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REAL PARTS OF UNIFORM ALGEBRAS

JOHN M. F. O’CONNELL

This paper is concerned with identifying those uniform
algebras B on I' ={z:|z| = 1} for which Re B—the space of
real parts of the functions in B—equals Re 4, where A denotes
the disk algebra. It is shown that for any such algebra,
there is an absolutely continuous homeomorphism @ of I” onto
I' so that B = A(®) = {f(®): f€ A}. A partial converse to this
theorem also holds: If @ is a homeomorphism of I” onto itself
which is of class C? with nowhere vanishing derivative, then
Re A(®) = Re A.

For completeness, we recall that a uniform algebra on I" is defined
as a subalgebra of C(I") which is closed in the norm || /|| = max,|f],
contains the constants and separates the points of I'. The disk algebra
is the particular uniform algebra consisting of all functions in C(I")
which extend continuously to {z: 2] <1} to be analyticon D = {z: |2| <1}.
Note that if @ is a homeomorphism of I" onto itself, then A(®) is a
uniform algebra. In this paper we will frequently use the convention
of writing f(6) for f(e’) when f belongs to C(I).

The first result along the lines discussed in this paper is due to
Hoffman and Wermer [7]. They prove that if B is a uniform algebra
on a compact Hausdorff space X such that Re B is closed in the norm
of uniform convergence, then B = C(X); in particular, the theorem
holds if Re B= C,(X). A generalization of this fact by Sidney and
Stout [10] says that if K is a closed subset of X and Re By is
uniformly closed, then B, = C(K). Bernard [1, 2, 3] has provided
extensions in a different direction. He shows that a Banach algebra
B < C(X), with any norm, for which Re B is closed under uniform
convergence must equal C(X). Further, he gives some sufficient
conditions on two Banach algebras B, & B, & C(X), with Re B, = Re B,,
to conclude that B, = B,.

The theorems in this paper have previously been announced in
Abstracts 71T-B10 and 7T1T-B94 of the Notices of the American Mathe-
matical Society, 18 (1971). The author wishes to express his apprecia-
tion to Professor John Wermer for his many helpful suggestions and
conversations during the research which led to these results.

I11. Algebras on I" with the same real parts.

THEOREM 1. Let B be a uniform algebra on I' with Re B = Re A.
Then there exists a homeomorphism @ of I' onto I' so that B = A(D).
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236 JOHN M. F. O’CONNELL

Proof. (1). Since cos (6) belongs to Re B, there exists v(4) so
that +(6) = cos (6) + v(6) belongs to B. Re(f) is one-to-one and
decreasing on [0, 7] and one-to-one increasing on [— m, 0]; hence C —
+(I") has a bounded component, or else (I") defines a single curve
traced twice, once in each direction. In the latter case, 4(I") is a
Jordan arc; it then follows by Mergelyan’s theorem that the function
Re 2z is a uniform limit of polynomials on +(I") and we can conclude
that Re () = cos (f) € B. Similarly there exists w(f) in Re B so that
A (0) = w(8) + 1 sin (6) belongs to B; and either C — +(I") has bounded
component or else sin () € B.

If both cos (f) and sin (§) are in B, then B = C(I") and Re B #
Re A. Thus at least one of C — (I") and C — +(I") has a bounded
component. We will assume that C — (") has a bounded component,
which we call W. The remainder of the proof using .+, involves
only minor changes.

(2). The region W is bounded by two arcs on ~(I"). Precisely,
there are values 4, and 6, with 0 <6, < 6, < w for which +(0;) =
w(—0),1=1,2 and W = ([0, 0.]) U ([—8F,, — 8,]). For 6 not con-
tained in [4,, 6,] U [—6,, —6.], Re 4(0) < Re (d,) or Re (0) > Re (8,).

Let 7 be the Riemann map of W onto D; ¢ extends continuously
to W, mapping 6 W onto I" in a one-to-one fashion. For convenience
we may suppose (zeyr)(d) = 1. We further extend = by setting 7(z) =
(toar)(0,) for z with Rez > Re(0) and 7(2) = (zoy)(d,) for z with
Rez < Re (6,). Then, letting K denote (/") together with all its
bounded complementary components, z is continuous on K and is
analytic on its interior. Appealing again to Mergelyn’s theorem, we
conclude that 7 is the uniform limit on K of polynomials. Hence toqr
belongs to B. Put ® = 7oop. Then @ maps I” onto I” in the following
manner: (see figure)
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@ takes the open arcs «, and «, homeomorphically onto v, and v,, and
the closed arcs B, and B, onto the points ¢, = @(4,) =1, q, = 9(6,)
respectively.
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(8) For each measure v on I' we define a measure v* on I by
v*(E) = v(@ ' (E)), and for g in B and » on v, U~ we put g*(\) =
g(@7*(\)). Let p be a measure on I” with ¢ 1 B and p* = 0. Such
measures must exist as otherwise every g 1 B would be the zero
measure on «, U ®,. Then for every closed subarc E of a, U a, of
positive linear measure, it would follow that B|; = C(E). Hence
Re A|; = CR(E) which is impossible.

