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A CLASS OF DIVISIBLE MODULES

Mark L. TEPLY

The _-divisible R-modules are defined in terms of a
hereditary torsion theory of modules over an associative ring
R with identity element. In the special case where .7 is
the usual torsion class of modules over a commutative in-
tegral domain, the class of _Z-divisible modules is precisely
the class of divisible modules 1/ such that every nonzero
homomorphic image of M has a nonzero h-divisible submodule.
In general, if .7~ is a stable hereditary torsion class, the
class of o -divisible modules satisfies many of the traditional
properties of divisible modules over a commutative integral
domain. This is especially true when .7 is Goldie’s torsion
class &. For suitable &, the splitting of all < ~divisible
modules is equivalent to h.d.Q. <1, where Q. is the ring
of quotients naturally associated with <. Generalizations of
Dedekind domains are studied in terms of < -divisibility.

1. Notation, terminology, and preliminary results, In this
paper, all rings R are associative rings with identity element, and
all modules are unitary left R-modules. . # denotes the category
of all left R-modules. E(M) denotes the injective envelope of M€ ,_#.
In homological expressions, the “R” will be omitted for convenience
in printing (e.g. Extk = Ext' and h.d. @ = h.d. Q).

Following S.E. Dickson [4], we call a nonempty subclass & of
o’ a torsion class if 7~ is closed under factors, extensions, and
arbitrary direct sums. .7 is called hereditary if it is closed under
submodules. Modules in .7~ are called torsion. Every torsion class
.7 determines in every A€ ,_# a unique maximal torsion submodule
7 (A). F7(A)is called the torsion submodule of A, and .o (4/.9 (4))=0.
Modules in &# ={Aec, #| 7 (A) =0} are called torsionfree, and
the torsionfree class & is closed under submodules, extensions, and
direct products. .7 is hereditary if and only if & is closed under
injective envelopes.

Throughout this paper, 7 will denote a hereditary torsion class
and. 7 will denote the torsionfree class corresponding to .7, hence
(.7, &) is a hereditary torsion theory [4], [10], and [17]. Each such
(7, %) is uniquely associated with a topologizing and idempotent
filter F(77) ={I|I< R and R/Ie€ .7} of left ideals of R.

In [5] the right derived functors for a hereditary torsion class
.7~ are examined. These derived functors are given by

R.(A) = 7 (4), R\ (4) = .7 (E(4)/4) / f(E(j)) + A
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and R (A) = R*-Y(E(A)/A) for n=2. If Ais injective, then R%.(4) =0
for n=1. If Ae., then R.(4) = (7 E(A)/A). A module M is
called .F=-injective ([8], [9], and [15]) if Ext' (T, M) = 0 for all Te 7.
(Note: in [14] F-injective modules are called F'(.7)-divisible.) This
happens exactly when 7 (E(M)/M) =0 (see [8]). Hence a module
Ae & is Z-injective if and only if R.-(4) = 0. If

00— A—B—(C—0

is any short exact sequence, then so is the induced sequence 0—.7(4)—
7 (B) — .7 (C) — R-(4) — R(B) — R (C) — RS (4) — - -,

A torsion class 7 is called stable if .7 is closed under injective
envelopes. R.L(T) =0 for all Te o; and if 7 is stable, then
R2(T) =0 for all Te.7 and for all » > 1. This and the long exact
sequence in the preceding paragraph imply that if 7 is stable and
Be . #, then R*(B) = 0 if and only if R%(B/.7 (B)) = 0.

The submodule E.(M) of E(M) is the (unique) largest module
satisfying M & E (M) & E(M) and E(M)/Me.7. We call E (M)
the F-injective envelope of M. FE (M) exists [14] and is Z=injective.
If Re. s, then we will use Q. to denote E.(R). Q. has a ring
structure [8] and has received attention in a large number of papers
(e-g-[7], [8], [9], and [15]).

A module M is said to split if 77 (M) is a direct summand of M.

We now state a lemma giving some properties of Z-injective

modules.

LEmMMA 1.1. (1) 7 s stable if and only if every F-injective
modules splits.

(2) A direct summand of a F-injective module is .T-injective.

(8) If A is a F-injective module and if 6: A— B is an epi-
morphism, then 07(7 (B)) = {xe A|60(x) e 7 (B)} 1s F-injective.

(4) If 7 is stable, then every F-injective module in 7 1is
injective.

