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WILD ARCS IN THREE-SPACE

1: FAMILIES OF FOX-ARTIN ARCS

JAMES M. MCPHERSON

Roughly speaking, a Fox-Artin are is an arc which is
tame modulo one endpoint at which it has penetration index
three, and which may be constructed in the way that the ex-
amples of R. H. Fox and E. Artin were constructed in their
classical paper of 1948.

For each oriented Fox-Artin arc, there is an associated
infinite sequence of oriented prime 2-component links, which
is an invariant of the local embedding type of the arc in R3.
Using existence results from link theory, this result yields
the corollary: If M is a 3-manifold and p a point in the
interior of M, then there exists an uncountable family of locally
non-invertible Fox-Artin arcs in JM, which are wild at p.

Later papers will be concerned with developing invariants
of the oriented local embedding type of an arc k, which is
tame module one endpoint, at which it has penetration index
2n+1.

0. Introduction. The results of this paper originated in at-
tempts to answer the following two questions:

1. Do there exist uncountably many arcs in Euclidean 3-space
R?, which are tame modulo one endpoint? ([1], p. 33. Such arcs are
called “nearly polyhedral” in [1].)

2. Are the ares 1.1, 1.1%, 1.3 of [3] amphicheiral or invertible?
(Problem 17 of [2].)

In 1961, R. H. Fox and O. G. Harrold [4] succeeded in completely
classifying the Wilder arcs of penetration index 2, and the existence
of uncountably many non-invertible Wilder arcs follows immediately
from their classification. In 1963, an affirmative answer to question
1 was announced by Giffen [5] (a more detailed development of Giffen’s
ideas is given in [13]); however, Giffen developed no new invariant
of local embedding type, so there was still no way of distinguishing
nearly polyhedral arcs of the same penetration index. While S. J.
Lomonaco ([8], 1967) succeeded in algebraically distinguishing the
local types of arcs at one interior wild point, there was no theory of
local embedding type for nearly polyhedral arcs.

To the best of the present author’s knowledge, the invariants of
local type of an oriented nearly polyhedral arc, developed in this
paper and in [9], are the only ones available (other than penetration
index invariants) that will differentiate one nearly polyhedral arc type
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from another. Use of these invariants will give a detailed affirmative
answer to question 1 (see §2, and p. 91 of [9]) and a partial answer
to question 2.

The author wishes to thank Professor N. Smythe for his helpful
advice in the writing of his Ph. D. thesis [9], presented to the Uni-
versity of New South Wales. The development of the invariants of
[9] will be the subject of later papers in this series.

1. Preliminaries. Let X be a set—we use Bd X, C1X, and Int X
to denote the boundary, closure, and interior respectively of X.
X has N(X) elements. If k is an oriented arc in R?® (the orientation
of R® is fixed), and X is an oriented surface, v(k N X) is the algebraic
intersection number of k£ with X.

An oriented link L = [, U, of two components in R?® is splittable
if there exists a 2-sphere Sc R® such that [, and [, lie in different
components of R®— S; S is said to split L. If no such 2-sphere
exists, L is unsplittable. If L’ is another link in R?® which is F-
isotopic to L (for the definition of F-isotopy, see either [14] or [10]),
then L’ is splittable iff L’ is splittable, by Theorem 1 of [14].

The main theorem of [6] states that if L is unsplittable, L has
a unique factorisation into prime links; by Theorem 1 of the same
paper, at most one of these prime links is a 2-component link L*.
(The other factors are 1-component links, i.e. knots, which are factors
of the knot types of the components of L.) We call L* the (oriented)
prime hub of L, and note that L and L* are F-isotopic.

Let % be an oriented arc in R? with endpoints p and q. Let E,
and E, be tame closed 3-cell neighbourhoods of p, with N(k N Bd E;)=3.
If E,cInt £, the set kN Cl(E, — E,) is either (i) three arcs, each
with one endpoint on Bd E, and the other on Bd E,, or (ii) one arc
v, connecting Bd F, and Bd E,, one arc «, whose endpoints both lie
on Bd E,, and one arc B, with both endpoints on Bd FE..

In case (i), we say E, and E, are k-similar and write E, ~ K,
without distinguishing E, and E,. We note that “~” is not transi-
tive, but if E,, E,, E, are tame closed 3-cell neighbourhoods of p with
E. . cIntE, and E, ~ K, E,~ E, then E, ~ E,. The use of the
symbol ~ for a relation which is not an equivalence relation is un-
fortunate but seems unavoidable.

