
Pacific Journal of
Mathematics

SPLITTING OF GROUP REPRESENTATIONS

ROBERT PATRICK MARTINEAU

Vol. 45, No. 2 October 1973



PACIFIC JOURNAL OF MATHEMATICS
Vol. 45, No. 2, 1973

SPLITTING OF GROUP REPRESENTATIONS

R. PATRICK MARTINEAU

Let G be a finite group, and V, W two modules over the
group-ring KG, where K is some field. In this note is describ-
ed a method for proving that every i^G-extension of V by W
is a split extension. The method is applied to the groups
PSL(29 2

a) when K = GF(2a), giving in this case an alternative
proof of a theorem of G. Ήigman.

l The method. Fix the finite group G and the field K. If A
is any left ifG-module, we let Cr(G, A) denote the iί-vector space of
crossed homomorphisms from G to A, that is,

Cr(G, A) = {f:G > A / f(gh) = gf(h) + /(</), a l l g,heG}.

Suppose G is generated by the elements gl9 , gs with relations
wl9 , wt. Here wl9 , wt are elements of the free group F, freely
generated by xl9 , x89 and we say that gl9 , gs satisfy the relation
w if a(w) = 1 where a is the homomorphism from F to G defined by

α(®i) = 9^ i = 1, , s.
We shall devise a criterion, in terms of wl9

 m ,wt, to decide
whether or not a map from G to A is a crossed homomorphism. Let
^ be the set of maps /: {gl9 , gs} —•> A which satisfy the following
condition: for any ί e {1, , s} for which gj1 e {gl9 , flrβ}, ί{gjι) =

Now let weF and fe^. We shall define, by induction on the
length of w, an element w*(f) of ^4. If tί; = 1, put w*(f) = 0. If
w = x% for some e = ± 1 , then we define w*(/) = /(flr|) if ^ 6 {̂ , ••,&,},
and if gl${gl9 --,gs}, we put w*(/) = -gϊγf(gk)* Finally, if w =
v.ίCfc for some ε = ± 1 , we define w*(f) = oc(v)'f(gε

k) + v*(f).
Notice that we do not need w to be in reduced form, since ac-

cording to the definition,

+ «{w)f(g%) + w*{f)

and similarly for wxτιXi
[As an example, if w = α;^, then w*(/) = g^figd + ̂ 1/(̂ 2) +

LEMMA 1. If v,weF and fe^, then

(wv)*(f) = a(w).v*(f) + w*(f) .
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Proof. This is true by definition if v = 1 or v — x\, e = ± 1 . If
we have (wv)*(f) = a(w) v*(f) + w*(/) for two elements w, v of F,
and ε = ± 1 , then we have

= a(wv)f(gϊ) + (wv)*(f)

= a(w).a(v)f(gϊ) + α(w)v*(/) + w*(f)

v*(f)] + w*(/)

w*(f) .

Thus the lemma holds by induction on the length of v.

LEMMA 2. If fe Cr{G, A), then

( i ) /eΐT
(ii) if weF then w*(f) = f(a(w)), and
(iii) /or i = 1, •-.,«, w?(/) - 0 .

Proo/. If feCr(G,A) then /(l l) = 1-/(1)+/(1), so /(I) = 0.
Then 0 - /(I) = /Gfc.f/r1) = ^/(flrr1) + /(</,), so that / e if.

The equation w*(/) = f(cc(w)) holds if w = 1 or α?4, by definition.
If w = xτ\ then w*(/) = -grViffi) = fiST1) since / e Cr(G, A). If now
w = vx\, ε = ± 1 , and v*(f) = /(#(»), then

w* {f) - a(v)f(gί) + v*(/)

- <x(v)f(jfi + /(α(v))
- /(α(v) 9i) since / e Cr(G, A)

Thus (ii) holds by induction on the length of w. (iii) now follows
immediately, since α(n?4) — 1 and /(I) = 0.

We remark, though we shall not need this, that a converse of
this result is also true, namely:

LEMMA 3. // wl9 , wt are defining relations for G, and if
fe& satisfies w*{f) = 0 for i = 1, •••,£, then f can be extended
(uniquely) to an element of Cr(G, A).

Proof. First of all we show that if u e ker a, then u* (f) = O
Now kerα: = (wl9 •••, wt}

F, that is, the subgroup of F generated by
all elements of the form v^WiV, veF. By definition, 1*(/) = 0, so by
Lemma 1, a(v~ι) v*(f) + (v~γ(f) = 0. Again by Lemma 1,

*{f) + a{v-*)wf{f) + (v~T(f) .

Since cc(Wi) = 1 and w*(f) = 0, we have (v^wftyif) — 0. Finally by
Lemma 1, if w*(f) = 0 and v*(f) = 0 then (wv)*(f) = 0. Thus %*(/) - 0
for all ^
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Now if g is any element of G, then g — a(w) for some w e F.
Define f(g) = w*(f). Then this definition depends only on g, for if
g = a(v) also, then wv~ι e ker α, say wv~x — u. But now w = uv, so
by Lemma 1, w*(f) = α(w) •*;*(/) + %*(/) = v*(/) since a(u) = 1 and
***(/) = 0.

