FACTORED CODIMENSION ONE CELLS IN EUCLIDEAN n-SPACE

ROBERT JAY DAVERMAN
Seebeck has proved that if the m-cell C in Euclidean n-space E^n factors k times, where $m \leq n - 2$ and $n \geq 5$, then every embedding of a compact k-dimensional polyhedron in C is tame relative to E^n. In this note we prove the analogous result for the case $m + 1 = n \geq 5$ and $n - k \geq 3$. In addition we show that if C factors 1 time, then each $(n - 3)$-dimensional polyhedron properly embedded in C can be homeomorphically approximated by polyhedra in C that are tame relative to E^n.

Following Seebeck [8] we say that an m-cell C in E^n factors k times if for some homeomorphism h of E^n onto itself and some $(m - k)$-cell B in E^{n-k}, $h(C) = B \times I^k$, where I^k denotes the k-fold product of the interval I naturally embedded in E^k and where

$$B \times I^k \subseteq E^{n-k} \times E^k = E^n$$

is the product embedding.

In another paper [6] the author has studied results comparable to Seebeck's for factored cells in E^4, but the techniques employed here differ slightly from those used in [6] and [8]. The main result generalizes work of Bryant [2], and the final section here expands on his methods to obtain a strong conclusion about tameness of all subpolyhedra in certain factored cells.

1. Definitions and Notation. For any point p in a metric space S and any positive number δ, $N_\delta(p)$ denotes the set of points in S whose distance from p is less than δ.

The symbol d^2 denotes a 2-simplex fixed throughout this paper, ∂d^2 its boundary, and $\text{Int } d^2$ its interior.

Let A denote a subset of a metric space X and p a limit point of A. We say that A is locally simply connected at p, written 1-LC at p, if for each $\epsilon > 0$ there is a $\delta > 0$ such that each map of ∂d^2 into $A \cap N_\epsilon(p)$ can be extended to a map of d^2 into $A \cap N_\epsilon(p)$. Furthermore, we say that A is uniformly locally simply connected, written 1-ULC, if for each $\epsilon > 0$ there is a $\delta > 0$ such that each map of ∂d^2 into a δ-subset of A can be extended to a map of d^2 into an ϵ-subset of A. Similarly, we say that A is locally simply connected in X at p, written 1-LC in X at p, if for each $\epsilon > 0$ there is a $\delta > 0$ such that each map of ∂d^2 into $A \cap N_\epsilon(p)$ extends to a map of d^2 into $N_\epsilon(p)$, and we say that A is uniformly locally simply connected in X (1-ULC in X) if the corresponding uniform property is satisfied.
Suppose \(f \) and \(g \) are maps of a space \(X \) into a space \(Y \) that has a metric \(\rho \). The symbol \(\rho(f, g) < \varepsilon \) means that \(\rho(f(x), g(x)) < \varepsilon \) for each \(x \) in \(X \).

A subset \(S \) of a metric space is called an \(\varepsilon \)-\textit{subset} if the diameter of \(S \), written \(\text{diam} \, S \), is less than \(\varepsilon \).

A compact 0-dimensional subset \(X \) of a cell \(C \) is said to be \textit{tame (relative to} \(C \)\textit{)} if \(X \cap \partial C \) is tame relative to \(\partial C \) and \(X \cap \text{Int} \, C \) is tame relative to \(\text{Int} \, C \). In addition, a 0-dimensional \(F \)-set \(F \) in \(C \) is said to be \textit{tame (relative to} \(C \)\textit{)} if \(F \) can be expressed as a countable union of tame (relative to \(C \)) compact subsets.

For definitions of other terms used here the reader is referred to such papers as [3, 8].

2. Tame polyhedra in factored cells. The goal of this section is to show that for any \(k \)-dimensional polyhedron \(P \) in a cell \(C \) that factors \(k \) times, \(E^n - P \) is 1-ULC. However, instead of arguing this directly, we prove first that \(E^n - C \) is 1-ULC in \(E^n - P \).