Proof. (1) If o isstableand Ais.7-injective, then F(A)/Aec 7
so 7 (E(A)) = A. By [2, Prop. 2.1], E(A) = 7 (E(A)) @ F for some
Fe 7. Hence A= 7 (E(A)PD(F N A). Since 7 (E(4A)) = 7 (4) in
this case, then A splits.

The converse is immediate from [2, Prop. 2.1].

(2) This is well-known and straight forward to prove.

(3) Note that

BONTB) - A g4 _ B
0T B) ~0(Z(B) 667 (B) 7B
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So by the definition of _F-injective envelope, E_ (077 (B))) =
077 (B)).

(4) Let Te. 7 be Z-injective; so E(T)e 9 and E(T)/Te.#.
Since .7 is closed under homomorphic images, E(T)/Te 7 N &Z = {0};
thus E(T) = T.

We now turn our attention to an important special torsion theory.
The class & of Goldie torsion modules is the smallest class contain-
ing all isomorphic copies of all factor modules A/B, where B is an
essential submodule of A (see [1], [2], [16], and [17]). The correspond-
ing Goldie torsionfree class .4~ is exactly the class of nonsingular
modules. < is hereditary and stable; if B e _#; then & is precisely
the class of singular modules. So #f R 4s a commutative integral
domain, then < and A4~ coineide with the usual torsion and torsion-
free classes, respectively. This makes (27, _77) a “natural” torsion
theory to consider when one is trying to generalize the usual results
about torsion modules over an integral domain. Moreover, the -
injective modules are just the injective modules; and if R < _#] then
Q. = E(R) and the filter F(%) is the set of essential left ideals of R.

2. “-divisible modules. Historically the class of divisible
modules has been very useful in studying modules over a commuta-
tive integral domain. Frequently subclasses of the class of divisible
modules have also yielded interesting results (e.g. see [11] and [12]).
One such subclass studied by Matlis is the class of hA-divistble modules,
i.e., those modules which are homomorphic images of injective modules.
A class related to the h-divisible modules is the class of divisible
modules M such that every nonzero homomorphic image of M has a
nonzero h-divisible submodule. For reasons indicated later, we refer
to this latter class as the <'-divisible modules. We shall show that
not only does the class of «<-divisible modules satisfy many interest-
ing properties but also it allows us to “smooth out” some of Matlis’
results. For example, Matlis proves [11, Cor. 2.6] that every divisible
module splits if and only if (1) h.d. @ <1 (where @ is the quotient
field of R) and (2) T = Ext' (Q/R, T) for every torsion divisible module
T with 0 as its only A-divisible submodule. We remove condition (2)
by only considering < -divisible modules: every %-divisible module
splits if and only if h.d. @ =1 (see Corollary 4.6).

However, we will not limit our investigation to modules over
a commutative integral domain. We are able to state our entire
theory in terms of hereditary torsion theories (7, &) of modules
over an associative ring R with identity element.

To do this, we begin by defining subclasses &, of ,_# for each
ordinal number «.



656 MARK L. TEPLY

& ={Me | Mis a homomorphic image of a direct sum of
Z-injective modules}. If « is not a limit ordinal, then &, =
{Me . #|3IN<S M such that Ne &,_, and M/Nec &;}. If ais a limit
ordinal, then &, = (M€, # | M = U ;<.lN; Where N; € &, for g8 < a}.
This transfinite definition is similar to the construction of a Loewy
series [6]. Clearly €, & &, for B < a. It is straight forward to
show that each &, is closed under homomorphic images and direct
sums.

If R is a commutative integral domain and if the torsion class
is taken to be ¥, it follows that each &, is a subclass of the (usual)
class of divisible modules. Also, over a commutative integral domain,
any divisible module in _#" is injective.

These two facts, plus the fact that each <&, depends on 7,
motivates the terminology, “ Z-divisible module”, for any hereditary
torsion theory (.7, &) over any ring.

DEFINITION. A module M is called Z-divisible if and only if (i)
M| (M) is Z-injective and (ii) .7 (M)e &, for some ordinal «.
.7 will denote the class of all 7-divisible modules.

ExampLE 2.1. If R is a commutative integral domain, then
a module M is Z-divisible if and only if (a) M is divisible and (b)
every nonzero homomorphic image of M has a nonzero h-divisible
submodule.

Let Me &r%. From the construction of the classes <&,, the
closure properties of divisible modules, and the definition of Z-divisi-
ble, it follows that M is divisible. Let §: M — X be an epimorphism.
If ker 6 does not contain < (M), then it follows from (ii) that (& (M) +
ker 0)/ker 6 contains an h-divisible submodule. If ker§ 2 < (M), then
X is a homomorphic image of M/< (M), and hence X is h-divisible
by ().

