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Let R be an integral domain containing the rational
numbers, K its quotient field and Ω an algebraic closure of
K; let D be a derivation on R such that R is D-simple. The
valuation rings V such that R Q V ϋ Ω on which D is
regular are determined.

Introduction* Let Rf be the complete integral closure of R in
K. Seidenberg has shown that D is regular on Rf [3]. We want
here to continue his work and determine all the valuation rings V
such that R £ V § Ω on which D is regular.

First we determine in paragraph 2 the valuation rings of K that
have property, and we show that they are in 1-1 correspondence with
the proper prime ideals of R.

Then, in paragraph 4 we show that if V is a valuation ring such
that R £ V £ β, then D is regular on F if and only if V is unramified
over K and D is regular on V Γ\ K. To do that, we have to show
first in paragraph 3 that if B is a valuation ring of Ω such that B n
iΓ is rank-1 discrete and contains the rational numbers, then its inertia
field over K can be obtained as the intersection of a formal power
series field with β.

1* Preliminaries* Let iϋ be a commutative ring with identity.
A derivation D of R is a map from R into iϋ such that D(a + 6) =
D(α) + D(δ) and J3(α&) = αZ)(6) + bD(a) for all a,beR. An ideal /
of i? is a ZMdeal if D(I) £ I; J? is D-simple if it has no ZMdeal other
than (0) and (1). If R is a Z)-simple ring of characteristic p Φ 0, R
is a primary ring [2, Theorem 1.4], hence is equal to its total quotient
ring; this case will not be of interest in our considerations.

Thus, let R be a jD-simple ring of characteristic 0, which is then
a domain containing the rational numbers [2, Corollary 1.5]; let K be
its quotient field and Ω an algebraic closure of K. The derivation D
can be uniquely extended to a derivation of Ω, which we also call D,
and if iVis any field between K and Ω, we have D(N) £ N [6, Corol-
lary 2', p. 125]. If S is a ring with quotient field iVsuch that D(S) £
S, we shall say that D is regular on S, or that (iV, S) is D-regular,
or that D can be extended to S.

We note that if D is regular on a ring S and if Λf is a multiplica-
tive system of S, then D is regular on >Ŝ . We note also that if R
is D-simple, and if S is a ring such that i? ϋ S S £?, then to say that
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216 Y. LEQUAIN

D is regular on S is equivalent to saying that S is D-simple, indeed:

PROPOSITION l . l Let R be a D-sίmple ring with quotient field
K; let Ω be an algebraic closure of K, and S a ring such that R gΞ
S g β . If D is regular on S, then S is D-simple.

Proof. It will be enough to show that if 7 is a nonzero ideal of
S, then / n R is a nonzero ideal of R. Let Q Φ xe I, and let Xn +
^X71"1 + + kn e K[X] be its minimal polynomial over K where we
note that kn Φ 0; then, from the equality xn + kxx

n~ι + + kn = 0,
we can get rox

n + r1x
n~1+ + rn — 0 with r< e R § S for i = 0,1, , n,

and rn Φ 0, so that we have 0 Φ —rn — rox
n + n^""1 H 1- rn_γx e I Π R*

Let L be a field, N an algebraic extension of L, and V a valua-
tion ring of N. We shall denote the inertia degree of V over L by
f(V\L), and the ramification index of V over L by e(V\L). If A is
a valuation ring of L, following Endler's terminology in [1], we shall
say that A is indecomposed in N if there is only one valuation ring
of N lying over A, and, when N is a finite extension of L, we shall
say that A is defectless in N if [iVrLJ^ΣΓ^eίF, |L) /(F, |L) where
{Fi, •••, Fm} is the set of valuation rings of N lying over A.

An ideal I of a ring S will be said to be proper if it is different
from S. We shall use Dw(x) to denote x, and for n^l, D{n)(x) to
denote D(Dln"1)(x))9 i.e., the ^th derivative of x.

2* Extensions of the derivation in the quotient field*

LEMMA 2.1. Let R be a ring, D a derivation on R, P a prime
ideal of R containing no D-ideal other than (0). Define v: R\{0} —*
{nonnegative integers) by v{x) = n if D{ί](x) e P for i = 0, , n — 1
and D{n){x)iP. Then,

( i ) R is a domain.
(ii) v is the trivial valuation if P — (0), and is a rank-1 discrete

valuation if P Φ (0).
(iii) The valuation ring Rv of v contains R, and its maximal

ideal S0ΐv lies over P.