\textbf{Proposition 1.} If \(C \) is an \((n - 1)\)-cell in \(E^n \) that factors \(k \) times \((k \leq n - 3)\) and \(P \) a \(k \)-dimensional polyhedron (topologically) embedded in \(C \), then \(E^n - C \) is 1-ULC in \(E^n - P \).

\textit{Proof.} Suppose \(C = B \times I^k \subset E^{n-k} \times E^k \). Define a subset \(Z \) of \(P \) as the set of all points \(p \) of \(P \) for which there exist a neighborhood \(N_p \) of \(p \) (relative to \(P \)) and a point \(b \) in \(B \) such that \(N_p \subset \{b\} \times I^k \), and define \(Q = P - Z \). We prove first that, for each point \(c \) in \(C \), \(E^n - C \) is 1-LC in \(E^n - Q \) at \(c \).

Consider \(c \) to be of the form \((b, y)\), where \(b \in B \) and \(y \in \text{Int} \, I^k \) (the case \(y \in \partial I^k \) is similar and easier). Suppose \(N \) is a neighborhood of \((b, y)\) such that \(N \cap (B \times \partial I^k) = \emptyset \). There exist an open subset \(U \) of \(E^{n-k} \) and a contractible open subset \(V \) of \(I^k \) such that \((b, y) \in U \times V \subset N \). By the construction of \(Q \) there exists a point \(y' \in V \) such that \((b, y') \in Q \). Let \(U' \) be an open subset of \(E^{n-k} \) such that

\[b \in U' \subset U \text{ and } (U' \times \{y'\}) \cap Q = \emptyset . \]

Now we obtain an open subset \(W \) of \(E^{n-k} \) such that \(b \in W \subset U' \) and the inclusion map \(i: W \to U' \) is homotopic to a constant map.

Let \(L \) be a loop in \((W \times V) - C \). Since \(V \) is contractible to \(y' \), \(L \) is homotopic in \((W \times V) - C \) to a loop \(L' \) in \(W \times \{y'\} \). But \(L' \) is contractible in

\[U' \times \{y'\} \subset N - Q . \]

Thus, \(E^n - C \) is 1-LC in \(E^n - Q \) at \(c \).
The definition of \(Z \) implies that \(P \) is locally tame at each point of \(Z \). Hence, if \(f: \partial \Delta^2 \to E^n - Q \) is a map such that \(f(\partial \Delta^2) \subset E^n - P \), then \(f \) can be approximated arbitrarily closely by maps \(g: \partial \Delta^2 \to E^n \) such that \(g| \partial \Delta^2 = f| \partial \Delta^2 \) and \(g(\partial \Delta^2) \subset E^n - P \). Thus, \(E^n - C \) is 1-LC in \(E^n - P \) at each point \(c \) of \(C \). Since \(C \) is compact, the corresponding uniform property holds as well.

There may be some value in observing that this argument also gives the following result.

Proposition 2. Let \(B \times I^k \subset E^{n-k} \times E^k = E^n \) be an \(m \)-cell (\(m < n, \quad k \leq n-3 \)) and \(X \) a compactum in \(B \times I^k \) such that \(\dim (X \cap \{(b) \times I^2\}) < k \) for each \(b \) in \(B \). Then \(E^n - (B \times I^k) \) is 1-ULC in \(E^n - X \).

Theorem 3. If \(C \) is an \((n-1)\)-cell in \(E^n \) that factors \(k \) times (\(k \leq n-3 \)) and \(X \) is either a \(k \)-dimensional polyhedron or a \((k-1)\)-dimensional compactum in \(C \), then \(E^n - X \) is 1-ULC.

This theorem follows immediately from [1, Prop. 1] and either Proposition 1 or Proposition 2.

Corollary 4. If \(C \) is an \((n-1)\)-cell in \(E^n(n \geq 5) \) that factors \(k \) times (\(k \leq n-3 \)), then each \(k \)-dimensional polyhedron \(P \) in \(C \) is tame.