If g belongs to B and |z| = 1, define

T(g, 2) = S}llzl—g’“ff‘);‘(x) :

The function T is analytic on D and also on {z:|z] >1}. We claim
that T(g,2) = 0 if |z] > 1. For, on that set,

T(g,2) = 3, =1

=0 grtt

[, A(edey oy -

The term for » = 0 is g (gdp)* = S gdyr = 0.
=1 r

121

For each n > 1,
| nedm = vt e
14]=1 T1UTy
+ quﬂlgd# + q?&ﬁzgd#
= | ortoap
+ | erotap®) + | ara®idpt

= _owawane
= 0, since @"g belongs to B.

(4) Lety be any measure on /°. Put A(f) = the y-measure of
the arc le. At any point A, = ¢ where dh/d0(0,) exists, we set
dy/dan(n) = dh/d0(@,). Then for almost all values of »\, on I", we
have

lim S ;%)_0 _ S OO Y ST N
re’fglo =1t N — 7re 12]=1 N — _1_ei€ ax
r

The limit is taken along non-tangential curves lying within the unit
disk. The statement follows from Fatou’s theorem by rewriting the
terms inside the brackets as a Poisson integral.
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By applying this equality to the measures (gdg)* and using that
T(g,2z) = 0 for |z| > 1 we conclude that, for almost all x, on v, U 7,

lim 7(g, 2) = limg (gd)* )
\Z:T<J1~' : ZzTi"{ R=t N — 2

= 2719™ (o) dd# N) -

A

The function 7T(1,2) is the Cauchy transform of the nonzero
measure p*. Since the Cauchy transform of a measure is zero almost
everywhere-dedy if and only if the measure itself is zero!, and since
T(1, z) vanishes identically for |z| > 1 it follows that T'(1, z) cannot vanish
identically on D. Also, T(1, 2) has the boundary value 2mi(dg* /d\)(\,)
for almost all A, on v, U7,. (Here boundary value means the limiting
value along non-tangential curves approaching X, from inside the unit
disk). It is a theorem of Privalov and Lusin® that a function which
is analytic on D and which has the non-tangential limiting value zero
on a set of positive measure on /' must vanish identically on D.
Applying this result to T(1,z2) we can conclude that dg*/dy(\,) #= 0
for almost all \, on v, U 7,.

For each g contained in B, T(g, z) is analytic on D and has the
boundary values 2mig*(\)du* /dAn(\,) almost everywhere on v,U~,. Con-
sequently, the function G(z) = T(g, 2)/T(1, #z) is meromorphic on D and
has the boundary values g*(\,) almost everywhere on v, U 7..

(5) Now we show that each function G{z) obtained in the manner
just described is analytic on D. To this end, take z, in D so that
T{, z,) #+ 0. The functional S defined on B by S(g) = G(z,) is linear.
For any two functions g, and g, belonging to B, the function t(z) =
T1, 2)T(g.9., 2) — T{g,, 2)T{g,, 2) is analytic on D and has zero boundary
values almost everywhere. Hence, by the theorem Privalov and Lusin
cited in the last paragraph, ¢ = 0 and the meromorphic functions

T(0,0, 2) 51 q T00:2) T(gs,2)
T(L, ) T, 2 T(1,2)

are identically equal whenever defined. Thus S is a multiplicative
linear functional on the commutative Banach algebra B and as such
has norm one. That is, |G(z,)| < [|g|| for every z, with T(, z,) = 0.
As the zeros of T(1,z) form a discrete set, all the singularities of G
are removable and G extends analytically to D. Furthermore, G is
bounded on D with |G(z)| < ||g|| for all z contained in D.