Conversely, let M satisfy (a) and (b). Since M/< (M) is torsionfree
and divisible, then M/< (M) is injective by [3, VII, Prop. 1.3]; so (i)
holds.

Since any nonzero <-torsionfree injective module is a direct sum
of copies of the quotient field @, then M contains a maximal <-
torsionfree injective module B (possibly B=0). Set M= A B.
By (b) A contains an h-divisible submodule H,. From [11, Theorem 1.1]
and [3, VIIL. Prop. 1.3), it follows that H, = < (H) P F with Fe_¢"
injective. By the definition of B, FF = 0. Hence H, & Z(A) = < (M).
Using similar reasoning on A/H,, we can find H, & A such that H,/H,
is an h-divisible submodule of < (A/H,) = & (A)/H,. Thus H,e &N <.
If B is a limit ordinal and H, ¢ &, N & has been defined for all v < g,
define H, = U,;H,; then H,e & N . Proceeding by transfinite
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induction, the reader can now easily show that there exists H,<c %,
such that H, = £ (4) = < (M); so (ii) holds.

ExaMPLE 2.2. The homomorphic image of a F-injective module
need not bhe . -divisible.

Let K be a field, let R = Kz, y] (commutative), and let M =
(x, y). Define

F(oy) ={I< R|M"»< I for some n} .

Then [15, p. 40, Ex. 3] and [8, Theorem 4.5] show that there exists
a & ,-injective module F e .7, with a homomorphic image E/E ¢ &
such that E/E’ is not 9 -injective. Thus KE/E’ is not .9 ,-divisible.

For later use, we note that since R is a commutative Noetherian
ring, then &7, is stable by [15, Prop. 5.12].

Our first result shows that the class of . =divisible modules
satisfiles some traditional properties [3, p. 128] of modules over a
commutative integral domain.

ProrosiTION 2.3. (1) If 7 1is stable, then every injective
medule is 7 -divisible.

(2) If &7 is stable, then every & ~injective module is .7 -divisible.

(3) FEwery T-injective module in & 1is 7 -divisible.

(4) Ewvery o -divisible module in S 1is T-imjective.

Proof. (1) and (2). Since every injective module is .Z-injective,
it is sufficient to show that every .7 -injective module A is .9 -divisible.
By Lemma 1.1 (1), A splits, and hence .9 (4) and A/ (A) are both
Z-injective by Lemma 1.1 (2). Thus A is .7 -divisible.

(3) and (4) follow from the definition of a .~ -divisible module.
The next three propositions investigate the closure properties of
the class &>~ of .~ ~divisible modules.

PROPOSITION 2.4. If & 1s stable, then the following statements
are true.

(1) =297 1is closed under injective envelopes.

(2) 2 is closed under F-injective envelopes.

(38) =29 1is closed under direct summands.

(4) = 1s closed under extensions.

(5) v s closed under finite direct swms.

Proof. (1) follows from Proposition 2.3 (1).

(2) follows from Proposition 2.3 (2).

(3) Suppose that A = B C and that Ae 2o, Then v (B) =
w(7 (A)), where 7 is the projection map from A to B. Since 7 (4) ¢ &,
for some ordinal a and since &, is closed under homomorphic images,
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then 77 (B) e &, also. Since Ae 2.7, then A/ 7 (A) is.7-injective.
Since A/ (A) = (B/.77(B)) @ (C/.7 (C)), then B/.7(B) is .7-injective
by Lemma 1.1 (2). Therefore B is .7-divisible.

(4) Let A, Be 27, and let

0 A X B 0

be an exact sequence. Since A, Be <. 7, the induced sequence
0=R.(A) — R.(X)—— R, (B) =0

is exact. Since .7 is stable, it follows from the preceding sequence
that R (X/.7 (X)) = 0. Hence X/ 7 (X) is .F-injective.

Since A, Be 2.7, then 7 (A)e %, and 7 (B)e &; for some
ordinals a and g. Since R (4) = 0, the sequence

0— 7 (4)— 7 X) 7 (B— R (A) =0

is exact. It is straight forward to verify from this sequence that
T (X) € Crupe

(5) follows from (4) by induction.

If & is a hereditary torsion class in . _#, then a ring R is said
to have 7-gl. dim R = »n if R**(M) =0 for all Me . ~. In [17]
conditions equivalent to ¥-gl. dim R = 0 are given. If & is stable,
then the next result gives a characterization of 7-gl. dim R < 1.