In case (ii), we write E, > E, if the pair (a,, 8, is unsplittable
in the sense of [10]; that is, there exist oriented non-singular arcs
o’ CBd E, and 5/ c Bd E, such that the link L = (o, Ua) U (B, UZ)
is unsplittable. (Hereafter, we shall always assume that the ares «’
and g are chosen to make L a consistently oriented link.) Let IL(E,, E,)
denote the prime hub of L.

Unless otherwise stated, all our “3-cells” will be tame closed 3-cell
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neighbourhoods of p, each meeting % on its boundary in exactly three
points. We fix a 3-cell E,, which will contain all other 3-cells in its
interior. When we write E,cC E,, it is implicit that E,C Int E..

We make the following observations:

A: “~” is not a transitive relation.

B: If E, E,, and C are 8-cells with E,>C>D E,, and E, ~ C, then
C>E, iff E, > E,. In either case, L(C, E,) = L(E,, E,).

B*; If C~ E, then C< E, iff E,< E,, and I(E,, C) = L(E,, E,)
in either case.

We shall only prove that C > E, if E, > E,and E, ~ C, and that
then L(C, E,) = L(E, E,).

Let o, o/, B, B’y and v, be chosen as above, so that L = (o, Ua') U
(B.UB). Let a, be an arc on BdC — v, which connects the two
points of &, N Bd C, and let I" be a regular neighbourhood of 7, in
E, — (CUa). See Figure 1.

Denote by L, the link [a, U (2, NC)] U (B U B). The cube Q =
Cl(E, — CU ) is an “admissible cube” for the link L, and by [6],
p. 284, L is the link-product of L, and the knot formed by the arcs
a' and a, and the two arcs of &, U (E, — C). This implies (i) L and
L, have the same prime hub, i.e. L(C, E,) = L(E,, E,), and (ii) L, and
L are F-isotopic. Since L is unsplittable, L, is unsplittable and
C > E.

FIGURE 1



588 JAMES M. McPHERSON
2. Statement of the theorem.

DEFINITION. An oriented arc k in R? with endpoints p and ¢,
is a Fox-Artin arc if k— p is tame, and there exists a sequence
®:E > FE > FE,>-+-- of tame closed 38-cell neighbourhoods of p,
with N K, = {p}. & is a Fox-Artin sequence for k.

By [10], the Fox-Artin arcs are wild, with penetration index three
at p. Example 1.2 of [3] is a Fox-Artin arec.

Before stating the main theorem of this paper, we must recall
two definitions.

Two sequences {a;} and {b;} are cofinal if there exist indices M
and N such that ay., = by, for all » =0,1,2, «--.

Two ares k, and k, are of the same oriented local type at points p,
and p, if there exist neighbourhoods U; of p; (which inherit their
orientation from R?®), and an orientation-preserving homeomorphism
of U, to U, which takes (U, N k,, p,) onto (U, N k., p,) ([8], p. 323).

THEOREM. Let k, and k, be Fox-Artin arcs with wild endpoints
p, and p, and Fox-Artin sequences

g1:E0>E1>‘E2>"‘, gzzBo>B1>Bz>'“'

Jor k, and k, respectively. Then if k, and k, have the same oriented
local type at p, and p,, the sequences of oriented prime 2-component
links I(¥,) = {L(E;, E;;)} and I(,) = {L(B;, B;.,)} are cofinal.

COROLLARY 1. There exists an uncountadble family of locally non-
invertible Fox-Ariin arcs in R?, and an uncountable family of non-
amphicheiral such arcs.

Proof 1. It is shown in [11] that there exists an infinite family
of non-invertible prime 2-component links, and the links L, n =
1,2,3, .-« of [7] form an infinite family of non-amphicheiral prime
links.

Let & be a Fox-Artin arc, and & one of its Fox-Artin sequences.
Let M, Ay As, <+ be an ordering of the prime links which have pro-
perty P, where P connotes non-invertibility or non-amphicheirality.
Obtain a binary number a(k) by the rule: the 4th digit of a(k) is 1
if the prime )\; occurs infinitely often in the sequence L(%’), and is 0
otherwise. Since all the binary numbers may be obtained in this way,
the result follows.

