THE LEVI PROBLEM FOR A PRODUCT MANIFOLD

YASOU MATSUGU
THE LEVI PROBLEM FOR A PRODUCT MANIFOLD

YASUO MATSUGU

Let S be a Stein manifold, T a one dimensional torus, π a projection of the product $E = S \times T$ onto S and D a subdomain of E. The main object of this paper is to prove that D is a Stein manifold if and only if D is pseudoconvex in the sense of Cartan and $\pi^{-1}(x)$ is not contained in D for any point x of S.

1. A subdomain D of a complex manifold M is called pseudoconvex if, for any boundary point x of D in M, there is a Stein neighborhood U of x in M such that $U \cap D$ is also a Stein manifold. A pair (B, β) is called a domain over M if β is a locally biholomorphic mapping of a complex manifold B in M. A domain (B, β) over C^n is called a domain of holomorphy if there exists a holomorphic function f in B such that the radius of convergence of f at any point x of B is just the boundary distance $d(x)$ of x.

Moreover we recall another definition. Let $\varphi_i: M_i \rightarrow N_i$ be two mappings of a set M_i into a set N_i $(i = 1, 2)$. Then we define the product mapping $\varphi_1 \times \varphi_2$ of the product set $M_1 \times M_2$ into the product set $N_1 \times N_2$ by putting $(\varphi_1 \times \varphi_2)(x, y) = (\varphi_1(x), \varphi_2(y))$ for $(x, y) \in M_1 \times M_2$.

The proof of our theorem falls into two parts. We first prove it in the case of $S = C^n$, where we construct a strongly plurisubharmonic function by means of Hörmander [2] and reduce it to a result of Narasimhan [3]. In general case, using the imbedding of Docquier-Grauert [1], we reduce the theorem to the case of C^n.

2. Let (B, β) be a domain of holomorphy over C^n. In the complex plane C select any two complex numbers ω_1, ω_2 which are linearly independent over the real number field R. The numbers ω_1, ω_2 generate a subgroup Γ' of C, namely

$$\Gamma' = \{m_1\omega_1 + m_2\omega_2; m_1, m_2 \in \text{additive group of integers}\}.$$

The quotient $\tau = C/\Gamma'$ is a one dimensional torus. τ has a natural complex structure and is a compact Riemann surface. The natural map $\tau: C \rightarrow T$ is a locally biholomorphic map. We denote by $E = B \times T$ the product of two complex manifolds B and T, and by $\pi: E \rightarrow B$ the projection.

We first prove the following lemma:

Lemma. Let D be a pseudoconvex open subset of E such that $\pi^{-1}(x)$ is not contained in D for any point x of B. Then D is a Stein manifold.
Proof. Let $1 \times \tau$ be the product map of the identity 1 of B and the map τ. The map $1 \times \tau$ is a locally biholomorphic map $B \times C$ onto E. If we denote by A the inverse image $(1 \times \tau)^{-1}(D)$ of D, A is pseudoconvex, because D is pseudoconvex. A is Γ-invariant, that is, for any fixed point $\gamma \in \Gamma$, A is invariant under the transformation of $B \times C$: $(y, z) \mapsto (y, z + \gamma)$. Let α be the restriction to A of the product map $\beta \times 1$ of the map β and the identity map 1 of C, that is, $\alpha(y, z) = (\beta(y), z)$ for $(y, z) \in A$. α is a locally biholomorphic map of A into $C^* \times C = C^{*+1}$ and (A, α) is a pseudoconvex domain over C^{*+1}. The distance function $d(y, z)$ of the domain A over C^{*+1} induces the function $d(y, t)$ in D. Indeed, for any point $(y, t) \in D$, $y \in B$, $t \in T$, select two representatives $z, z' \in C$ of the equivalence class t. Then there is $\gamma \in \Gamma$ such that $z' = z + \gamma$. But A is Γ-invariant, and so $d(y, z') = d(y, z)$. Since A is pseudoconvex, by Oka [4], the function $-\log d(y, z)$ is a continuous plurisubharmonic function in A. The function $-\log d(y, t)$ is therefore a continuous plurisubharmonic function in D, and so is the function

$$\frac{1}{d(y, t)} = e^{-\log d(y, t)}.$$

On the other hand, since B is Stein, there is a real analytic strongly plurisubharmonic function $q > 0$ with the following property: for any real number $c > 0$,

$$B_c = \{y \in B; q(y) < c\} \subset B.$$

The function

$$\gamma(y, t) = \frac{1}{d(y, t)} + q(y)$$

defined in D is a continuous plurisubharmonic function. It holds that

$$D_c = \{(y, t) \in D; \gamma(y, t) < c\} \subset B_c \times T \cap \{(y, t) \in D; d(y, t) > \frac{1}{c}\} \subset D$$

for any real number $c > 0$.

Since $D = \bigcup_{c > 0} D_c$, if we show that D_c is a Stein manifold, we know by Docquier-Grauert [1], that D is itself a Stein manifold.

