ON THE CONVERGENCE OF RATIONAL FUNCTIONS WHICH INTERPOLATE IN THE ROOTS OF UNITY

Edward Barry Saff and J. L. Walsh
ON THE CONVERGENCE OF RATIONAL FUNCTIONS WHICH INTERPOLATE IN THE ROOTS OF UNITY

E. B. Saff and J. L. Walsh

Results are obtained on the existence and convergence of certain types of rational functions which interpolate in the roots of unity to a function \(f \) which is meromorphic in \(|z| < 1 \) and continuous on \(|z| \leq 1 \). The theorems presented extend results of Fejér and Walsh and Sharma on interpolating polynomials.

In a recent paper [2] the first author investigated the convergence of certain sequences of rational functions which interpolate to a meromorphic function \(f \). The results obtained in [2] apply, for example, when \(f \) is analytic on \(|z| < 1 \), meromorphic in \(|z| < \rho \), \(\rho > 1 \), and the points of interpolation are the roots of unity.

In this paper we study the convergence of rational functions which interpolate in the roots of unity to a function \(f \) which is meromorphic in \(|z| < 1 \) and continuous on \(|z| \leq 1 \). The theorems presented extend those of Fejér [1] and Walsh and Sharma [4] concerning interpolating polynomials. The method of proof of Theorem 1 is basically that of [2].

A rational function \(r_{n\nu}(z) \) is said to be of type \((n, \nu)\) if it is of the form

\[
r_{n\nu}(z) = \frac{p_n(z)}{q_{\nu}(z)}, \quad q_{\nu}(z) \neq 0,
\]

where \(p_n(z) \) and \(q_{\nu}(z) \) are polynomials of degrees at most \(n \) and \(\nu \) respectively.

Theorem 1. Let \(f(z) \) be meromorphic with precisely \(\nu \) poles (multiplicity included) in \(D: |z| < 1 \) and otherwise finite and continuous on \(|z| \leq 1 \). Let \(D' \) denote the domain obtained from \(D \) by deleting the \(\nu \) poles of \(f(z) \). Then for all \(n \) sufficiently large there exists a unique rational function \(r_{n\nu}(z) \) of type \((n, \nu)\) which interpolates to \(f(z) \) in the \(n + \nu + 1 \) roots of unity. Each \(r_{n\nu}(z) \) for \(n \) large enough has precisely \(\nu \) finite poles and as \(n \to \infty \) these poles approach respectively the \(\nu \) poles of \(f(z) \) in \(D \). The sequence \(r_{n\nu}(z) \) converges to \(f(z) \) throughout \(D' \), uniformly on any closed subset of \(D' \).

For the case \(\nu = 0 \) the above theorem is due to Fejér [1].

Proof. For any function \(g \) defined on \(|z| = 1 \) the unique polynomial of degree at most \(n \) which interpolates to \(g \) in the \(n + 1 \) roots...
of unity shall be denoted by $L_n(g; z)$.

Let $\alpha_1, \alpha_2, \ldots, \alpha_n$ be the v poles of $f(z)$ in D and set

$$Q_0(z) = 1, \quad Q_k(z) = \prod_{i=1}^{k} (z - \alpha_i), \quad 1 \leq k \leq n,$$

$$q_n(z) = Q_n(z) + \sum_{k=1}^{v} a_k^{(n)} Q_{n-k}(z).$$

We shall show that for n sufficiently large the coefficients $a_k^{(n)}$ can be chosen so that $Q_v(z)$ divides the interpolating polynomial $L_{n+v}(q_n Q_n f; z)$. For simplicity we assume that the points α_i are distinct, i.e., $f(z)$ has only simple poles in D. The case of multiple poles is left to the reader.

Clearly $Q_v(z) | L_{n+v}(q_n Q_n f; z)$ if and only if

$$\sum_{k=1}^{v} c_{j,k}^{(n)} a_k^{(n)} = d_j^{(n)}, \quad j = 1, 2, \ldots, v,$$

where

$$c_{j,k}^{(n)} = L_{n+v}(Q_{k-1} Q_n f; \alpha_j), \quad d_j^{(n)} = -L_{n+v}(Q_v f; \alpha_j).$$

For each k the function $Q_{k-1} Q_n f$ is analytic in D and continuous on $|z| \leq 1$, and so Fejér's theorem implies that

$$\lim_{n \to \infty} c_{j,k}^{(n)} = (Q_{k-1} Q_n f)(\alpha_j), \quad \lim_{n \to \infty} d_j^{(n)} = -(Q_v f)(\alpha_j), \quad 1 \leq j, k \leq v,$$

Since α_j is a simple pole of f we have

$$(Q_{k-1} Q_n f)(\alpha_j) = 0, \quad \text{for } k > j,$$

$$(Q_{k-1} Q_n f)(\alpha_j) \neq 0, \quad \text{for } k = j.$$

Hence

$$\lim_{n \to \infty} \det [c_{j,k}^{(n)}] = \prod_{i=1}^{v} (Q_{i-1} Q_n f)(\alpha_i) \neq 0,$$

which implies that for n sufficiently large the linear system (1) can be solved uniquely for the coefficients $a_k^{(n)}$. Furthermore since $d_j^{(n)} \to 0$ as $n \to \infty$, it follows from Cramer's rule that for each k, $1 \leq k \leq v$, we have $a_k^{(n)} \to 0$ as $n \to \infty$. Thus

$$\lim_{n \to \infty} q_n(z) = Q_v(z),$$

uniformly on each bounded subset of the plane.