I See Browder [4] or Gamelin [3] for details.
2 See Goluzin [6], p. 428, or Privalov [9].
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(6). The next step is to show G belongs to A. G can be defined
from ¢* using the Poisson integral formula. A well-known property
of that formula says that G has the nontangential boundary value
g*(\,) at every point of continuity of g*. Thus G has the boundary
values g* everywhere on v, U~,. The following result may be used
to prove that G has continuous boundary values everywhere on I'.

THEOREM.® If f(z) — a as z— oo along a straight line and f(z) —
b as z— = along another straight line, and f(2) is regular and
bounded in the angle between, then a = b and f(z) — a uniformly in
the angle.

In the present case, the four limits lim,.,, g*(\), for %,5=1,2, all
exist, because of the continuity of the function g. By considering
neighborhoods of ¢, and ¢, in D, mapping them to the upper half
plane sending ¢, and ¢, in turn to the point at -, we can conclude
that lim,.,, G(2) and lim,.,, G(2) both exist and that Ge A. In fact,
we must have that lim, ., G(z) = ¢(0,) = g(—6,) and lim,_, G(2) = g(,) =
g{—0,), for every function g belonging to B. But as B separates
points on 7, this is impossible unless 6, = 0, 8, = =. There, @ is a
homeomorphism of 7" onto I.

(7). Since @ belongs to B, A(®) & B or equivalently A & B(@™).
As Re B= Re A = Cyp(I"), then B(@") = C(I"). Hence by Wermer’s
Maximality Theorem, B(®™) = A or B = A(D).

THEOREM 2. Let @ be a homeomorphism of I onto I' satisfying
Re A(®) = Re A. Then @ is absolutely continuous.

Proof. We also have that Re A(@™") = Re A. Let m denote
Lebesgue measure on /I'. We claim that if K is a closed set with
m(K) = 0, then m(@(K)) = 0. For, let g e C(?(K)). Then go® |, c C(K).
Since we assume that K is closed with m(K) = 0, it follows that
Aix = C(K)*, so that there exists G belonging to A with G|y = g-® |x.
Thus glox) = Go@ 'lpx. In particular, if ge Cr(@(K)), then ge
Re A(?7Y) |,xy = Re Alyx). Hence Re Ay is closed in the uniform
norm. This implies that 4|, = C(@)K))*. If m(®(K)) >0, A would
necessarily contain a nonzero function which vanished on a set of
positive measure on I°. This is impossible since the functions in A

satisfy the Jensen inequality log|f(0)] < l/ZﬂS log [ f|d6. Hence we
r
must have m(®(K)) = 0.

3 Titchmarsh [11], 5,64.
¢ This is a theorem of Rudin and Carleson. See [3] for details.
5 This result is due to Sidney and Stout [10].
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Now if we define a measure ¢ on I" by p(E) = m(®(E)) we have
that g is absolutely continuous with respect to m. To see this, let
m(E) = 0. There exists an F, set F'< K such that y(E\F)=0. We
can write F' = J;-, K, where K, is closed and K, < K, ., for each n.
From the last paragraph, it follows that x#(K,) = 0. Hence u(F') =0
and m(3(E)) = p(E) = 0.

For an are ap, u(ap) = |9(B8) — @(a)|. The absolute continuity
of g implies that for ¢ > 0, there is a § > 0 so that m(E) < 6=
1(F) < e. Henceif c’z:,\ei, 1 < 7 £ N, are disjoint arcs with Zé‘;m(&;&) <
0 then 3%, |9(B;) — @(a;)| < e. Therefore @ is absolutely continuous.

REMARKS. (1) Theorem 1 cannot be extended freely: there
exist examples of sets X, and two uniform algebras A and B defined
on X satisfying Re A = Re B, but for which no homeomorphism @
yields B = A(9).

(2) If, on I, B = A, the set of complex conjugates of the func-
tions in A, the map z —Z is a suitable choice for @.

111. Sufficient conditions on @ to conclude Re A(®) = Re A.

DEFINITION. Let Re A" = {f: f is continuous on R, with period
27, and so that the function F, defined on I by F(e*) = f(6), belongs
to Re A}.

DEFINITION. For » in Re A, define |[|u]|| = ||w]|| + ||%]|| where || - ||
is the uniform norm on 7", w + % belongs to A and #(0) = 0. For f
in (Re A), f denotes the function in (Re A)' such that G(e?) = () +
if(0) belongs to A and Im G(0) = 0. We put ||f|| = max,|f| and

AN =11F1+ A

With |||+ ||| as a norm, Re A and (Re A)' have the structure of real
Banach spaces in which smooth functions are dense.