Proof. See [2, Theorem 3.1]. Note that for a;eJB\{0} we indeed
have v(x) < oo for otherwise the ideal generated by \Jΐ=0D

(i)(x) would
be a nonzero D-ideal contained in P, which cannot be. Note also
that the property for P to contain no D-ideal other than (0) is equiva-
lent to RP being D-simple.

LEMMA 2.2. Let R, D, P, v, Rv, %RV be as in 2.1. Let K be the
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quotient field of R. Let S be a ring between R and K such that D
is regular on S. Then, the following statements are equivalent:

(i) S^RV.
(ii) There is a prime ideal Q of S lying over P.

In this case, Q is the only prime ideal of S lying over P and is
equal to Έlv Π S.

Proof. If S S Rv, take Q = Wlv Π S. Conversely, suppose there
exists a prime ideal Q of S such that Q Π R = P. Being regular on
S, D is also regular on SQ; furthermore, SQ 3 RP, and RP is D-simple,
thus by 1.1 SQ is D-simple. Then, by 2.1, we can define a valuation
w: S\{0) —> {nonnegative integers} by w(y) = m if D{j)(y)eQ for i =
0, , m — 1 and Dim)(y) £ Q; calling Sw the valuation ring of w, we
have S Q Sw. At the same time, we will have the valuation v defined
with the prime ideal P of R, and for an element x e i2\{0} we have
D{i)(x) e P if and only if D(ί)(α;) e Q since P = Q f] R; thus, i; = w on
i?, hence also v = w on K, and S ^ Sw = i2v. Furthermore, by 2.1,
we have Q - 3K, Π S, hence also Q = 3K, Π S, so that Wiυ f) S is the
unique prime ideal of S lying over P.

LEMMA 2.3. Let A be a D-simple valuation ring. Then, A is a
field or is a rank-1 discrete valuation ring.

Proof. If A is not a field, and 21 Φ (1) is any ideal of A, then
Πn=o 2t% Φ (1) is a D-ideal; thus, A being D-simple, we have Π"=o St% =
(0) and S is a rank-1 discrete valuation ring.

THEOREM 2.4. Lβί R be a D-simple ring with quotient field K.
Let & = {proper prime ideals of R), and Y* — {valuation rings of K
containing R to which D can be extended). Define φ: ^ —>Y* by
φ{P) = Rv where v is the valuation associated to P by 2.1. Then, ψ
is a bisection.

Proof. Let us show first that D is regular on Rv. Let ab~ι be
any element of Rυ with a,beR, bφQ, v(a) ^ v(b); then D{ab~ι) =
[bD(a) - aD(b)]b~2. If v(a) > v(b), then v(D(a)) = v(a) - 1 ^ v(b) and
v(D(b)) ^ v{b)-l, so that v(bD(a) - aD{b)) ^ inf {v(b) + v(D(a)), v(a) +
v(D(b))} ^ 2v(δ) and D{ab~ι) e Rv. If v(α) = v{b) = 0, then v(6Z)(α) -
αD(δ))^0 = 2^(6) and ^ α δ " 1 ) 6 Rυ. If v(α) = i;(δ) = w>0, then v(bD(a)) =
v(aD(b)) = 2n - I so that v(bD(a) - aD{b)) ^ 2w - 1; furthermore we
have D^~ι){bD{a)) = E&71 Cί.-^^^δJD^-^α) = ^ + Cίi-^^^δJΛ^^α)
with a ^ e P , and similarly D{2n~1]{aD{b)) = a2 + C2\-.1D

{n)(a)D{n)(b) with
α 2 G P , so that D(2n~l){bD(a) - aD(b)) = a, - a2eP; hence v(bD(a) -
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aD(b)) ̂  2n and D{ab~ι) e Rυ. Thus, D is regular on Rv.
If Wlv is the maximal ideal of Rv, we have P = $ftvf) R by 2.1,

thus φ is injective.
Now, let A be a valuation ring of K containing R to which D

can be extended. If A = if, we clearly have A = 9>((0)). If A Φ K,
let ζ> be its maximal ideal. Let P — Q ΓΊ R, let v be the valuation
associated to P by 2.1, and let Rv be the valuation ring of v. Since
P is different from (0), Rv is different from K; by 2.2, we have A £
i?,; by 1.1 A is D-simple, and hence has rank-1 by 2.3. Thus A =
Rv, A — <p(Q Π R), and <p is surjective.