Figure 2(a) shows a Fox-Artin are, which may be constructed
from an infinite family of cylinders of the type shown in Figure 2(a)
(cf. [3] or [1] for details). For each %, the link L(F;, E;,,) is the link
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FIGURE 2 (a)
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FIGURE 3

of Figure 3, which is known to be non-amphicheiral ([7], p. 653), so
the are of Figure 2 (b) is non-amphicheiral.

COROLLARY 2. Let M be a 3-manifold, and » a point in the in-
terior of M. If M s mon-orientable, there exist uncountably many
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locally mon-inmvertible Fox-Artin arcs which are wild at p. If M is
oriented, there exist uncountably many locally non-invertible Fox-Artin
arcs which are wild at p, and uncountably many non-amphicheiral
such arcs.

Using the results of C.D. Sikkema in [12], we obtain
COROLLARY 3. There exist uncountably many crumpled 3-cubes.

A crumpled n-cube is a topological space which is homeomorphic
to a closed complementary domain of an (n — 1)-sphere in S”. An
n-psuedo-half-space M™ is an n-manifold with boundary, whose bound-
ary is homeomorphic to R** and whose interior is homeomorphic to
R*. For n =+ 3, every mn-psuedo-half-space is homeomorphic to the
closed half-space R? ([12], p. 399, p. 411). However, for n = 3,
Theorem 8 of [12] yields.

COROLLARY 4. There exists an uncountable family of topologically
different 3-psuedo-half-spaces.

We conclude our list of corollaries with a partial answer to ques-
tion 2 of §0, namely.

COROLLARY 5. The arcs 1.1, 1.1*, and 1.2 of [3] are not amphi-
cheiral.

Proof 5. We prove that the arc 1.2 (whose projection is shown
in Figure 7 of [3]) is non-amphicheiral. Denote this arc by %k, and
its mirror image by k'. k is constructed from cylinders of the type
shown in Figure 1 of [3], while ¥’ may be constructed from cylinders
which are the mirror images of those used to construct k. A glance
at Figure 1 of [3] shows that the link obtained by identifying . and
s_, and t, with r,, has linking number +1, while the corresponding
link in the mirror image of this eylinder has linking number —1.
For k, then, the sequence of oriented prime 2-component links is a
sequence of simply linked circles with linking number -1, whereas
the sequence of oriented prime 2-component links associated with %’
is a sequence of simply linked circles with linking number —1. k& and
k' (the mirror image of k) therefore cannot have the same oriented
local type, so k& cannot be amphicheiral.

3. The proof of the theorem. The proof consists of a sequence
of manipulatory lemmas. In each, k is a fixed Fox-Artin arc, with
fixed Fox-Artin sequence #: K, > E, > E,>+--. a; and B; are the
arcs of kN Cl(E; — E;.,) whose endpoints both lie on Bd E;, and on
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Bd E,,, respectively. <, is the unique subarc of & which connects
Bd E; and Bd E,,,. L;= L(E, E;,,) denotes the prime hub of the link
(a; Ua@) U (B; U B), where a and B are suitably chosen arcs on Bd E;
and Bd F;,, respectively.

LemMa 1. Let C be a 38-cell with E,DC D E;,, some 1. Then
eitke"' C ~ Ei’ or C ~ Ei+1'

Proof. Suppose a;C Int (E; — C)—we assert that 5, N BdC = O
and that C ~ E,,..

So suppose B; N Bd C = &, i.e. that g, CIntC. Then BdC is a
2-sphere that splits the pair («;, 8;), contradicting the hypothesis that
E; > FE;,,. Hence 3;NBdC # ¢, and pB; therefore meets BdC in
precisely two points, for N(k N Bd C) = 3 and v(8; N Bd C) = 0. Also,
v, must meet Bd C in only one point.

To prove C ~ E;,,, assume to the contrary, and that « is a subare
of k¥ in C — E;,, whose endpoints both lie on BdC. If a joins the
points of 5; N Bd C, then a U (8; N C1 (E; — C)) is a simple closed curve
in the arc k, which is impossible. One of the endpoints of @ must
therefore be the point v; N Bd C — so« must be a subare of 7, else
k intersects itself at v,N BdC. But then 7v; meets Bd C in at least
two points, for

2= NanBdC) = N, NBdC)

since &« < ~v;. But 7v; meets Bd C in only one point, so v; N Bd C cannot
be an endpoint of a.

Hence no such subarc « of k exists, and #NCl(C — E;,,) must
therefore consist of three arcs connecting Bd C and Bd E;,,. Thus
C~ Ei+1-

Similarly, C ~ E; if 8, < Int C.