PropPOSITION 2.5. If .7 1is stable, then the following statements
are equivalent.

(1) =29 1is closed under homomorphic tmages.

(2) g¢gl. dmR<1.

(8) For any.7-injective module A and any epimorphism 6: A— B
such that Be &, B 1s .7 -injective.

(4) For any F-injective module Ae. & and any epimorphism
0: A— B such that Be &, B is F-injective.

REMARKS. (i) Additional conditions equivalent to (4) are given
in [8, Theorem 4.5].

(ii) The equivalence of (2) and (8) is due to C. Megibben, who
communicated this equivalence to the author in a personal letter
(Jan., 1971). The author wishes to thank Professor Megibben for
sending him the result. Moreover, the proof of the equivalence of
(2) and (3) does not require that .7~ be stable.

(iili) Theinteresting case in Proposition 2.5 is when .7 -gl. dim R=1.
For if Re # and 7-gl. dim R = 0, then by [17, Theorem 3.1 (3)]
every module in , 2 is also in & .

(iv) In Example 2.2, 7 ,-gl. dim R >1, and .77 is stable; so not
every hereditary torsion theory satisfies Proposition 2.5.



A CLASS OF DIVISIBLE MODULES 659

Proof of Proposition 2.5. (1)=(2). It follows from the exactness
of the sequence

R (E(M)/M) — R% (M) — R:-(E(M)) = 0

that it is sufficient to show RL(E(M)/M) = 0. Since .7 is stable,
Proposition 2.3 (1) implies E(M) is .7 -divisible. Set X = E’(M )/ M. By
1), X/o (X)e g is v -divisible; hence X/ 7 (X) is .Z-injective by
Proposition 2.3 (4) Thus R.L(X/o7 (X)) =0, and -consequently
R (E(M)/M) = R* (X) = 0 as desired.

(2) = (8). Let A be a Z-injective module, let Be .7, and let
0: A — B be an epimorphism. By (2) and the S -injectivity of A, the
sequence

0= R (4) — R* (B) — R (ker 6) = 0

is exact. Thus R' (B) = 0; so Be & is Z-injective.

(8)=(4) is trivial.

(4)=(1). Let De =77, and let 6: D — M be an epimorphism.
Now ¢ naturally induces an epimorphism

0: D] (D) — M/6(.7 (D)) .
Since D/~ (D) is .~ -injective, then
(M6(o (DIW(.F(M)|6(o (D)) = M| (M) e .7

is also “~injective by (4).

From the definition of .7-divisible, it follows that 6(.7 (D)) ¢ &,
for some ordinal a. By Lemma 1.1 (3), 67(.9 (M/0(.7(D)))) is .7~
injective. Thus

(D) (D)) = .~ (M)o(7" (D) € 77,

and consequently & (M) e &yt

COROLLARY 2.6. The class =< of <-divisible modules 1s closed
under homomorphic images.

Proof. This follows from Proposition 2.5 and [1, p. 197].

We shall say that the filter F(97) is . -noetherian if the follow-
ing property holds: if I, c I, I, ---is a countable ascending chain of
left ideals whose union is in F(9 ), then I, ¢ F(.9") for some n. The
reader is directed to [8] and [15] for an extensive discussion of the
.7 -noetherian property. Our next proposition adds another equivalent
condition to the lists given in [8, Theorem 4.4] and [15, Prop. 12.1].
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PROPOSITION 2.7. 2.7 1is closed under direct sums if and only
of F(7) is . F-noetherian.

Proof. Let .o be anindex set, and let 4,€ 2.9 for each ac.o7.
Since T (B Diacr Aa) = B Diacr 7 (AL), it follows that 7 (B Sl . A €
Zur Where ft = sup{B.]|.7 (4.) € &;,}. Hence 2.7 is closed under direct
sums if and only if (B Xiec . 4)/T (D Dac v A =D Xae . (Ao T (AL)
is Z-injective. But the latter condition holds if and only if any direct
sum of _Z-injective modules in & is Z-injective. So the result
follows from [8, Theorem 4.4].

COROLLARY 2.8. 2% 1is closed under direct sums if and only if
F(Z) has a cofinal subset of finitely gemerated left ideals. In par-
ticular, if R has a semi-simple maximal left quotient ring, then
DE s closed under direct sums.

REMARK. Corollary 2.8 adds another condition to the list given
in [16, Theorem 2.1].