The corollary is a straightforward application of the Bryant-Seebeck characterization of tameness [3] for codimension 3 polyhedra in terms of the 1-ULC property.

3. Approximations in cells that factor 1 time. This section contains a proof of the analogue of Seebeck's Corollary 5.1 [8] for codimension one cells.

Proposition 5. If \(C \) is an \((n-1)\)-cell in \(E^n \) that factors 1 time, then there exists a tame 0-dimensional \(F \), set \(F \) in \(\text{Int} \, C \) such that, for each point \(c \) of \(\text{Int} \, C \), \(E^n - C \) is 1-LC in \((E^n - C) \cup F \) at \(c \).

Proof. Assume \(C = B \times I \subset E^{n-1} \times E^1 = E^n \). Let \(c = (b, t) \) be a point of \(\text{Int} \, C \) and \(U \) a neighborhood of \(c \) such that \(U \cap C \subset \text{Int} \, C \). We assume further that \(U \) is a product neighborhood \(U = U' \times J \), where \(U' \subset E^{n-1} \) and \(J \subset E^1 \). Corresponding to \(U \) is a neighborhood \(V \) of \(c \) such that any map \(f': \partial \Delta^2 \to V - C \) extends to a map \(f: \Delta^2 \to U \) such that \(f^{-1}(f(\Delta^2) \cap C) \) is 0-dimensional ([4, Cor. 2C, 2.1] or [5, Th. 3.2]). We can change this map \(f \) near \(C \), altering only the \(E^1 \) coordi-
nates of points in the range, so that in addition $f(d^2) \cap C \subset B \times \{t\}$. We shall obtain a map $g: \mathcal{A} \to \bigcup\{\mathcal{A}^i\}$ satisfying

1. $g|_{\partial \mathcal{A}} = f|_{\partial \mathcal{A}} = f'$,
2. $g(d^2) \cap C$ is a tame (relative to C) 0-dimensional subset of $\text{Int}\ C$.

Let ε be a positive number such that if $g: \mathcal{A} \to E^n$ and $\rho(f, g) < \varepsilon$, then $g(d^2) \subset U$.

Cover $f^{-1}(f(d^2) \cap C)$ by the interiors of a collection of small, pairwise disjoint 2-cells $D_1, D_2, \ldots, D_{k(1)}$ in \mathcal{A}. Slide the sets $f^{-1}(D_i)$ vertically to define a map $g: \mathcal{A} \to E^n$ satisfying

1. $g|_d \mathcal{A} = f|_d \mathcal{A} = f$,
2. $g(D_i) \cap C \subset B \times \{t_i\}$, where $t_i \neq t_j$ whenever $i \neq j$,
3. The D_i's must be chosen with sufficiently small diameters that each set $f^{-1}(D_i) \cap C$ is contained in the interior of a small $(n - 2)$-cell in $B \times \{t\}$. Thus,

- (En) there exist pairwise disjoint $(n - 1)$-cells $K_1, K_2, \ldots, K_{k(1)}$ in $\text{Int}\ C$, each of diameter $< \varepsilon/2$, such that $\bigcup\{K_i\} \supset g_1(d^2) \cap C$.

The remaining approximations g_1 will be so close to g, that $\bigcup\{K_i\} \supset g(g_1(d^2) \cap C)$.

Let $\varepsilon_2 = \min\{\varepsilon/4, 1/2\rho(g_1(d^2) \cap C, C - \bigcup\{K_i\})\}$. To repeat this process, cover $g_1^{-1}(g_1(d^2) \cap C)$ by the interiors of a collection of a very small, pairwise disjoint 2-cells $D_1, D_2, \ldots, D_{k(2)}$ in $\bigcup\{K_i\} \subset \text{Int}\ C$.

Slide the sets $g_1(D_i)$ vertically to define a map $g_2: \mathcal{A} \to E^n$ satisfying

1. $g_2|_d \mathcal{A} = \bigcup\{D_i\} = g_1|_d \mathcal{A} = \bigcup\{D_i\}$,
2. $\rho(g_2, g_1) < \varepsilon_2$,
3. $g_2(D_i) \cap C \subset B \times \{t_i\}$, where $t_i \neq t_j$ whenever $i \neq j$,
4. $g_2^{-1}(g_2(D_i) \cap C)$ is 0-dimensional.

