by matrices $\binom{01}{10}, \binom{10}{11}, \binom{\theta0}{0\theta^{-1}}$, where θ is

a primitive $(2^n - 1)$ st root of 1. A short calculation shows that g_1, g_2 and g_3 satisfy the relations

$$w_1=(x_1x_2)^3 \ w_2=(x_1x_3)^2 \ w_3=x_1^2, \ w_4=x_2^2, \ w_5=x_3^k \ , \quad ext{where} \ k=2^n-1 \ .$$

We take $W=(V_i)^*$, where V_i is the (2-dimensional) representation of G over K obtained by applying the field automorphism $\beta \to \beta^{z^i}$ to the entries of the matrices above. (In fact, all 2-dimensional irreducible representations of G over K are of this form—see [1], Theorem 8.2). Thus W^* has a basis with respect to which the matrices of g_1, g_2, g_3 are respectively $\begin{pmatrix} 01\\10 \end{pmatrix}, \begin{pmatrix} 10\\11 \end{pmatrix}$ and $\begin{pmatrix} \psi 0\\0\psi^{-1} \end{pmatrix}$, where $\psi = \theta^{z^i}$.

Let $A = V \bigotimes_K W^*$, take $f \in Cr(G, A)$ and suppose $f(g_i) = a_i$, i = 1, 2, 3. Then from (*) and Lemma 2(iii) we have

- $(1) \quad 0 = w_1^*(f) = (g_1g_2g_1g_2 + g_1g_2 + 1)a_1 + (g_1g_2g_1g_2g_1 + g_1g_2g_1 + g_1)a_2$
- $(2) \quad 0 = w_2^*(f) = (g_1g_3 + 1)a_1 + (g_1g_3g_1 + g_1)a_3$
- $(3) \quad 0 = w_3^*(f) = (g_1 + 1)a_1$
- $(4) \quad 0 = w_4^*(f) = (g_2 + 1)a_2$
- $(5) \quad 0 = w_5^*(f) = (g_3^{k-1} + g_3^{k-2} + \cdots + g_3 + 1)a_3.$

If we use the relations (*), and equations (3) and (4), equation (1) can be re-written as

$$(1') (g_2 + g_1g_2 + 1)a_1 + (1 + g_2g_1 + g_1)a_2 = 0.$$

If we multiply equation (2) by g_1 and note that $g_1^2 = 1$ and $g_1a_1 = a_1$ (equation (3)), then we obtain

$$(2') (g_3 + 1)a_1 + (g_3g_1 + 1)a_3 = 0.$$

Let \bar{g}_1 , \bar{g}_2 , \bar{g}_3 be matrices representing g_1 , g_2 , g_3 respectively in A. Then it is straightforward to calculate that the rank of the matrix

$$M = egin{pmatrix} ar{g}_2 + ar{g}_1ar{g}_2 + 1 & 1 + ar{g}_2ar{g}_1 + ar{g}_1 & 0 \ ar{g}_3 + 1 & 0 & ar{g}_3ar{g}_1 + 1 \ ar{g}_1 + 1 & 0 & 0 \ 0 & ar{g}_2 + 1 & 0 \ 0 & 0 & ar{h} \end{pmatrix}$$

where $\bar{h}=\sum_{t=0}^{k-1}\bar{g}_3^t$, is 8 if $i\neq 0$ and 9 if i=0.

Secondly, it is easy to show that $C_A(G)=0$ if $i\neq 0$, and that $\dim_K (C_A(G))=1$ if i=0. Thus in either case, $\dim_K (Cr(G,A))\leq 3.4-\operatorname{rank}(M)\leq \dim_K A-\dim_K (C_A(G))$. Hence by Lemma 4, for any i, any KG-extentions of V by W is a split extension.

REFERENCES

- 1. G. Higman, Odd Characterisations of Finite Simple Groups, Lecture notes, University of Michigan, 1968.
- 2. D. G. Northcott, An Introduction to Homological Algebra, Cambridge University Press, 1962.

Received November 9, 1971.

MATHEMATICAL INSTITUTE UNIVERSITY OF OXFORD OXFORD OXI 3LB, ENGLAND

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON

Stanford University Stanford, California 94305

C. R. HOBBY

University of Washington Seattle, Washington 98105 J. Dugundji

Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS

University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E.F. BECKENBACH

B. H. NEUMANN

F. Wolf

K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY

UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON

AMERICAN MATHEMATICAL SOCIETY NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: \$48.00 a year (6 Vols., 12 issues). Special rate: \$24.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.

Pacific Journal of Mathematics

Vol. 45, No. 2 October, 1973

W 48 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Kenneth Paul Baclawski and Kenneth Kapp, <i>Induced topologies for quasigroups</i> and loops	393			
D. G. Bourgin, Fixed point and min – max theorems	403			
J. L. Brenner, Zolotarev's theorem on the Legendre symbol	413			
Jospeh Atkins Childress, Jr., Restricting isotopies of spheres	415			
John Edward Coury, Some results on lacunary Walsh series	419			
James B. Derr and N. P. Mukherjee, Generalized Sylow tower groups. II	427			
Paul Frazier Duvall, Jr., Peter Fletcher and Robert Allen McCoy, <i>Isotopy Galois spaces</i>	435			
Mary Rodriguez Embry, Strictly cyclic operator algebras on a Banach space	443			
Abi (Abiadbollah) Fattahi, On generalizations of Sylow tower groups				
Burton I. Fein and Murray M. Schacher, <i>Maximal subfields of tensor products</i>	453 479			
Ervin Fried and J. Sichler, <i>Homomorphisms of commutative rings with unit</i>	7/)			
element	485			
Kenneth R. Goodearl, Essential products of nonsingular rings	493			
George Grätzer, Bjarni Jónsson and H. Lakser, <i>The amalgamation property in</i>	.,,			
equational classes of modular lattices	507			
H. Groemer, <i>On some mean values associated with a randomly selected simplex</i>				
in a convex set	525			
Marcel Herzog, Central 2-Sylow intersections	535			
Joel Saul Hillel, On the number of type-k translation-invariant groups	539			
Ronald Brian Kirk, A note on the Mackey topology for $(C^b(X)^*, C^b(X))$	543			
J. W. Lea, The peripherality of irreducible elements of lattice.	555			
John Stewart Locker, Self-adjointness for multi-point differential operators	561			
Robert Patrick Martineau, Splitting of group representations	571			
Robert Massagli, On a new radical in a topological ring	577			
James Murdoch McPherson, Wild arcs in three-space. I. Families of Fox-Artin				
arcs	585			
James Murdoch McPherson, Wild arcs in three-space. III. An invariant of oriented local type for exceptional arcs	599			
Fred Richman, <i>The constructive theory of countable abelian p-groups</i>	621			
Edward Barry Saff and J. L. Walsh, <i>On the convergence of rational functions</i>	021			
which interpolate in the roots of unity	639			
Harold Eugene Schlais, Non-aposyndesis and non-hereditary				
decomposability	643			
Mark Lawrence Teply, A class of divisible modules	653			
Edward Joseph Tully, Jr., <i>H-commutative semigroups in which each</i>				
homomorphism is uniquely determined by its kernel	669			
Garth William Warner, Jr., Zeta functions on the real general linear group	681			
Keith Yale, Cocyles with range {±1}	693			
Chi-Lin Yen, On the rest points of a nonlinear nonexpansive semigroup	699			