COROLLARY 2.9. If F(<) has a cofinal subset of finitely generated
left ideals, them every module A has a (mecessarily unique) largest
submodule 2= (A) in 2Z. In particular, if B has a semi-simple
maximal left quotient ring, then every module A has a largest sub-
module < (A) in <.

Proof. This follows from Proposition 2.4 (4), Corollary 2.6, Corol-
lary 2.8, and [4, Theorem 2.3].

3. Analogs of the Dedekind domain case. A commutative in-
tegral domain D is called Dedekind if any one of the following three
equivalent properties hold: (a) every ideal of D is projective; (b) every
divisible module is injective; and (c) the homomorphic image of an
injective module is injective. In this section, we look at the analogs
of these conditions in terms of hereditary torsion theories (7, %)
over more general rings: (a) every left ideal in F(77) is projective;
(b) every . 7-divisible module is .Z-injective; and (¢) the homomorphic
image of a Z-injective module is .F-injective. Our goal is to obtain
characterizations of these conditions in terms of the class 2.9~ of
7-divisible modules.

We start our investigation by considering the following condition:

(*) h.d. E_-(F) £ 1 for all free modules F'e . # .

Clearly any torsion theory over a left hereditary ring satisfies (*).
In the commutative integral domain case, Matlis [11] and [12] considered
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rings for which h.d. @ =<1, where @ is the quotient field of the
domain. Since @ = @., the following result shows that (*) is a
“natural” generalization of the condition, “h.d. Q < 1.”

ProrosiTioN 8.1. Let Re &, and let F(97) be F-noetherian.
Then (*) holds if and only if h.d. @ - < 1.

Proof. The “only if” part is trivial since Q - = E -(R).

Let .o~ be an index set, let R = R for each aec.o”, and let
F=@>.  R® Since F(9) is .Z-noetherian, then E_(F) =
B>.. . QY, where Q=@ - for each ae.o% Soif h.d. @ -1, then

Ext* (B (F), ) = Ext* (P Dee.. QY, )=, Ext(Q¥, —)=0.
Hence h.d. F (F) < 1.

LEMMA 3.2. If every homomorphic image of a .F-injective module
18 G -imjective, then (*) holds.

Proof. Let A be a F-injective module, let F' be a free module,
and let L = E -(F')/F e 9. By the hypothesis, the sequence
0 = Ext' (L, E(4)/A) — Ext* (L, A) — Ext* (L, E(4)) = 0

is exact. Hence Ext*(L, A)=0.
Now let Me , 7, and set A = E (M). By the hypothesis and
the preceding paragraph, the sequence

0 = Ext' (L, A/M) — Ext* (L, M) ——> Ext¥(L, 4) = 0

is exact. Hence Ext’(L, M) = 0. Since F is a free module, the
sequence

0 = Ext* (L, M) —> Ext* (E_(F), M) —> Ext* (F, M) = 0

is exact. Thus Ext*(E_(F), M) =0 for all Mec ,_«, and hence (*)
holds.

Lemma 3.3. If (*) holds, them the following statements are
equivalent.

(1) ExtNE(F)/F, H) = 0 for all free modules F.

(2) Every homomorphism from a free module F into H can be
extended to a homomorphism from E_(F) into H.

(3) H is a homomorphic image of a 7 -injective module.

Proof. (1)=(2) follows from the exact sequence

Hom (E . (F), H) —— Hom (F, H) — Ext' (B (F)/F, H).
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(2)=(38)is trivial since every module is a homomorphic image of
a free module.

(8)=1(1). Let A be a .F-injective module, and let 6: 4 — H
be an epimorphism. It follows from (*) that h.d. E_(F)/F <1 for
any free module F. TUsing this fact, we have the exact sequence

Ext' (B (F)/F, A) — Ext' (E-(F)/F, H)
— Ext¥E - (F)/F,ker§) = 0.

Since A is “-injective, the left end of this sequence is also 0, and
hence (1) follows from the exactness of the sequence.

REMARK. Lemma 3.3 is a generalization of [11, Prop. 2.1] (see
also [13, Prop. 3.1]). If Re.s and F(9 ) is .7-noetherian, then
condition (2) in Lemma 3.3 can be replaced by the following condition:
every homomorphism from R into H can be extended to a homomor-

phism from Q. into H.
The next lemma gives us conditions which are sufficient to insure

that every .o -divisible module is a homomorphic image of a . Z-injective
module.