COROLLARY 2.5. Let R be a D-simple ring with quotient field K.
Let A be a valuation ring of K which contains R, Q its maximal
ideal, P its center over R, and v the valuation associated to P by 2.1.
Then, the following statements are equivalent:

( i ) D can be extended to A.
(ii) For any a,beP such that v(a) ^ v(b), then ab~ιe A.
(iii) For any xe A, there exists a,beR, such that x = a/b and

v(a) ^ v(b).
Remember that for an element a of R, v(a) is the number of succes-
sive applications of the derivation D necessary to get a out of the
center P.

Proof. The condition (ii) is equivalent to Rv £ A) the condition
(iii) is equivalent to A^ Rv. But in both cases A and Rv have the
same center on R; thus, both conditions (ii) and (iii) are equivalent
to A — Rv, i.e., equivalent to (i).

3* On the inertia field* Let N be a normal algebraic exten-
sion of K (possibly infinite), and G its Galois group. Let B be a
valuation ring of N, TlB its maximal ideal; let π be a place of N
corresponding to B and μ its residue field; let v be a valuation of
N corresponding to B and Δ its value group. Let A — B Π K, A its
residue field and Γ its value group; μ is a normal algebraic exten-
sion of A [1, (14.5)]. The inertia group of B over K is GT{B\K) =
{σe G/σx — xe WlBYxe B} = {σe G/πoσ = π}; it is a closed subgroup
of G [1, (19.2)]; its fixed field KT(B\K) = {yeN/σy = yVσeGτ(B/K)
is the inertia field of B over K.

In this section, we shall only be concerned with the case of A =
B 0 K being a rank-1 discrete valuation ring which contains the
rational numbers. Note that B has to be of rank-1 too [1, (13.14)].
We have:
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PROPOSITION 3.1. KT(B/K) is the smallest field L between K and
N such that B Π L is ίndecomposed in N and such that μ is purely
inseparable over the residue field ΛL of B Π L.

Proof. See [1, (19.11)].

PROPOSITION 3.2. KT{B\K) is the unique field L between K and
N such that B Π L is indecomposed in N, f(B \ L) = 1 and e(B Π L \ K) =
1.

Proof. Since A contains the rational numbers, Λ has characteris-
tic zero, μ is a separable extension of Λ, and, by 3.1, KT(B\K) is the
smallest field L between K and N such that B f] L is indecomposed
in N and f(B\L) = 1. Now, N is also separable over K so that
Γτ = Γ, and B f] KT{B\K) is a rank-1 discrete valution ring; then
BΓ)KT(B\K) is defectless in all the finite extensions of KT{B\K)
contained in N [6, Corollary, p. 287], and KT(B\K) is maximal among
the fields L that have the property f{B\L) = 1 and e(B n L\K) = 1.

PROPOSITION 3.3. KT{B\K) is the biggest field L between K and
N such that e(B Π L\K) = 1.

Proof. Let L be a field between K and N such that e(B Γϊ L\K) =
1. Let LT{B\L) be the inertia field of B over L; by 3.2, £ Π LT(B/L)
is indecomposed in NJ{B\LT{B\L)) = 1 and e(J3 Π LT{B\L) \L) = 1,
hence also e(B Π LT(B\L) \ K) = 1 since β(J5 Π £ | ίQ - 1. Thus, by 3.2,
LT(B\L) = KT{B\K) and L^

COROLLARY 3.4. Let V be a valuation ring contained in N lying
over A. Then, the following statements are equivalent:

( i ) e(V/K) = l.
(ii) There exists a valuation ring E of N lying over V such that

(iii) For every valuationring E of N lying over 7 , 7 g KT(E/K).

Now, let (N*, JB*) be a completion of (N, B); by this, we mean that
AT* is a ^-completion of N [5, (1-7-1), p. 27], and 5* the topologi-
cal closure of B in N*; let (if*, A*) be the completion of (K, A) con-
tained in (N*, B*). A being a rank-1 discrete valuation ring, we let
ί be a generator of the maximal ideal of A. Let ϋf be an algebraic
closure of N*, and 0 the algebraic closure of if* contained in ϋ'. Let
C be a field of representatives of A* and C the algebraic closure of C
contained in ΰ; by [7, Theorem 27, p. 304], we have A* = C[[£]] and
K* = C((£)). Let F be the unique valuation ring of ϋ which lies
over A* [5, (2-1-3), p. 44]. The situation can be resumed by the fol-
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lowing diagram:
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N.
PROPOSITION 3.5. KT(B/K) = C((ί)) n N and BnKτ(B/K) = C[[t]] Π

Proof. We shall do it in several steps.