The D_i's must be chosen with sufficiently small diameters that each set $g_1(D_i)$ is contained in a small $(n - 2)$-cell in $B \times \{t_i\}$. Thus,

- (En) there exist pairwise disjoint $(n - 1)$-cells $K_1, K_2, \ldots, K_{k(2)}$ in $\bigcup\{K_i\}$, each of diameter $< \varepsilon_2$, such that $\bigcup\{K_i\} \supset g_2(d^2) \cap C$.

By continuing in this manner we construct a sequence of maps $g_n: \mathcal{A} \to E^n$ satisfying analogous conditions $(A_n) - (B_n)$ and an associated sequence of collections $\{K_i\}$ of $n - 1$ cells in C satisfying an analogous condition (E_n). The restrictions of condition (B_n) guarantee that $g = \lim g_n$ is a continuous function of \mathcal{A} into U, and the restrictions of (E_n) guarantee that

$$ g(d^2) \cap C \subset \bigcap_{n=1}^{\infty} \bigcup_{i=1}^{k(n)} \text{Int}_n K_i. $$

Thus, $g(d^2) \cap C$ is a tame (relative to C) 0-dimensional subset of C [7, Lemma 2].
To prove the theorem from this fact, observe that for each $\varepsilon > 0$ there exists a countable collection $\{V_i\}$ of open sets covering $\text{Int} C$ such that any map $f' : \partial \Delta^2 \to V_i - C$ extends to a map g of Δ^2 into an ε-subset of E^n such that $g(\Delta^2) \cap C$ is a tame 0-dimensional subset of $\text{Int} C$. Since there are only countably many homotopy classes of maps of $\partial \Delta^2$ into $V_i - C$, the desired set F can be defined as the countable union of sets $g(\Delta^2) \cap C$.

Theorem 6. Suppose C is an $(n - 1)$-dimensional cell in E^n that factors 1 time, P is an $(n - 3)$-dimensional polyhedron properly embedded in C, and $\varepsilon > 0$. There exists an ε-push h of (C, P) such that $h(P)$ is tame relative to E^n.

Proof. The case $n = 4$ is trivial, and no push is needed [6]; hence, we assume $n \geq 5$. By [8, Cor. 5.1] there exists an $\varepsilon/2$ push h_i of (C, P) such that $h_i(P \cap \partial C)$ is tame. Let F denote the 0-dimensional F_σ set of Proposition 5. There exists an $\varepsilon/2$ push h_σ of $(C, h_i(P))$ such that $h_\sigma h_i(P) \cap F = \emptyset$ and $h_\sigma | \partial C = 1$. Let h denote the ε-push $h_\sigma h_i$. It follows that $E^n - C$ is 1-LC in $E^n - h(P)$ at each point of $\text{Int} C$, and in stronger form, as shown in § 2, that $E^n - h(P)$ is 1-LC at each point of $\text{Int} C$. The tameness of $h(P) \cap \partial C$ then implies that $E^n - h(P)$ is 1-LC at every point of $h(P)$. Thus, $h(P)$ is tame [3].

Corollary 7. Let S denote an $(n - 2)$ sphere in S^{n-1}, the $(n - 1)$-sphere, and Σ the suspension of S in S^n, the suspension of S^{n-1}. Then there exists a tame (relative to Σ) 0-dimensional F_σ set F in Σ such that $S^n - \Sigma$ is 1-ULC in $(S^n - \Sigma) \cup F$. Furthermore, if P is an $(n - 3)$-dimensional polyhedron in Σ and $\varepsilon > 0$, there exists an ε-push h of (Σ, P) such that $h(P)$ is tame relative to S^n.