LEMMA 3.4. If Re &, if F(Z7) is F-noetherian, and if (*)
holds, then every 7-divisible module is a homomorphic image of a
T -injective module.

Proof. Let De 2.7; so D/ (D) is “-injective. Temporarily
assume that .7 (D) is a homomorphic image of a .Z-injective module.
Then by Lemma 3.3, the sequence

0 = Ext' (E_(F)/F, 7 (D)) — Ext' (E_-(F)/F, D)
— Ext'(E_(F)/F, D] (D)) = 0

is exact for every free module F. Hence Ext' (¥ _(F)/F, D) = 0 by
exactness. Thus Lemma 3.8 implies D is a homomorphic image of
a . Z-injective module. So in order to prove the theorem, it is suf-
ficient to prove that & (D) is a homomorphic image of a Z-injective
module.

Since De .9, then 7 (D)e &, for some ordinal a. Let
{=,|Be.<Z} be the set of submodules of (<) such that each D;
is a homomorphic image of a direct sum of .Z~-injective modules. It
is easy to see that there exists v e .<# such that D, = 3;.,D;. Now
each Z<injective module is a homomorphic image of E_-(F') for some
free module F. Since F(97)is a .7-noetherian, then by [8, Theorem
4.4] each E_.(F) is a direct sum of copies of @ -, and any direct
sum of copies of Q. is F-injective. Hence D, is a homomorphic
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image of a .“-injective module. To complete the proof, we wish to
show D, = .7 (D).

If D, = < (D)e %,, then there exists a F-injective module A4
such that Hom (4, .9 (D)/D,) = 0. Let ¢: A— o (D)/D, be a nonzero
homomorphism, and let im ¢ = B/D,, where B< . (D). By Lemma
3.3, the sequence

0 = Ext' (E_(F)/F, D,) —> Ext' (E_(F)/F, B)
— Ext' (E (F)/F, B/D,) = 0

is exact. Hence Ext'(E -(F')/F, B) = 0; so Bis a homomorphic image
of a “Z-injective module by Lemma 3.3. Hence there exists o ¢ .c%
such that B= D, € Y. D; = D,. But this contradicts our choice
of B; so D, = & (D) as desired.

ProrosiTioN 3.5. Suppose that Re.# and that F(9) is .7~
noetherian. If every homomorphic image of a F-injective module is
T-imjective, then every homomorphic image of a .7-divisible module
18 T -injective.

Proof. By Lemma 3.2 and the hypothesis, (*) holds. Since
F(97) is “-noetherian, the Lemma 3.4 implies every .Z-divisible is
a homomorphic image of a Z-injective module. Consequently, every
homomorphic image of a .Z-divisible module is also a homomorphic
image of a “-injective module; so the result follows from the hypo-

thesis.

PROPOSITION 3.6. Suppose that 7 1is stable. If every homomor-
phic image of a F-divisible module 1s F-injective, then every homo-
morphic image of a F-injective module 1s F-injective.

Proof. Since .7 is stable, Proposition 2.1 (2) implies that every
Z-injective module is .F-divisible; so the result now follows from
the hypothesis.

Collecting our previous results, we obtain:

THEOREM 3.7 Suppose that .7 is stable and that F(5) is -
noetherian. If Re &, then the following statements are equivalent.

(1) Ewvery homomorphic image of a F-divisible module is .7-
wnjective.

(2) Ewvery homomorphic image of a .F-injective module is .-
injective.

(3) Ewvery left ideal in F(F7) is projective.

Proof. (1)=(2) is immediate from Proposition 3.6; (2)= (1)
is immediate from Proposition 8.5; and (2) = (3) is [9, Prop. 3.3].
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COROLLARY 3.8. Suppose that R has a semi-simple left maximal
quotient ring. Then every homomorphic image of a &-divisible module
1s injective if and only if R is hereditary.

As a special case of Corollary 3.8, we obtain the following
characterization of a Dedekind domain.

COROLLARY 3.9. Let R be a commutative integral domain. Then
every homomorphic tmage of a Z-divisible module is ingective if and
only if R is a Dedekind domain.

REMARKS. From Corollary 3.9 we see that if R is a Dedekind
domain, then every Z-divisible module is injective, and hence every
divisible module is Z-divisible. However, the classes of divisible
and <-divisible modules may coincide without R being a Dedekind
domain. In particular, if R is a commutative integral domain with
quotient field @ that is a countably generated R-module, then every
divisible module is “-divisible by [11, Theorem 1.3] and Corollary 2.6.