Step 1_. C((t)) n
a = Fn (C((ί» n σ).

is the inertia field of F over if* and C[[t]] Π

Proo/. C[[ί]] Π ff is a valuation ring of C((ί)) Π # which lies over
A* = C[[t]]; thus it is indecomposed in O and is equal to F Π (C((ί)) f]ϋ).
Let f (respectively w-) be a place (respectively a valuation) of ΰ
corresponding to the valuation ring F; since C £ ^ , we have ξ(C) =
f(QW])Sf(C)g?(C[[ί]]nδ)gf(ί ;) ; furthermore ?(F) is algebraic
over c(C[[£]]) by [1, (14.5)], and ξ(C) = C is algebraically closed; thus
ξ(C[[t]\ Π ΰ) = ξ(F). On the other hand we have clearly w(C[[ί]]) =

Π U). Thus by 3.2, C((t)) Π ΰ is the inertia field of F over ΛΓ*.

Step 2. Let ΛΓα be a finite normal extension of K contained in
N. Let JV* be the completion of ΛΓα containec^ in iV*. Then C((ί))Π
iVα* is the inertia field of S* Π N* over ίΓ* and C[[ΐ\] Π iVα* = (5* Π N*) Π

n ivα*).

Proof. N* is a finite normal extension of if* [4, Corollary 4,
p. 41]; hence Na* Qϋ. B*Γ)N* is a valuation ring of jVα* which lies
over A*; hence it has to be equal to F Π N*. Now, the inertia field of
F n iVα* over if* is equal to the intersection of the inertia field of F
over K* with N* [1, (19.10)], i.e., is equal to (C((t)) Π ΰ) f) N* -
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C((ί)) n N*. Finally, C[[t]] n N? is a valuation ring of C((ί)) Π JV*
which lies over A*, thus it has to lie under B* Π N*, i.e., we need
to have C[[£]] n N * - (B* n iV**) Π C((t)) Π 1ST*).

3. C((ί)) Π 1VΛ is the inertia field of B f] Na over K and

a = (Bn Na) n (C((ί» n ΛQ.

Proo/. 5 n iVα Π C((ί)) S 5 * Π N* n C((ί)) = C[[ί]] n Na* by Step 2;
then, being contained in C((ί)) Π JVa, ΰ Γi ΛΓα Π C((ί)) has also to be con-
tained in C[[t]] Π Na; being a rank-1 valuation ring, i? Π iVα Π C((ί)) has
to be equal to C[[t]] n iVβ.

Now, if we still call w the valuation of O corresponding to F,
we have w{K) S w(C((ί)) Π iSΓ«) S w(C((ί)) Π N?); but w(JK"*) = w(C((ί)) Π
N?) by Step 2, and w(K) = w(iΓ*) because, by [5, (1-7-5), p. 31],
the completion is an immediate extension; hence w(K) = w(C((t)) Π JVα),
and C((ί)) Π NaQKτ(BΓ\NJK) by 3.3. Then, (7((ί)) Π Na = Kτ(Bf] NJK),
because if not, the completion L of KT(B ΓΊ NJK) contained in N*
would be such that L g C((t)) Π iVα* and e(J5* Π L/iΓ*) = 1, which is
impossible by 3.3, since C((t)) Π N* is the inertia field of JS* n JVα*
over if* by Step 2.

4. C((ί)) Π JV is the inertia field of B over K and C[[ί]] Π N =
B n (C((ί)) n N).

Proof. Let {ΛΓα; aeJ} be the set of all the finite normal subexten-
sions of N over K. Let us show that KT{B\K) = \JaeJ KT(B f)Na\K).
For any aeJ, the homomorphism θτ

a: G
T(B \ K) -+ GT(B Π Na \ K) defined

by θ%(p) = ρ\Na = the restriction of p to Na, is surjective [1, (19.7]].
Let xeKτ(B\K), Na a finite normal extension of K containing x and
σ e GT(B Π Na\K); since θτ

a is surjective, there exists pe GT(B\K) such
that p\Na = σ, so that σ(x) = /θ(a ) = α? and a?e JBΓ^JBD i\Γ«|JKΓ). Con-
versely, let a e J, and xe KT(B Π Na \K); for any pe GT{B\K) we have
p \Na 6 Gτ(BΓ)Na I IT), so that /θ(a?) = /0 \Na(x)_=x and a? 6 KT{B\ K). Hence,

ir(B|^) = U«^r(5nisrj^)=u«e^c((i))n^
C((ί)) n N, and Bϊ\Kτ{B_\K) - B Π ( U e ; ̂ ( ^ n Na\K)) = U«e

ir r(j5 n ivβ|iθ) - U«e, (C[[ί]] n Na) = c[[ί]] n ΛΓ.