The cases a;C E; — C and B;C Int C are the only two cases pos-
sible; it is impossible that both «; N Bd C and B; N Bd C be nonempty
together. For a; and B; are disjoint, and both have algebraic inter-
section number zero with Bd C, so

N(EtNBdC) = Na; N BAC) + N(8: N BdC) = 4

because a; and B8; must both meet Bd C in at least two points. So
if N(k NBdC) = 3, one and only one of the sets a;NBdC, 8, NBdC
is empty.

LeMMA 2. If C is a 3-cell, C ~ E;, E,_,DC D E,,,, then
g':Eo>'E1> cee > K > C>'Ei+1> b
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s a Fox-Artin sequence for k, and L(Z') = L(¥).

Proof. This is a straightforward application of the results B and
B* of §1.

If CoOFE;, then C< E;,, and IL(E,_, C)= L(E;_, E;), by B*.
Also, E; > E;., so C> E;., and L(C, E;,) = L(E;, E;.)), by B. This
is sufficient to show that &’ is a Fox-Artin sequence for k.

If Cc E;, the proof is similar.

Let E;,, e &. A containing sequence for E,.,, of length s in E,
is a 3-cell sequence

EozBo>'Bl>'Bz>‘“‘>'Bs>'Bs+1: i+l e

The associated sequence of prime links is the sequence {L(B;, B;;)}.

LEMMA 3. Any two containing sequences for K., in K, have the
same length (length 7), and the associated sequences of prime links
are identical. Thus any two Fox-Artin sequences & and &' which
start at E, and have E;., as a common term also have the first ¢ + 1
terms of L(%) and L(Z') in common.

Proof. Let &,., denote the containing sequence
E,> E, > -+ > E; > E;,,
for E,., in E, let
E,> B, > --- > B, > Ey,,

be another containing sequence for E,.,, and assume s > 4. Let <&
be the class of all containing sequences for E;., of length s in E,,
whose associated sequences of prime links are identical with the se-
quence {L(B;, B;;)}. <# is not empty by hypothesis, so there exists
a sequence

EOZCO>'Cl>Cz>‘"'>'Cs>Cs+1:Ei+1

in <Z with the properties:

(i) each 2-sphere Bd C; is in general position with respect to
the 2-spheres Bd E,, +--, Bd E;, and

(ii) the number of elements of the family

C(& ) = UUBAC, N Bd E,

Jj=1lh=1

of intersection curves is minimal in <#, and none of these intersec-
tion curves meets k.
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Note that by (i), each intersection curve is a simple closed curve
o < Bd C; N Bd E,, which bounds discs on both Bd C; and Bd E,.

Our first step is to show C(&,) = @.

For some [ and h, let 0 < Bd C, N Bd E, be an intersection curve.
o separates Bd E, into two discs, D, and D,, and one of these discs
contains at most one point of k, because N(k N Bd E,) = 3. Let this
disc be D(o).

Suppose there exists an index j and an intersection curve
a C Bd C; N Int D(g), which bounds a disc DcInt D(¢) containing
no other intersection curves. « also separates Bd C; into two
discs; one of these, say D', together with D is the boundary of a
3-cell S which does not contain C;;,. Let N be a closed regular
neighbourhood of S. We write C; = C;U N if DcCl(E,— C;), and
C;=Cl(C; — N) if DcC,.

Then C; is a tame closed 3-cell neighbourhood of p, with C;_, >
C; o Cjyy; we will show

(a8 NkNBAC) =NkNBAC;) =3, and

(b) CJ’ < CJ'—U CJ’ > Ci+19

L(Cj-,, C)) = L(C;-, Cy) »
and
L(Cj, Cjv) = L(Cyy C)
The sequence
E,>C > o+ >Ciny>Cl>Cipy > oo > C, > Eiyy
will then be a sequence in < by Lemma 2; and we note that
BdC;NBd E,cBdC,NBd E,,
particularly if I = h, when
BdC;NBd E,cBdC;NBd £, — {a} .

But this new sequence in <# has at least one less intersection
curve in C(%;;,) than our original sequence, contradicting the mini-
mality hypothesis (ii). Hence if (a) and (b) hold, we must conclude
that C(&;.,) is empty.