Fix an arbitrary real number $c > 0$. For any point $y \in B$, we set

$$A(y) = \{z \in C; (y, \tau(z)) \in D\}.$$

By the hypothesis of the lemma, it follows that $A(y) \subset C$. Select a complex-valued measurable function $a(y)$ in B such that

$$a(y) \in C - A(y)$$

for any point $y \in B$.

232 YASUO MATSUGU
For sufficiently small number ε with $0 < \varepsilon < 1/(c + 1) < 1/c$, we define the function $s(y, t)$ in D_{c+1} as follows:

$$s(y, t) = \frac{1}{\varepsilon^{2n}} \int_{\mathbb{R}^n} \rho \left(\frac{y - \bar{z}}{\varepsilon} \right) \sum_{m_1, m_2 \to \infty} \frac{d\lambda(\bar{z})}{|z - a(\bar{z}) - m_1 \omega_1 - m_2 \omega_2|^2},$$

where ρ is Friedrichs' modifier, and z in the summation \sum is a representative of t. Clearly the sum \sum converges uniformly, and does not depend on any choice of representative z.

Moreover, we define a function $p(y, t)$ in D_{c+1} by putting

$$p(y, t) = s(y, t) + Kq(y)$$

where K is a sufficient large constant. Since $D_c \subset D_{c+1}$ and q is a strongly plurisubharmonic function in B, it follows that the function $p(y, t)$ is strongly plurisubharmonic in D_c. By Narasimhan [3], we can conclude that D_c is a Stein manifold.

3. Now we shall prove our main theorem.

Theorem. Let E be the product $S \times T$ of a Stein manifold S and a complex torus T, and π be the projection $E \to S$. Let D be an open subset of E. Then D is a Stein manifold if and only if D is pseudoconvex and $\pi^{-1}(x)$ is not contained in D for any point $x \in S$.

Proof. By Docquier-Grauert [1], there are a biholomorphic map σ of S onto a regular analytic set of a domain of holomorphy (B, β) over C^n and a holomorphic mapping ρ of B onto $\sigma(S)$ such that the restriction $\rho|_{\sigma(S)}$ is the identity of $\sigma(S)$. We define a mapping ξ of the product $G = B \times T$ onto $E = S \times T$ by putting $\xi(x, t) = (\sigma^{-1}(\rho(x)), t)$ for $(x, t) \in G$. The inverse image $\xi^{-1}(D)$ of D under the map is a pseudoconvex open subset of G and satisfies the hypothesis of the lemma. $\xi^{-1}(D)$ is therefore a Stein manifold. Since D is a regular analytic subset of the Stein manifold $\xi^{-1}(D)$, D is also a Stein manifold.

References

Received February 1, 1972 and in revised November 13, 1972.

KYUSHU UNIVERSITY
Allan Francis Abrahamse, *Uniform integrability of derivatives on \(\sigma \)-lattices* 1
Ronald Alter and K. K. Kubota, *The diophantine equation \(x^2 + D = p^n \)* 11
Grahame Bennett, *Some inclusion theorems for sequence spaces* 17
William Cutler, *On extending isotopies* ... 31
Robert Jay Daverman, *Factored codimension one cells in Euclidean \(n \)-space* 37
Patrick Barry Eberlein and Barrett O’Neill, *Visibility manifolds* 45
M. Edelstein, *Concerning dentability* ... 111
Edward Graham Evans, Jr., *Krull-Schmidt and cancellation over local rings* ... 115
C. D. Feustel, *A generalization of Kneser’s conjecture* 123
Avner Friedman, *Uniqueness for the Cauchy problem for degenerate parabolic equations* ... 131
David Golber, *The cohomological description of a torus action* 149
Alain Goullet de Rugy, *Un théorème du genre “Andô-Edwards” pour les Fréchet ordonnés normaux* ... 155
Louise Hay, *The class of recursively enumerable subsets of a recursively enumerable set* .. 167
John Paul Helm, Albert Ronald da Silva Meyer and Paul Ruel Young, *On orders of translations and enumerations* 185
Julien O. Hennefeld, *A decomposition for \(B(X)^* \) and unique Hahn-Banach extensions* ... 197
Gordon G. Johnson, *Moment sequences in Hilbert space* 201
Thomas Rollin Kramer, *A note on countably subparacompact spaces* 209
Yves A. Lequain, *Differential simplicity and extensions of a derivation* 215
Peter Lorimer, *A property of the groups Aut \(PU(3, \ q^2) \) 225
Yasou Matsugu, *The Levi problem for a product manifold* 231
John M.F. O’Connell, *Real parts of uniform algebras* 235
William Lindall Paschke, *A factorable Banach algebra without bounded approximate unit* .. 249
Ronald Joel Rudman, *On the fundamental unit of a purely cubic field* 253
Tsuan Wu Ting, *Torsional rigidities in the elastic-plastic torsion of simply connected cylindrical bars* 257
Philip C. Tonne, *Matrix representations for linear transformations on analytic sequences* ... 269
Jung-Hsien Tsai, *On \(E \)-compact spaces and generalizations of perfect mappings* ... 275
Alfons Van Daele, *The upper envelope of invariant functionals majorized by an invariant weight* .. 283
Giulio Varsi, *The multidimensional content of the frustum of the simplex* 303