LEMMA 1. Suppose ¢ is a homeomorphism of [— m, @] onto |[a,
27 + a)], with inverse +, and satisfying

(1) ¢(0) =0,

(ii) ¢ s of class C*, ¢'(— ) = ¢'(n), ¥ (@) = ' (a + 27),

(i) (@) =7>0,[v' @) =0 >0 and [ ()] < M for all t in
[— 7, «].
Then, for a smooth function f in (Re A)f, fop which is defined on
[— 7, 7], if extended periodically to R, lies in (Re A)'. There exists
a constant C > 0, depending only on v,0 and M, so that

| Fop(0) — F(O)| < C|| £l -
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Consequently,

| 7o) < (€ + DIIFI -

Proof. We can assume, with no loss of generality, that ¢'(¢) = v
on [— m, w]. The proof if ¢ is a decreasing function is almost identical.
Our assumption means that ¢(— 7) = a < 0.

Let f be a smooth function in (Re A)'. As ¢(— 7)) + 27 = ¢(n),
then fo¢ can be extended to R, continuously with period 27. Since
S and ¢ are smooth and ¢'(— 7) = ¢'(7), foé is smooth and thus
belongs to (Re A)'.

Assume first that f(0) = 0. The integral formula for evaluating
harmonic conjugates gives®

70) = — %YM‘”

’ tan L2
2

(1) SN .

2 "tan L2
2

_ Lszﬁa—ﬂ@—_dt .

2m J tan—t—
2

Also fop(0) = — _1_§” (f28)(&) = (fod)(—= 1) g,

2 Jo tan L2
2

L[y, L[ (el

2m Jo ’cani 2 J-= tan—t—
2 2

(2) =1 SZIM ——May’(u)du

2 tanM
2

__1_ ’ f(u) I
= L____tan O
2

L[y,
2n tan M
2

All these integrals are absolutely convergent because of the smoothness
of f and ¢, and because f(0) = ¢(0) = 0. We use the fact that
2 cot = has a series expansion

6 Zygmund [13] vol. I, p. 131.
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xeote = >, A2
n=0

which converges for |x| < w. Hence

1
tanx

(3)

-1 + a(2x)

2
where a(t) is real analytic for |t| < 2z. Substitution of (3) into (1)
and (2) yields

Fo=-=(" f(t){ + a(t) dt

2 i
2

Foo0) = — | f(t)[———- - a(v(t»Jw ®dt -

and

27 (%)
2

Since — 27 < a < 0, a(t) is continuous on [a, 27 + «], and since — 7 <
() < 7, these two integrals are absolutely convergent. Subtracting
them, we get

| Fop(0) — F(0)| < ang {!f’#g)) %.

+ alp(®) [(8) + la(t) e

(4)

We estimate each term in the integrand. For the first term, we
write () = ty,(¢). 4, is smooth on [a, 27 + a] and +,(0) = 0. For
each ¢ in [a, 27 + a],

W(t) = S Zz% (st)ds

S £ (st)ds
tS W (st)ds -
Thus

W) = | wistids z 0 .

Also,



REAL PARTS OF UNIFORM ALGEBRAS 243

vit) = || Ly(styds

- S:s@k"(st)ds
%) — Iyi®| = M'sds = ¥
— PO 1] _|w@| oM
vt el T2
— [ Has 2

For the second term in (4),
(6) [, Natw@n vt = | Jat)de -
For the last term, we note that

2w + a = ¢(m)

= §(7) — 4(0)

= 7¢'(r) for some re|0, 7] .
— 2T +a =77
——a =T — 21.

Similarly,
—a=—¢(-n)
= ¢(0) — ¢(— 7)
= wg'(r,) for some r e[— m, 0] .
_— - 0 =T
— 2T +a X 21 — Y.
Thus,
2r+4a T—r%
(1) [ aiae = 77 Ja)ae.

The inequalities (4), (5), (6) and (7) imply

o) 7 L[, M [
) 7550 — 7O = 11 £ll o[ 26 + [ a1t

+ g::n]a@) a1 .

Put C/2 equal to the coefficient of || f|| in (8). Note that C depends
only on M,d and . That inequality applies to smooth functions in
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(Re A) vanishing at # = 0. Now, let f be any smooth M in
(Re A)'. We M(/S) to f — £(0). Since F(0) = (f — £(0))(0)
and 754(0) = [(F — £(0))°4](0), we conclude that

750 = FOI = 11f - FOIS

— | Fo8(0) — FO) | = CIIf ]
— | Fop(0)| < CILFIl + 1F(0) ]
< Clfib+ A
< (C+ DIIFII.