Now if g, h e G, say g = a(w), h = α(v), then f(gh) = {wv)*{f) =
a(w)v*(/) + w*(/) by Lemma 1 so /(#/&) = ftf(A) + /(#), as required.

The uniqueness of / is immediate from the fact that / is already
defined on a set of generators of G.

Lemmas 2(iii) and 3 tell us how to find dim^ (Cr(G, A)): we look
in A for elements au •••, as satisfying the relations w*(f) = 0 which
are necessary if / is to be an element of Cr(G, A) with /(&) = ai9 i =
1, , s The point of doing this is explained in the next result.

Let V, W be two left ίΓG-modules. The dual module W* is given
the structure of a left E^G-module by defining (gw*)(w) = w^ig^w)
for g e G, w* G T7* and w e W. Then F(g)*TF* = A is a left ϋΓG-module
if we define ^ ( x ) w*) = gv(g)gw*. Let C4(G) denote {a\aeA and
ga — a for all gr e G}.

LEMMA 4. If dimκ{Cr(G, A)) ^ dίmκ(A) — dimκ(CA(G)), then every
KG-extension of V by W is a split extension.

Proof. By Theorem 10, page 235, of [2], there is a one-to-one
correspondence between classes of equivalent ίΓG-extensions of V by
W, and elements of H\G, A), and by [2], page 231, Hι(G, A) is the
quotient space Cr(G, A)/P, where P is the subspace of principal crossed
homomorphisms, that is, P = {/: G—>A / for some aeA, f(g) = ga — a
for all g e G}.

To prove Lemma 4, therefore, if suffices to show that dim P Ξ>
dim (Cr(G, A)), and so by the hypothesis, we need only prove dim P ^
dim A - dim (CA(G)).

Let {αr+i, * ,αn} be a basis for CA(G)y and extend it to a basis
{αlf , arj α r + 1, , αΛ} for A. For i = 1, , r define ft(g) = g^ - at

for all g e G, so that f e P. If we have Σ*=i α i / ί = 0 with α* e JSΓ, i =
1, , r, then for all ^ G G , Σ5U ^i(^αi ~ ad = 0, so that for all
0 e G, Σ J β l α,α, - ^(ΣLi ^a*).

Thus Σ*=i a ^ i e C4(G), so a, = 0 for i = 1, . . . , r. Hence /1? , / r

are linearly independent, and the Lemma is proved.

2. SL(2, 2n). As an application we take G - SL(2, 2%) and K =
GF(2n). Let V — Vo be the 'natural' 2-dimensional representation of
G over K. Then G is generated by elements gu g2, gz whose action

on VQ can be represented by matrices ( I Q ) , ( I I ) > ( O ^ - 1 ) '
 w ^ e r e ^ * s
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a primitive (2n — l)st root of 1. A short calculation shows that
gly g2 and 03 satisfy the relations

fwi = (x,x2f w2 = (x.x,)2

\w3 = χl, W4 = xt, w5 = a?* , where k = 2n — 1

We take TF = (Fi)*, where F; is the (2-dimensional) representa-
tion of G over K obtained by applying the field automorphism β —> β2i

to the entries of the matrices above. (In fact, all 2-dimensional
irreducible representations of G over K are of this form—see [1],
Theorem 8.2). Thus W* has a basis with respect to which the

matrices of gl9 g2, gz are respectively L A (.A and ( jw-A where

ψ = θ2ί.

Let A = F®jpTΓ*, take feCr(G, A) and suppose /(&) = α ί? i =
1, 2, 3. Then from (*) and Lemma 2(iii) we have

( 1 ) 0 = wf(f) = {gig2g,g2 + g&2 + 1)^ + (g&g&gi + #i#2#i + ^i)α2

( 2 ) 0 = wi{f) = (gxgz + l)αL + (fir1̂ 3g1 + gja*
( 3 ) 0 = wf(/) = (Λ + l)αx

( 4 ) 0 = wΐ(f) - (flr2 + l)α2

( 5 ) 0 = w?(/) = (flfί"1 + ί/J"2 + ' + ŝ + l)α3.
If we use the relations (*), and equations (3) and (4), equation

(1) can be re-written as

(Γ) (02 + 9l92 + I K + (1 + 0201 + 0lK = 0 .

If we multiply equation (2) by gt and note that g\ = 1 and ^ci^ = αx

(equation (3)), then we obtain

(2') (03 + I K + (030i + I K = 0 .

Let gu g2, gz be matrices representing glf g2, g3 respectively in A.
Then it is straightforward to calculate that the rank of the matrix

2 + 0102 + 1 1 + 0201 + 01 0

03 + 1 0 ^301 +

Λf = ft + 1 0 0

0 g2 + 1 0

V 0 Oh

where h — Σ?=o gt> is 8 if ί ^ 0 and 9 if i = 0.
Secondly, it is easy to show that CA(G) = 0 if i Φ 0, and that

dim* (CA(G)) = 1 if i = 0. Thus in either case, dim,, (O(G, A)) ^
3.4 — rank (ikί) <£ dim^ A — dim^ (CΛ(G)). Hence by Lemma 4, for any
i, any iΓ(?-extentions of V by IF is a split extension.
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