THEOREM 3.10. If 7 1is stable, them the following statements
are equivalent.

(1) A module is T-divisible if and only if it is T -injective.

(2) Every 7-divisible module is F~injective.

(38) Ewvery 7-divisible module in 7~ 1is injective.
Moreover, each of the above three statements implies that the following
statements are true.

(a) F(77) satisfies the ascending chain condition.

(b) injdimM <1 whenever EM)Me 7; 1in particular,
injdimT <1 for all Te 7.

Proof. (1)=(2) is trivial.

(2)=(3). Let Te 9 Nn=27. By (2), T is F-injective. Since
.7 is stable, Lemma 1.1 (4) implies T is injective.

(3)=(1). Since 7 is stable, any . F-injective module is 7-divisi-
ble by Proposition 2.3 (2). So we need to show that any .7-divisible
module is . 7=injective. Let De &775 then D/ o (D) is .Z-injective.
Since De 217, then also 7 (D)e 2.7, so .7 (D) is injective by (3).
Therefore D = 7 (D) B (D/.77 (D)) is . F-injective.

(8)=1(a). Let I, =&, =I,< -.-be an ascending chain with
each I,€ F( 7). Since .7 is stable, each E(R/I,)e.7, and hence
@ > E(R/I,)e. 7. Now any direct sum of injective modules in .7~
is 7-divisible and hence injective by (8). Therefore @ >i;.. E(R/I,)
is injective. We now can complete the proof of (a) by a standard
argument. Let I = Ui, I,, and define 6: I — @ >\, E(R/I,) via © —
(x + I,) for all x€I. By injectivity, 6 extends to a map from R to
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@ >, E(R/I,). Since R has an identity element, it follows that
I =1, for some integer m.

(8)Y=(b). If E(M)/Me .7, then E(M)/M is injective by (3).
So the sequence

0 = Ext' (_, E(M)/M) —Ext* (_, M) - Ext*(_, E(M)) = 0 .

is exact, and hence Ext*(_, M) = 0. Therefore, injdim M < 1.

COROLLARY 3.11. The following statements are equivalent.

(1) A module is Z-divisible if and only if it is injective.

(2) Every Z-divisible module is injective.

(3) Every Z-divisible module in € is injective.

(4) F(=&) satisfies the ascending chain condition, and [. gl.
dim R < 1.

Proof. (1)=(2)=(38)=(4) is immediate from Theorem 3.10.

(4)=(8). Let Gez N =z2%. Let {A.|ae.o”} be the set of
submodules of G which are homomorphic images of injective modules.
Set A =3,.. 4, If 0, E,— A, is an epimorphism of an injective
module FE,, then by (4) A, is injective. We wish to show that
E=@>.. A, is injective.

To see E is injective, it is sufficient to show that, for each es-
sential left ideal I of R, any homomorphism ¢: I — E can be extended
to a homomorphism ¢’: R— E. Since Fec <&, then I/kerpec <; so
since I € F(%), it follows that ker @ € F(Z’) also. Hence R/ker ¢ has
a.c.c. on submodules by (4). But then I/ker ¢ is finitely generated,
and hence im 2 S @ D.c.» A,, Where <& is a finite subset of .4
Since a direct sum of finitely many injective modules is injective,
then ® can be extended to @ R— @ Yer A & E.

Now E is injective; so A is also injective by (4). Hence G= AP X
for some X & G. Since Xe & is £-divisible by Proposition 2.4 (3),
then X = 0 by the construction of A and the definition of Z-divisible.
Hence G = A is injective.

An immediate consequence of Corollary 3.11 is the following char-
acterization of a Dedekind domain.

COROLLARY 3.12. Let R be a commutative integral domain. Every
C-divisible module is injective if and only if R is a Dedekind domain.

4. The splitting of Z-divisible modules and h.d. Q.- <1, In
this section we show that, for a wide class of torsion theories with
Re &, h.d. Q.- <1 if and only if every .7-divisible module splits.

We start by considering the condition:

(I) If F is a free module and A is .Z-injective, then
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Ext¥(E.(F), 4) = 0.

For the Goldie torsion theory, the class of injective modules
coincides with the class of Z-injective modules; so (I) always holds
for the Goldie torsion theory. The first result of this section relates
I) to @.- when Re &#.

ProrosiTioN 4.1. If Re & and iof F(9) is F-noetherian, then
() holds if and only if Ext*(Q.-, A) = 0 for all F-injective modules A.