4. Factored cells in which all lower dimensional compacta are locally nice. Let $C = B \times I^k \subset E^{n-k} \times E^k = E^n$ be an r-cell ($r < n$). Although the low dimensional polyhedra in C are nicely embedded, some $(k + 1)$-cell in C may be wild. In this section we mention a property of certain cells B that implies every $(r - 1)$-dimensional polyhedron in C is nicely embedded.

Theorem 8. Let B denote an m-cell in $E^n(m \leq n - 2)$ such that, for each $(m - 1)$-dimensional compactum $X \subset B$, $E^n - X$ is 1-ULC, and let C denote $B \times I^l$, contained in $E^n \times E^k = E^{n+k}$. Then, for each $(m + k - 1)$-dimensional compactum $Y \subset C$, $E^{n+k} - Y$ is 1-ULC.

Proof. It suffices to consider only the case $k = 1$. Let $\varepsilon > 0$ and $w \in \text{Int} I$. We shall construct an ε-push h of (E^{n-1}, Y) such that...
\((E^n \times \{w\}) - h(Y)\) is 1-ULC. Let \(V\) denote the \(\varepsilon\)-neighborhood of \(Y\), \(\{b_j\}_{\in \mathbb{N}}\) a countable dense subset of \(B\), and \(\pi\) the natural projection of \(E^{n+1} = E^n \times E^1\) onto the first factor. For any open subset \(N\) of \(E^{n+1}\) containing \((b, w) \in B \times I\) there exists a point \((b', w') \in N \cap (B \times I - Y)\). If \(N\) is a connected open set of the form \(N = W \times J\), then there exists a homeomorphism \(g\) of \(E^{n+1}\) onto \(E^{n+1}\) such that

1. \(g|E^{n+1} - N = \text{identity}\),
2. \(g((b', w')) = (b', w)\),
3. \(g(C) = C\) and
4. \(\pi g = g\).

Consequently, there exist a sequence \(\{h_i\}\) of homeomorphisms of \(E^{n+1}\) onto itself and a sequence of points \(\{b_i\}\) in \(B\) such that for \(i = 1, 2, \ldots\)

1. \(\rho(x, h_i(x)) < \varepsilon/2^i\) for all \(x\) in \(E^n\),
2. \(\rho(b_i, b'_i) < 1/i\),
3. \((b_i', w') \in h_i \circ h_{i-1} \circ \cdots \circ h_1(Y)\),
4. \(h_{i+k}(b_i', w') = (b_i', w')\) for all \(k > 0\),
5. \(h_i(C) = C\)
6. \(\pi h_i = h_i\).

Furthermore, using Condition (a) and careful epsilonics we can construct the sequence \(\{h_i\}\) so that the function \(h = \lim_{n \to \infty} h_n \circ \cdots \circ h_1\) is an \(\varepsilon\)-homeomorphism of \(E^{n+1}\) onto itself. Then Condition (6) implies that \(h\) is an \(\varepsilon\)-push of \((E^{n+1}, Y)\).

Condition (1) implies that \(\{b_i\}\) is a dense subset of \(B\), and Conditions (2) and (3) yield that \((b_i', w') \in h(Y)\) \((i = 1, 2, \ldots)\). Thus, \(h(Y) \cap (B \times \{w\})\) is nowhere dense in \(B \times \{w\}\). Consequently, \(E^n \times \{w\} - h(Y)\) is 1-ULC by hypothesis (since \(h(Y) \subset B \times I\)), and we obtain the desired conclusion by appealing to Theorem 1 of [1].

We exploit the construction of the push \(h\) a second time in proving the following:

Theorem 9. Let \(B\) denote an \((n - 1)\)-cell in \(E^n\) such that, for each \((n - 2)\)-dimensional compactum \(X \subset B, E^n - B\) is 1-ULC in \(E^n - X\), and let \(C\) denote \(B \times I\), contained in \(E^n \times E^n\). Then for each \((n + k - 2)\)-dimensional compactum \(Y \subset C, E^{n+k} - C\) is 1-ULC in \(E^{n+k} - Y\).

