A DECOMPOSITION FOR $B(X)^*$ AND UNIQUE HAHN-BANACH EXTENSIONS

JULIEN O. HENNEFELD
A DECOMPOSITION FOR $B(X)^*$ AND UNIQUE
HAHN-BANACH EXTENSIONS

JULIEN HENNEFELD

For a Banach space X, let $B(X)$ be the space of all bounded linear operators on X, and C the space of all compact linear operators on X. In general, the norm-preserving extension of a linear functional in the Hahn-Banach theorem is highly non-unique. The principal result of this paper is that, for $X = c_0$ or l^p with $1 < p < \infty$, each bounded linear functional on C has a unique norm-preserving to $B(X)$. This is proved by using a decomposition theorem for $B(X)^*$, which takes on a special form for $X = c_0$ or l^p with $1 < p < \infty$.

1. DEFINITION 1.1. A basis $\{e_i\}$ for a Banach space X having coefficient functionals e_i^* in X^* is called unconditional if, for each x, $\sum_{i=1}^{\infty} e_i^*(x)e_i$ converges unconditionally. The basis is called monotone if $\|U_m x\| < \|x\|$ for all $x \in X$ and positive integers m, where $U_m x = \sum_{i=1}^{m} e_i^*(x)e_i$.

PROPOSITION 1.2. If X has a monotone, unconditional basis $\{e_i\}$, then $B(X)^* = C^* + C^\perp$, where C^* is a subspace of $B(X)^*$ isometrically isometric to the space of bounded linear functionals on C, and C^\perp annihilates C. Furthermore, the associated projection from $B(X)^*$ onto C^* has unit norm.

Proof. If $T \in B(X)$, then $T(x) = \sum_{i=1}^{\infty} f_i^*(x)e_i$ for each $x \in X$, where $f_i^* \in X^*$. For each T and i, let T_i be defined by $T_i(x) = f_i^*(x)e_i$ for all x. Also, for each $F \in B(X)^*$, define $G \in B(X)^*$ by $G(T) = \sum_{i=1}^{\infty} F(T_i)$. Note that this sum converges. Otherwise, we have $\sum_{i=1}^{\infty} F(T_i) = \lim_{n \to \infty} F[\sum_{i=1}^{n} SgF(T_i) \cdot T_i] = +\infty$, and then

$$\lim_{n \to \infty} \|\sum_{i=1}^{n} SgF(T_i) \cdot T_i\| = \infty.$$

Then by using an absolutely convergent series, it is easy to construct an element $y \in X$: $\lim_{n \to \infty} \|\sum_{i=1}^{n} SgF(T_i) \cdot T_i(y)\| = \infty$. Therefore, $\sum_{i=1}^{\infty} f_i^*(y)e_i$ converges while $\sum_{i=1}^{\infty} SgF(T_i) \cdot f_i^*(y)e_i$ does not, which contradicts the fact that an unconditionally convergent series is bounded multiplier convergent. See [3], p. 19.

Note that the norm of G restricted to C is equal to the norm of G on $B(X)$, since by monotonicity $\|\sum_{i=1}^{n} T_i\| \leq \|T\|$ for each n and $T \in B(X)$. Also, F and G agree on C, because C is the closure of the set of all T for which only a finite number of the f_i^* are non-zero. Hence the projection defined by $PF = G$ has unit norm, since
\[||F||_{B(X)} \geq ||F||_\psi = ||G||_\psi = ||G||_{B(X)^*}. \]

Corollary 1.3. If \(X \) has an unconditional basis \(\{e_i\} \), then there is a bounded projection from \(B(X)^* \) onto a subspace isomorphic to \(\mathcal{C}^* \).

Proof. Renorm \(X \) so that the basis \(\{e_i\} \) is monotone. See [1], p. 73.

Theorem 2.1. Let \(X \) have an unconditional, shrinking basis \(\{e_i\} \), for which there is a function \(N \) of two real variables such that:

(i) \(N(a, b) \leq N(\alpha, \beta) \) if \(0 \leq a \leq \alpha \) and \(0 \leq b \leq \beta \);

(ii) \(N(||x||, ||y||) = ||x + y|| \) for which \(x = \sum_{i=1}^n a_i e_i \) and \(y = \sum_{i=n+1}^\infty a_i e_i \). Then for each \(F \in B(X)^* \), \(||F|| = ||G|| + ||H|| \), where \(F = G + H \) with \(G \in \mathcal{C}^* \) and \(H \in \mathcal{C}^1 \).

Proof. Note that the existence of \(N \) implies that the basis is monotone, and so we have a decomposition for \(B(X)^* \). The operators whose matrices have a finite number of nonzero entries form a dense subset of \(\mathcal{C}^* \). Hence, for \(\varepsilon > 0 \), there exists an operator \(D \) of unit norm whose image lies in the subspace \([e_1, e_2, \ldots, e_m] \), and whose kernel contains \([e_{m+1}, e_{m+2}, \ldots] \): \(||D|| < \varepsilon/3 \). Also, there exists an operator \(T \in B(X) \) of unit norm: \(||T|| > ||H|| - \varepsilon/3 \). Let \(Q_r \) be the projection onto \([e_{r+1}, e_{r+2}, \ldots] \). Define \(T^{(r)}(x) = \sum_{i=r+1}^\infty f_i(Q_r x) e_i \). Note that the matrix for \(T^{(r)} \) is simply the matrix for \(T \), with the first \(r \)-rows and \(r \)-columns replaced by zeros.