Now set $r_n(z) = L_{n+v}(q_n Q_n f; z)/q_n(z) Q_v(z)$. Then by our choice of the coefficients $a_k^{(n)}$ we have that $r_n(z)$ is a rational function of type (n, v). Also from (2) it follows that for n sufficiently large $q_n(z)$ is different from zero in the $n + v + 1$ roots of unity and so $r_n(z)$ must
interpolate to \(f(z) \) in these points. It is easy to see that \(r_{\nu}(z) \) is uniquely determined by its interpolation property. From Fejér's theorem and (2) we have \(r_{\nu}(z) \to f(z) \) as \(n \to \infty \) uniformly on any closed subset of \(D' \).

Finally note that \(r_{\nu}(z) \) has \(\nu \) formal poles, namely the zeros of \(q_{\nu}(z) \), and as \(n \to \infty \) these poles approach respectively the \(\nu \) poles of \(f(z) \) in \(D \). Since

\[
\lim_{n \to \infty} L_{n+1}(p_{n}, f; z)/Q_{n}(z) = Q_{s}(z)f(z),
\]

uniformly for \(z \) in a neighborhood of each \(\alpha_j \), it follows that for \(n \) sufficiently large no zero of the polynomial \(L_{n+1}(p_{n}, f; z)/Q_{n}(z) \) is a zero of \(q_{\nu}(z) \). Thus the \(\nu \) formal poles of \(r_{\nu}(z) \) are actual poles. This completes the proof of Theorem 1.

Walsh and Sharma [4] have shown that for any function \(g(z) \) analytic in \(|z| < 1 \) and continuous on \(|z| \leq 1 \), the sequence \(L_n(g; z) \) converges to \(g(z) \) on \(|z| = 1 \) in the mean of second order. Applying this result to each of the sequences \(\{L_{n+1}(Q_{n-1}, f; z)\} \), \(1 \leq k \leq \nu + 1 \), there follows from (2)

Theorem 2. The sequence \(r_{\nu}(z) \) of Theorem 1 converges to \(f(z) \) in the mean of second order on \(|z| = 1 \).

Theorems 1 and 2 are another illustration of the close analogy between approximation in the sense of least squares on \(|z| = 1 \) and interpolation in the roots of unity; compare [3, §§7.10, 9.1, 11.6], [4].

References

November 10, 1971. The research of the authors was supported, in part, by NSF Grant GF-19275 and USAF Grant 69-1690 respectively.

University of South Florida

and

University of Maryland
Pacific Journal of Mathematics
Vol. 45, No. 2 October, 1973

Kenneth Paul Baclawski and Kenneth Kapp, *Induced topologies for quasigroups and loops* .. 393
D. G. Bourgin, *Fixed point and min – max theorems* 403
J. L. Brenner, *Zolotarev’s theorem on the Legendre symbol* 413
Joseph Atkins Childress, Jr., *Restricting isotopies of spheres* 415
John Edward Coury, *Some results on lacunary Walsh series* 419
James B. Derr and N. P. Mukherjee, *Generalized Sylow tower groups. II* .. 427
Paul Frazier Duvall, Jr., Peter Fletcher and Robert Allen McCoy, *Isotopy Galois spaces* ... 435
Mary Rodriguez Embry, *Strictly cyclic operator algebras on a Banach space* . 443
Abi (Abiadbollah) Fattahi, *On generalizations of Sylow tower groups* 453
Burton I. Fein and Murray M. Schacher, *Maximal subfields of tensor products* . 479
Ervin Fried and J. Sichler, *Homomorphisms of commutative rings with unit element* ... 485
Kenneth R. Goodearl, *Essential products of nonsingular rings* 493
George Grätzer, Bjarni Jónsson and H. Lakser, *The amalgamation property in equational classes of modular lattices* 507
H. Groemer, *On some mean values associated with a randomly selected simplex in a convex set* .. 525
Marcel Herzog, *Central 2-Sylow intersections* 535
Joel Saul Hillel, *On the number of type-k translation-invariant groups* 539
Ronald Brian Kirk, *A note on the Mackey topology for (C^b(X)^*, C^b(X))* . 543
J. W. Lea, *The peripherality of irreducible elements of lattice* 555
John Stewart Locker, *Self-adjointness for multi-point differential operators* .. 561
Robert Patrick Martineau, *Splitting of group representations* 571
Robert Massagli, *On a new radical in a topological ring* 577
Fred Richman, *The constructive theory of countable abelian p-groups* 621
Edward Barry Saff and J. L. Walsh, *On the convergence of rational functions which interpolate in the roots of unity* 639
Harold Eugene Schlais, *Non-aposyndesis and non-hereditary decomposability* ... 643
Mark Lawrence Teply, *A class of divisible modules* 653
Edward Joseph Tully, Jr., *R-commutative semigroups in which each homomorphism is uniquely determined by its kernel* 669
Garth William Warner, Jr., *Zeta functions on the real general linear group* 681
Keith Yale, *Cocycles with range {±1}* .. 693
Chi-Lin Yen, *On the rest points of a nonlinear nonexpansive semigroup* 699