4, Extensions of the derivation in the algebraic closure of the
quotient field•

LEMMA 4.1. Let A be a ring, I a finitely generated ideal of A
such that Γ\n=oln = (0), A* the I-adie completion of A. Let D: A—+
A* be a map such that D(x + y) = D(x) + D(y) and D(xy) = xD(y) +
yD(x). Then,
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(i) D can be extended to a derivation Ό' on A* by D'(\imn xn) =
lirn^ D(xn), where {xn}n^0 is a Cauchy sequence in A.

(ii) Df is the only derivation of A* that extends D.

Proof, (i) Let {xn}n^0 be a Cauchy sequence in A; for any positive
integer m, there exists q such that r, s > q => xr — xs e Im; xr — xse
Im => xr — xs = Σ i Mtl uim with u{j e /, hence Dxr — Dx8 = Z)(a?r — #β) —
Σ< Σ7U w4i Wi(i-i,jD(Wii)Wi(, +i) ^ ί w e (IA*)7*-1; then as I is finitely
generated, the topology of A* is the (IA*) —adic topology [7, Corollary
1, p. 257], and {Dxn}n^Q is a Cauchy sequence in A*; set D'(limu#u) =
\iτnn D(xn). Defined that way, Df is a function of A* for if {zn}nl>0 is
another Cauchy sequence such that limu xn = limn zn, then for any
positive integer m, there exists q such that n > q ==> (xn — zn) e Im,
so that D(xn) - D{zn) = D(xn-zn) e (JA*)"1"1, and limΛ D{xn) = limΛ D(zn).
Furthermore, Π is a derivation of A* for if {xn}n^0 and {zn}n±0 are two
Cauchy sequences of A, then limw Ό(xn + JSW) = limw D(xn) + limn Z?(«w)
and limΛ D(xn «Λ) = limn xn limΛ D(zn) + limΛ i ) fe) limn zn since, for
every n, we have jD(a?Λ + zn) = D(xn) + D(2Λ) and D(xn . 2W) = α;w JD(2W) +
D(a;Λ) «Λ. Finally, for any ye A, we clearly have D'{y) — D(y).

(ii) Let D" be a derivation of A* which extends D. Let ?/ be
any element of A*, and {a?n}n̂ 0 a Cauchy sequence in A such that
y = limΛ a;,,; then, for any positive integer m, there exists g such that
n>q=*y-yne (/A*)w, so that Ό'\y) - D(yn) = D"(y) - D"{yn) =
D"{y - yn)e(IA*)"-\ and D"{y) = limw

REMARK. In the case of D being a derivation of A, the procedure
used in the preceding lemma allows to extend D to a derivation i 7
of A* even if / is not finitely generated. To get the uniqueness
property however, we again need I to be finitely generated.

THEOREM 4.2. Let A be a rank-1 discrete valuation ring con-
taining the rational numbers with quotient field K; let Ω be an algebraic
closure of K and D a derivation of A. Let B be a valuation ring of
Ω lying over A; let V be a valuation ring contained in Ω, lying over
A and unramified over K. Then,

( i ) (KT(B\K), B n KT{B\K)) is a D-regular extension of (K, A)
contained in (Ω, B).

(ii) (N, B Π N) is D-regular for any field N between K and
KT{B\K).

(iii) D is regular on V.