Then \(\lim_{r \to \infty} G(T^{(r)}) = 0 \). To see this, first note that the existence of \(N \) and the basis being shrinking imply that the functionals in \(\mathcal{C}^* \) with a finite number of nonzero entries form a dense subset of \(\mathcal{C}^* \). See [2], Propositions 3.1 and 3.3. Thus, for any \(\delta > 0 \), \(\exists J \in B(X)^* \), for which \(||J - G|| < \delta \) and: \(\lim_{r \to \infty} J(T^{(r)}) = 0 \). Hence \(\lim_{r \to \infty} G(T^{(r)}) = 0 \).

Then pick \(r > m: ||G(T^{(r)})|| < \varepsilon/3 \). Observe that \(||D + T^{(r)}|| = 1 \), since and \(z \in X \) can be written as \(z = x + y \) where \(x \in [e_1, \ldots, e_r] \) and \(y \in [e_{r+1}, \ldots] \). Then

\[||(D + T^{(r)})(x + y)|| = ||Dx + T^{(r)}y|| = N(||Dx||, ||T^{(r)}y||) \leq N(||x||, ||y||) = ||x, y||. \]

Using the fact that \(H \) annihilates \(\mathcal{C}^* \), we have

\[F(D + T^{(r)}) = G(D) + G(T^{(r)}) + H(T^{(r)}) > ||G|| - \frac{\varepsilon}{3} - \frac{\varepsilon}{3} + ||H|| - \frac{\varepsilon}{3} \]

\[= ||G|| + ||H|| - \varepsilon. \]

Hence \(||F|| = ||G|| + ||H||. \)
Corollary 2.2. If X is (c_0) or l^p with $1 < p < \infty$, then, for each $F \in B(X)^*$, $\|F\| = \|G\| + \|H\|$, where $F = G + H$ with $G \in \mathscr{G}$ and $H \in \mathbb{C}$.

Proof. Let $\{e_i\}$ be the standard basis. Let $N(a, b) = (\|a^p\| + \|b^p\|)^{1/p}$ for l^p. Let $N(a, b) = \max(|a|, |b|)$ for c_0.

Theorem 2.3. Each bounded linear functional on \mathscr{G} has a unique norm-preserving extension to $B(X)$ for $X = c_0$ or l^p with $1 < p < \infty$.

References

Received December 15, 1971. The author wishes to thank the referee for streamlining the proof of the basic result.

Boston College
Allan Francis Abrahamse, *Uniform integrability of derivatives on σ-lattices* ... 1
Ronald Alter and K. K. Kubota, *The diophantine equation x² + D = pⁿ* 11
Grahame Bennett, *Some inclusion theorems for sequence spaces* 17
William Cutler, *On extending isotopies* .. 31
Robert Jay Daverman, *Factored codimension one cells in Euclidean n-space* 37
Patrick Barry Eberlein and Barrett O’Neill, *Visibility manifolds* 45
M. Edelstein, *Concerning dentability* ... 111
Edward Graham Evans, Jr., *Krull-Schmidt and cancellation over local rings* 115
C. D. Feustel, *A generalization of Kneser’s conjecture* 123
Avner Friedman, *Uniqueness for the Cauchy problem for degenerate parabolic equations* ... 131
David Golber, *The cohomological description of a torus action* 149
Alain Goullet de Rugy, *Un théorème du genre “Andô-Edwards” pour les Fréchet ordonnés normaux* ... 155
Louise Hay, *The class of recursively enumerable subsets of a recursively enumerable set* .. 167
John Paul Helm, Albert Ronald da Silva Meyer and Paul Ruel Young, *On orders of translations and enumerations* ... 185
Julien O. Hennefeld, *A decomposition for B(X)* and unique Hahn-Banach extensions ... 197
Gordon G. Johnson, *Moment sequences in Hilbert space* 201
Yves A. Lequain, *Differential simplicity and extensions of a derivation* 215
Peter Lorimer, *A property of the groups Aut PU(3, q²)* 225
Yasou Matsugu, *The Levi problem for a product manifold* 231
John M.F. O’Connell, *Real parts of uniform algebras* 235
William Lindall Paschke, *A factorable Banach algebra without bounded approximate unit* ... 249
Ronald Joel Rudman, *On the fundamental unit of a purely cubic field* 253
Tsuan Wu Ting, *Torsional rigidities in the elastic-plastic torsion of simply connected cylindrical bars* .. 257
Philip C. Tonne, *Matrix representations for linear transformations on analytic sequences* .. 269
Jung-Hsien Tsai, *On E-compact spaces and generalizations of perfect mappings* ... 275
Alfons Van Daele, *The upper envelope of invariant functionals majorized by an invariant weight* ... 283
Giulio Varsi, *The multidimensional content of the frustum of the simplex* 303