Proof. Since Q_- = E_(R), the “only if” part is trivial. Since
F(77) is F-noetherian, F (F) = @ D @ - for any free module
F Q- = Q. for all e . o). Soif Ext*(Q.,4) = 0 for all F~-injec-
tive modules A, then

Ext’(E-(F), A) = Ext? (@ e Q- A) = I, ., Ext* (@, 4)=0.

The following result generalizes [11, Theorem 1.2] (see also
[13, Prop. 2.2)).

LEMMA 4.2. Assume that (I) holds and that Re . Suppose that
any .7-divisible module D splits whenever 7 (D) is a homomorphic
wmage of a F-injective module. Then (*) holds; i.e., hd. E-(F)=<1
for all free modules Fe ,_#.

Proof. Let Ae . # and let F be a free module. Then consider
the exact sequence

0— E,(A)JA—-5D—>E (F)—>0.

Since .7 is closed under homomorphic images and since F_(F)e &,
it follows that im @ = 7 (D). Since 7 (D)= E (A)/Aand E_(F)e 7,
then D is Z-divisible. By hypothesis .7 (D) is a direct summand of
D. But then the above sequence must split because im « = & (D);
thus Ext' (E -(E), E -(A)/A) = 0. So by (I), the sequence

0 = Ext' (E(F), E-(4)/A) — Ext* (E.(F), 4)
—— Ext*(E - (F), E.-(A)) =0

is exact. From the exactness it follows that Ext® (E-(F), A) = 0, and
hence h.d. F (F) < 1.

Next we need the following condition:
(II) A _7-divisible module splits if it is a homomorphic image of
a “Z-injective module.

Matlis [11, Theorem 1.1] showed that (II) holds for the usual
torsion theory over a commutative integral domain. Armendariz |2,
Theorem 2.5] extended Matlis’ result by showing that the Goldie tor-
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sion submodule of a homomorphic image of a quasi-injective module
splits off. (Armendariz’s result is for any ring.) A consequence of
Armendariz’s result is that (II) always holds for Goldie’s torsion
theory.

LeEmMMA 4.3. Assume (*) and (1) hold. Let D be a . -divisible
module, and let H be a homomorphic image of a . ~injective module
such that H< & (D). Then D splits if and only if D/H splits.

Proof. If D splits, then D = o (D)P S, where Se. . Then
D/H = (- (D)/H)&D S. Since .~ (D)/H = & (D/H), then D/H splits.

Conversely, if D/H splits, then D/H = (& (D)/H)& (G/H), where
H& GZ D. Since D is & -divisible, then G/H = (D/H)/(9 (D)/H) =
D/ o (D)e & is .~~injective. Thus (*) and Lemma 3.3 imply that
the sequence

0=Ext' (E (F)/F, H)— Ext' (E . (F)/F,G) — Ext' (E . (F)/F, G/H) =0

is exact. Hence Ext'(E (F)/F,G) =0. By Lemma 3.3, G is a
homomorphic image of a . -injective module. Since G/He & is 9~
injective, the definition of H enables us to see that G is .7 -divisible.
By (II) G splits; thus G=HP L (as H= 9 (F). Hence D =
(D) &b L, i.e., D splits.

THEOREM 4.4. Assume (I) and (II) hold. If F(9) is 7 -noe-
therian and Re 7, then the following statements are equivalent.

(1) hd. @ =1.

(2) Every .o -divistble module splits.

Proof. (1)=>(2). By Proposition 3.1, (*) holds; so by Lemma
3.4, every .7 -divisible module D is a homomorphic image of a Z-injec-
tive module. Thus & (D) is also a homomorphic image of a .F-injective
module by Lemma 1.1 (3). So it follows trivially from Lemma 4.3
that D splits.

(2) = (1) follows immediately from Lemma 4.2 and Proposition 3.1.

As an immediate consequence of Theorem 4.4, we have the fol-
lowing result.

COROLLARY 4.5. If R has a semi-simple maximal left quolient
ring, then the following statements are equivalent.

(1) hd. E(R) £ 1.

(2) FEvery <-divisible module splits.

A special case of this result is the following corollary which the
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reader may wish to compare with [11, Cor. 2.6] (see also [13, Prop.
4.2)).

COROLLARY 4.6 If R is an integral domain with quotient field

Q + R, then the following statements are equivalent.
(1) hd. Q@=1.
(2) Every Z-divisible module splits.

Finally, we note that Corollary 4.6 adds to the list given in [12,
Theorem 10.1] of conditions equivalent to h.d. @ = 1.
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