(a) k& meets Bd C; in at least three points, for & has penetration
index three at p. So N(kNBdC)) = N(knBdC;), i.e. NkN D)=
NN D). But

NkNnND)<NEkND)<NFknND@)=1;

so certainly kN D is empty if kN D = &, and k meets I in precisely
one point if N(kN D) =1, because v(kNBdS) =0. In both cases,
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then, N(kN D) = N(kN D) and N(knBdC)) = 3.

() If kN D= @, this is trivial. If kN D and kN D’ are both
one-point sets, kN S must consist of one arc v joining D and D', so
C; and C; are k-similar. Then it follows from Lemma 1 that C/ < C,_,
and C} > C;.,, and from B and B* that

L(C;-,, C)) = L(C;_,, Cy)
and
L(C;, Cj+)) = L(C;, Cyy) «

We conclude that C(&,,,) = @; that is, that BAC;,NBAd E, = @
for all indices j =1, ---,sand A= 1, ++-, 4. Our next aim is to show
that the assumption s > 7 leads to a contradiction; and to this end,
we let wn(h) denote the number of 2-spheres Bd C; contained in
Int (B, — Eup),h=0, - 4.

That n(0) and n(i) are both at most 1 follows from Lemma 1.
Indeed, suppose BdC,_,uUBdC,cInt (E; — E;.,). Then C, ~ E, be-
cause C, > FE;.,, so there is no subarc of k¥ in Cl (E; — C,) which has
both endpoints lying on Bd C,. Since E,>C,_,>C,, it is therefore
impossible that C,_, > C,. So C,_, must contain E; in its interior,
and n(i) < 1. Similarly n(0) < 1.

Suppose n(k) = r; that is, that the 2-spheres Bd C;, ---, Bd C;,,_,
all lie in Int (B, — E,.)). If C; and E, are not k-similar, then C;~E,,,
by Lemma 1. Again, this means that there is no subarc of % in
C; — E,,, which has both its endpoints on Bd C;, so it is impossible
that C; > C;y, if C;0C;1., D Esp. Sor=11if C; ~ E,,..

If C; ~ E,, then E, > C;;, (by the remark B in §1) because C; >
C;s,. By Lemma 1, C;,, and E,,, must be k-similar. It is then im-
pOSSible that Cj_H > Cj+2 if Bd C,-+2C Int (Cj+1 - Eh+1)’ SO Cj+2C Eh+l°
Hence r = 2 if C; ~ E,.

Thus n(h) = r < 2 for all k. Suppose n(h) = 2 and n(l) =1 for
all ] < h. Then E, ,DC,DE, foralll, and C, ~ E, because C, < E,,
by Lemma 1. C, and E, cannot be k-similar, for then C, ~ C,, so
C,~ E, by Lemma 1. Similarly, C;~ E, C,~ E, ---,C, ~ E,: but
the preceding paragraphs show C,,, ~ E, because n(h) = 2. Because
C,.2>FE,oC,., C, and C,;, must be k-similar, which contradicts the
hypothesis C, > C,+;. Then n(l) must be zero for at least one I < h.

Similarly, we may show that if & is the last index such that
n(h) = 2, then there is an index ! > % such that n(l) = 0.

Now suppose n(h) = n(t) = 2, but «#(r) = 1 for all 2 <+ < ¢ Let
C, be the 3-cell which is k-similar to E,.. Then C,,, ~ E,,,, so
Cyo~FE, s -+, and Cp ;. ~ E,. But because

Crt1-ss DE, DCrimy > Crppnn D By
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it follows that Ci,_; ~ E,; but then C,,_s_, ~ C;y,_s, Which is impos-
sible. So n(r) must be zero for some r, h < r < t.

Thus, in the sequence n(0), n(1), «--, n(i), we have shown that
there is an 0 preceding the first 2, succeeding the last 2 is a 0, and
between any two 2’s there is a 0. There are more 0’s than 2’s
therefore. But then

s=§n(h}<i+1§3

which is impossible. So the assumption s > 7 leads to a contradiction.
However if s < 4, we let m(j) denote the number of 2-spheres Bd E,
in Int (C; — C;;,)), and deduce, as above, that

i=>m@<s+1=1.

This forces s = 1.
We now have two containing sequences for E,., of length ¢ in
E,; we wish to show that the associated sequences of prime links are

identiecal.
For each index h, it is impossible that C, > E, if C,DE,, for

then
E,>C >Cy>---C,>E,

is a containing sequence for E,, of length h in E,, while
E,>FE >--->E,_, > E,

is a containing sequence of length # — 1 in E,. But from the part
of the lemma already proven, any two containing sequences for E,
must have the same length — 2 — 1 — in E,. Therefore C, and E,
are k-similar if C, D E,; similarly, C, ~ E, if C,C E,.