Proof. Simplifying as before, we consider \(k = 1\) and \(c \in C\) a point of the form \((b, w)\), where \(b \in B\) and \(w \in \text{Int} I\), and we shall show that \(E^{n+1} - C\) is 1-LC in \(E^{n+1} - Y\) at \(c\).

Let \(\varepsilon > 0\). Choose a countable dense subset \(\{b_j\}\) of \(B\). Then reapplying the techniques found in the proof of Theorem 8, we find an \((\varepsilon/6)\)-homeomorphism \(h\) of \(E^{n+1}\) onto itself and a sequence \(\{b'_j\}\) of points in \(B\) satisfying Conditions (0)-(6) stated there. Let \(U\) denote the \(\varepsilon/6\)-neighborhood of \(b\) in \(E^n\) and \(V\) the \((\varepsilon/3)\)-neighborhood of \(w\) in \(E^n\).
Int I. Then both (b, w) and $h((b, w))$ are contained in $U \times V$, and $\text{diam}(U \times V) < \varepsilon/2$. Since B is an $(n - 1)$-cell there exists a neighborhood U' of b in E^n such that $b \in U' \subset U$ and each map f of ∂A^2 into $U' - B$ can be extended to a map F of A^2 into U such that $F^{-1}(F(A^2)) \cap B$ is 0-dimensional.

In this paragraph we prove that $U' \times V$ is a neighborhood of $h(c)$ such that any loop in $(U' \times V) - C$ is contractible in an $\varepsilon/2$-subset of $E^{n+1} - h(Y)$. If $f: \partial A^2 \to (U' \times V) - C$, f is homotopic in $(U' \times V) - C$ to a map $f': \partial A^2 \to U' \times \{w\}$. Let $F: A^2 \to U \times \{w\}$ be an extension of f' such that $F^{-1}(F(A^2)) \cap (B \times \{w\})$ is 0-dimensional. Once again $h(Y) \cap (B \times \{w\})$ is nowhere dense in $B \times \{w\}$, which means that $(E^n - B) \times \{w\}$ is 1-ULC in $((E^n) \times \{w\}) - h(Y)$. Cover $F^{-1}(F(A^2)) \cap (B \times \{w\})$ by finitely many pairwise disjoint 2-cells D_1, \ldots, D_t in $\text{Int} \; A^2$ such that $F|\partial D_i$ can be extended to a map G_i of D_i into $(U \times \{w\}) - h(Y)$. By redefining F as G_i on $D_i(i = 1, \ldots, t)$ one can easily see that $f|\partial A^2: \partial A^2 \to (U \times V) - h(Y)$ is homotopic to a constant map.

Because h^{-1} is an $(\varepsilon/6)$-homeomorphism and diam $U < \varepsilon/2$, diam $h^{-1}(U \times V) < \varepsilon$. In addition, $h^{-1}(U' \times V)$ is a neighborhood of c such that any map $g: \partial A^2 \to h^{-1}(U' \times V) - C$ can be extended to a map $G: A^2 \to h^{-1}(U \times V) - Y$. This completes the proof.

COROLLARY 10. Let B denote an m-cell in $E^n(m < n)$ such that, for each $(m - 1)$-dimensional compactum $X \subset B$, $E^n - B$ is 1-ULC in $E^n - X$. Then each p-dimensional polyhedron P in $B \times I^k \subset E^n \times E^k$ ($p + 3 \leq n + k, p < m + k$) is tame.

REFERENCES

2. ———, An example of a wild $(n - 1)$-sphere in S^n in which each 2-complex is tame, Proc. Amer. Math. Soc., **36** (1972), 283-288.

Received January 5, 1972. Partially supported by NSF Grant GP-19966.