DEFINITION. For g > 0 define C; by
C; = {@: @ is a homeomorphism of I onto /" of class C? satisfying:

8= |Low g%
8= | Lo g%
£ ] <L
Lo g%}.

LeMMA 2. There exists Ky > 0, depending only on B such that
for all @ belonging to C; with ©(1) = 1 and for all smooth functions
F in Re A, we have

|F@o)1)| < K[| FI| -
Proof. Define ¢ on [—7x, 7] by @{(¢*) = ¢, Then ¢ is of class

C* and ¢(0) =0. If ¥ =0 and ¥'(e™) = ¢¥™ for u e ¢([—7, 7]), then
o is the inverse of ¢. Furthermore

5O1= | Loe)
o= | Lre
and
)] = [Ewe| + [ Lre)

If we set y=p8,0=p0 and M = 1/8 + 1/5°, then ¢ satisfies the
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hypotheses of Lemma 1, and if we apply the lemma to ¢, the constant
C obtained in (8) depends only on 8.

If F is a smooth function in Re 4 and if f is defined on R by
f(6) = F(e"), then f is a smooth function in (Re A)' with |[|F]|| =
IIF1ll and fop(0) = Fod(1). Hence (9) yields that

[F@)(D)| = (C+ DIIFI -
Therefore the lemma is proved by defining K; = C + 1.
LEMMA 3. If @ belongs to Cs, then
\F@)(1)| = K ||| Fl
for all smooth fumncttons F contained in Re A.

Proof. Define X by @) = ¢ and set @, = ¢ @, Note that
0(1)=1. If ¥ = @' and ¥, = @7 then ¥ (¢**) = ¥(e'**?). We check
that @, ¢ C; by noting that

50| = | o)
5509 = [0 |
Ay )] = d_w(eiw)
)gfﬂw@w} = [ L))

Thus, by Lemma 2, 1%1)(1){ < K;|||G@]|| for all smooth functions G
belonging to Re A. Now, given F' smooth in Re A, put G(e?) = F(e'**).

Then G(®,) = F(®), G(d,) = F(®) and (| F|| = | G||. Hence
\F@)(1)| < K[| FI|| -
LEemMMA 4. For ®eC, and L with [{} =1,
@) = K| F
for all smooth functions F in Re A.

Proof. Fix { =¢e"” on I'. Define @* by @*(") = @(e’*¥). By
comparing the derivatives of @, ®* and their respective inverses in
a manner similar to that in Lemma 3, we can show that @* e C,.
Therefore, for a smooth function ¥ in Re A4,
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\F@o%W) | < K| FI| -
But 1«:(\5)(@) = ﬁé*)(l). Hence

\F@)()| < K,|[|FJ| -

LEMMA 5. If @ belongs to C, for some S >0, then Re A(®) &
Re A.

Proof. From Lemma 4, it follows that if F is a smooth function
in Re A,

|F(®) < K[| F Il -
Hence

|F@) ||| = | F@)]| + || F{®)]]
<||F||+ K| F|| < (K + D] F]| -

Defining T by T(F) = F(®), we see that T is a bounded linear trans-
formation defined on smooth functions in Re A and mapping into Re A.
The domain of T is dense in Re 4, so that 7T has a norm preserving
extension which maps Re 4 — Re A4; we also denote this extension by
T. If u belongs to Re A, there are smooth function F', in Re 4 with
| F, — ul]|| — 0, and therefore ||| F,(®) — Tu||| — 0. These imply that
NF, —u||—0 and [|F,(®) — Tu||—0. Hence Tu = w(®). That is
#(®) belongs to Re A for every u in Re 4.

THEOREM 3. Let @ belong to C, for some 8 > 0. Then Re A(®) =
Re A.

Proof. We apply Lemma 5 to @ and @', both of which are
contained in C;, to conclude Re A(®?) = Re A and Re A(?7!) = Re A.
Therefore Re A(®) = Re A.

COROLLARY. Let @ be a homeomorphism of I" onto I' of class C*
with djdt(@(e™)) == 0 for all t. Then Re A(®) = Re A.

REMARK. The assumption that d/dt(@(e*') == 0 cannot be eliminated,
as there do exist examples of homeomorphisms @ of I” onto /" which
are of class C=, but for which Re A(®) = Re A.
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