Then to prove L(C,, Ci.,) = L(E,, E,+,), we have several possibil-
ities to consider: we shall only prove that the prime hubs are identical
if £,05C,>C,.,,DFE,.,,. We have

L(Chv Ch+1) = L(Eh’ Ch+1) = L(Ehy Eh+1)

where the equalities follow from the statements B and B* of §1.

The other possibilities may be considered similarly, and we con-
clude that L(C,, C,.,) = L(E,, E,.,) for all h; that is, the associated
sequences of prime links are identical.

LEMMA 4. Let & be a Fox-Artin sequence fork, and let C C Int E,
be a 3-cell. Then C has a containing sequence

Eo:Co>Cx>'Cz>'"'>‘Cs>'C:Cs+1
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such that
L(Ciy Ci+1) = L(Ei, Ei+1) ’ 1= 0, 1, cee, 8.

Proof. There exists an index & such that E,CIntC. Let <&
be the class of all containing sequences for ¥, in E,, which therefore
have length A — 1 in E,, and the associated sequence of prime links
for each containing sequence is the first % terms of the sequence
L(¥), by Lemma 3. <% is not empty. Then there exists one sequence
in &#, say

Eo>'Cl>Cz>'"'>'Ch—1>'Eh

with the properties:

(i) BdC is in general position with respect to BdC, BdC,, ---,
Bd C,_,, and

(ii) the number of intersection curves Bd C N{JBd C; is minimal
in &, and none of these curves meets k.

As in the proof of Lemma 3, we may keep C fixed and modify
our sequence in <& to eliminate those intersection curves which bound
discs on Bd C containing at most one point of k, i.e. to eliminate any
intersection curves which may occur. Since the number of curves of
BdCNUBAC; is assumed to be minimal, we conclude that Bd C N
BdC;= @ forall j=1,2, -+, h — 1.

Then C;;,,c Cc C; for some 7,0<j < h —1. From Lemma 1, it
follows that either C ~ C; or C ~ C;;, and C < C;. In the first case,

Eo>‘C1>' e >Cj_1>C
is a containing sequence for C, while
-E0>-Cl>- cee >'C:i——1>'Cj>'C

is a containing sequence in the second case. Then we can take the
s in the statement of this lemma to be either 7 or j — 1, and the
result follows because

L(089 C) = L(Csy Cs+1) = L(Esy Es+l)
where the equality on the left follows from either statement B or

B*,

We are now ready to prove the theorem.

Since %, and k, are of the same oriented local type at their re-
spective endpoints, there exist neighbourhoods U; of p; (with orienta-
tion inherited from R?), and an orientation-preserving homeomorphism

h: (st UL N ku pl) - (U27 Uz N kz, pz)
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which takes U, onto U,.

Let @ E,>E >E,>-+-- and &, B,> B, > B, > +++ be Fox-
Artin sequences for %k, and k, respectively, and consider Ah(g,); that
is, the sequence

WE) > WE) > h(E) > +++

which is a Fox-Artin sequence for k,. There exists an index ¢ such
that W(E, c Int B;; by Lemma 4, there exist 3-cells C, ---, C, such
that

Bo > Cl > C2> cee > Cs > h<Et) > h(EH—l) > > h(Et+r)

is a containing sequence for W(E,.,) in B,. Also, there exists an index
H(r) = H and 3-cells C,;,4s, +-+, Cy_, such that

h(-E’H-T) > Cs+r+2 Dmoeee > CH—-l > BH

is a containing sequence for B in h(F,..).
Then we have two containing sequences for B, in B, namely

B0>B1>Bz>"‘>BH
and

By > C.> 2> Co > ME) > M(Eyy) > -+ -
> h(EH-r) > Cs+r+2 > oeee > CH—-I > BH .

Then by Lemma 3,

L(Ety Et+l) = L(h(Et)y h(Et+1)) = L(Bs+n Bs+2) )
L(Etﬂy Et+2) = L(h(Et+1)’ .h’(Et+2)) = L(Bs+2) B3+3) s

I(Bvsrsy Brir) = LB rsrs), M(Eiir) = L(Bys—s, Burr) -

Setting » =1, 2,8, ... shows that the sequences L(%,) and L(&)
are cofinal.
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