UNIVERSITY OF TENNESSEE
<table>
<thead>
<tr>
<th>Authors</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allan Francis Abrahamse</td>
<td>Uniform integrability of derivatives on σ-lattices</td>
<td>1</td>
</tr>
<tr>
<td>Ronald Alter and K. K. Kubota</td>
<td>The diophantine equation $x^2 + D = p^n$</td>
<td>11</td>
</tr>
<tr>
<td>Grahame Bennett</td>
<td>Some inclusion theorems for sequence spaces</td>
<td>17</td>
</tr>
<tr>
<td>William Cutler</td>
<td>On extending isotopies</td>
<td>31</td>
</tr>
<tr>
<td>Robert Jay Daverman</td>
<td>Factored codimension one cells in Euclidean n-space</td>
<td>37</td>
</tr>
<tr>
<td>Patrick Barry Eberlein and Barrett O’Neill</td>
<td>Visibility manifolds</td>
<td>45</td>
</tr>
<tr>
<td>M. Edelstein</td>
<td>Concerning dentability</td>
<td>111</td>
</tr>
<tr>
<td>Edward Graham Evans, Jr.</td>
<td>Krull-Schmidt and cancellation over local rings</td>
<td>115</td>
</tr>
<tr>
<td>C. D. Feustel</td>
<td>A generalization of Kneser’s conjecture</td>
<td>123</td>
</tr>
<tr>
<td>Avner Friedman</td>
<td>Uniqueness for the Cauchy problem for degenerate parabolic equations</td>
<td>131</td>
</tr>
<tr>
<td>David Golber</td>
<td>The cohomological description of a torus action</td>
<td>149</td>
</tr>
<tr>
<td>Alain Goullet de Rugy</td>
<td>Un théorème du genre “Andô-Edwards” pour les Fréchet ordonnés normaux</td>
<td>155</td>
</tr>
<tr>
<td>Louise Hay</td>
<td>The class of recursively enumerable subsets of a recursively enumerable set</td>
<td>167</td>
</tr>
<tr>
<td>John Paul Helm, Albert Ronald da Silva Meyer</td>
<td>On orders of translations and enumerations</td>
<td>185</td>
</tr>
<tr>
<td>Julien O. Hennefeld</td>
<td>A decomposition for $B(X)^*$ and unique Hahn-Banach extensions</td>
<td>197</td>
</tr>
<tr>
<td>Gordon G. Johnson</td>
<td>Moment sequences in Hilbert space</td>
<td>201</td>
</tr>
<tr>
<td>Thomas Rollin Kramer</td>
<td>A note on countably subparacompact spaces</td>
<td>209</td>
</tr>
<tr>
<td>Yves A. Lequain</td>
<td>Differential simplicity and extensions of a derivation</td>
<td>215</td>
</tr>
<tr>
<td>Peter Lorimer</td>
<td>A property of the groups $\text{Aut PU}(3, \mathbb{Q}^2)$</td>
<td>225</td>
</tr>
<tr>
<td>Yasou Matsugu</td>
<td>The Levi problem for a product manifold</td>
<td>231</td>
</tr>
<tr>
<td>John M.F. O’Connell</td>
<td>Real parts of uniform algebras</td>
<td>235</td>
</tr>
<tr>
<td>William Lindall Paschke</td>
<td>A factorable Banach algebra without bounded approximate unit</td>
<td>249</td>
</tr>
<tr>
<td>Ronald Joel Rudman</td>
<td>On the fundamental unit of a purely cubic field</td>
<td>253</td>
</tr>
<tr>
<td>Tsuan Wu Ting</td>
<td>Torsional rigidities in the elastic-plastic torsion of simply connected cylindrical bars</td>
<td>257</td>
</tr>
<tr>
<td>Philip C. Tonne</td>
<td>Matrix representations for linear transformations on analytic sequences</td>
<td>269</td>
</tr>
<tr>
<td>Jung-Hsien Tsai</td>
<td>On E-compact spaces and generalizations of perfect mappings</td>
<td>275</td>
</tr>
<tr>
<td>Alfons Van Daele</td>
<td>The upper envelope of invariant functionals majorized by an invariant weight</td>
<td>283</td>
</tr>
<tr>
<td>Giulio Varsi</td>
<td>The multidimensional content of the frustum of the simplex</td>
<td>303</td>
</tr>
</tbody>
</table>