Proof. ( i ) Let (β*, 5*) be a completion of (Ω, B) and (K*, A*)
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the completion of (K, A) contained in (β*, Z?*); let O' be an algebraic
closure of β* and ϋ the algebraic closure of K* contained in ϋf, Let t
be a generator of the maximal ideal of A; let C be a field of representa-
tives of A*, and C the algebraic closure of C in ΰ; of course we have
A* - C[[t]] and if* - C((ί)) [7, Corollary, p. 307]. By 4.1, let £>' be
the unique derivation of A* which is an extension of D, and, as usual,
call again D' its extension to ϋ. For an element y of C, we have
JD'(I/) e C[[t]]; indeed, if XΛ + c1X*-1+ + cn e C[X] is the minimal poly-
nomial of y over C, differentiating the equation yn + c^*"1 + + cn =
0, we get (ny-"1 + cx{n - I)?/*-2 + + c^JD'iy) + (UίcOiT"1 + +
Z)(c«)) = 0; the first factor of the first term is an element of C,
different from zero since y is separable over C; the second term is
an element of C[[t]]; thus D'(y)e C[[t]]. We also have D'(t) e C[[t]],
so that the restriction Ώ" of Df to C[£] is a function with values in
C[[t]] which satisfies the properties D"(x + z) = D"(α?) + D"(s) and
D"(a;«) = O J D " ^ ) + zD"(x); furthermore, C[[ί]] is the (ί)-adic com-
pletion of C[t]; thus, by 4.1, D" can be extended to a derivation of
C[[t]], which we call D" again, by D"(ΣΓ=o drf) = ΣΓ=o i ? " ( ^ ) -
Σ r = o ΰ W ) A s C[[ί]] is the completion of C[ί] for the (ί)-adic
topology, by 4.1 also, we know that for an element ΣΓ=o eft of C[[t]]
we must have D'(ΣΓ=o c^O - ΣΓU ^'(c***), so that D' = Z?" on A* =
C[[ί]]; thus D = D" on A, hence also on K. But we can even see
that D = D" on C((ί)) Π fi; indeed, if Xm + U ^ 1 + •_+ kmeK[X]
is the minimal polynomial over K of an element z of C((ί)) Π Ω, we
have 2;m + kxz

m~ι + km = 0, thus D(z) = [D^O^;771"1 + + jD(fem)] x
[ m ^ - χ + +A:m_1]-1 - [i3"(Λ1)«1I|-1+ +D"(km)][mzm-1+ + fe^J-1 -
D"{z). Then, since D is regular on Ω, since Z?" is regular on C[[t]]9

and since D = D" on C((ί)) Π β, we get that (C((ί)) Π β, C[[ί]] Π Ω) is
Z)-regular; but by 3.5 we know that C((ί)) Π β = ^(BIJK") and C[[t]] f]
Ω = Bf]Kτ(B\K); thus (KT(B\K), B f] KT(B\K)) is Z)-regular.

(ii) Let N be any field between K and iΓΓ(i?|ϋΓ). D is regular
on JV and is regular on B Π KT(B\K); thus Z) is regular on (B Γ)
KT(B\K))ΠN= BΠN.

(iii) Let B' be a valuation ring of Ω lying over V; by 3.4 we
have 7 S Γ ( S ; | Ϊ ) , so that Z) is regular on F.

THEOREM 4.3. Let A be a D-sίmple valuation ring with quotient
field K; let Ω be an algebraic closure of K, and B a valuation ring
of Ω lying over A. Then, (Kτ(B\K),Bf) KT{B\K)) is the biggest D-
regular extension of (K, A) contained in (Ω, B).

Proof. Being Z)-simple, A contains the rational numbers; thus,
by 4.2, we know that (KT(B\K), B Π KT(B\K)) is Z)-regular. Now
let (L, E) be a Zλ-regular extension of (K, A) contained in (Ω, B); of
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course E is rank-1, and thus B lies over E; also E is D-simple by
1.1. If t is a generator of the maximal ideal of A, then t is also a
generator of the maximal ideal %JlE of E; indeed, otherwise we would
have teWE, hence also D(t)eTtE which cannot be since D(t) is a
unit in A. Thus, the index of ramification of E over K is equal to
1, and by 3.3 (L, E) s (KT(B\K\ B n KT{B\K)).

COROLLARY 4.4. Lei R be a D-simple ring with quotient field K;
let Ω be an algebraic closure of K. Let V be a valuation ring which
contains R and is contained in Ω; let e(V\K) be its ramification index
over K. Then, the following statements are equivalent:

(i) D is regular on V.
(ii) e(V\K) = 1 and D is regular on V (Ί K.

Proof. If D is regular on V, then D is regular on V Π K since
D is also regular on K. Furthermore, V 0 K contains R which is
Zλ-simple; thus, by 1.1, Fί l K is D-simple and, as already noticed in
the proof of 4.3, this implies that e(V\K) — 1. Conversely, if D is
regular on Vf]K and if e{V\K) = 1 we know that D is regular on
V by 4.2.
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