SIMPLE EXTENSIONS OF MEASURES AND THE PRESERVATION OF REGULARITY OF CONDITIONAL PROBABILITIES

LOUIS HARVEY BLAKE
SIMPLE EXTENSIONS OF MEASURES AND THE
PRESERVATION OF REGULARITY OF
CONDITIONAL PROBABILITIES

LOUIS H. BLAKE

Throughout this paper, the following notation will be
adopted. \((\Omega, \mathcal{A}, P)\) will be a probability space with \(\mathcal{B}\) a sub
\(\sigma\)-field of \(\mathcal{A}\). \(H\) will denote a subset of \(\Omega\) not in \(\mathcal{A}\) and \(\mathcal{A}'\) will be the \(\sigma\)-field generated by \(\mathcal{A}\) and \(H\). \(P_e\) will be a
simple extension of \(P\) to \(\mathcal{A}'\) if \(P_e\) is a probability measure on
\(\mathcal{A}'\) with \(P_e|_{\mathcal{A}} = P\).

The ability to extend the regularity of the conditional
probability \(P^8\) to regularity of \(P_e^8\) has been explored earlier
for canonical extensions of measures. The main results of
this paper are:

(a) If \(P^8\) is regular for some canonical extension \(P_e\) of
\(P\) to \(\mathcal{A}'\), then \(P^8\) is regular for any simple extension \(P_e\) of
\(P\) to \(\mathcal{A}'\).

(b) For some choice of \((\Omega, \mathcal{A}, P), \mathcal{B}\) and \(H\), \(P^8\) is regu-
lar but for no \(P_e\) is \(P^8_e\) regular. This will essentially extend
the Dicudonné example.

Our notation regarding (regular) conditional probabilities will be
consistent with [1].

For extendability see [4]. The example for (b) occurs in [2].

Proposition 1. Any simple extension \(P_e\) can be expressed as the
sum of a canonical extension of \(P\) plus a finite signed measure on
\(\mathcal{A}\). (Since the construction is carried out in a unique manner, this
decomposition of \(P_e\) will be called the canonical decomposition of \(P_e\).)

Proof. As in [1], let \(K\) be a set which extends \(P\) canonically to
\(\mathcal{A}'\). For any \(A' \in \mathcal{A}'\) with \(A' = A_1H + A_2H^c\) for some \(A_1\) and \(A_2\) in \(\mathcal{A}\)
write

\[P_e(A') = P(A'K') + P_e(A_1HK) + P_e(A_2H^cK) \]

It may be supposed that \(P(K) \neq 0\). Thus, let \(\alpha_\varphi \equiv P_e(HK)/P(K)\)
and define a set function \(\varepsilon\) on \(\mathcal{A}\) such that for every \(A \in \mathcal{A}\)
write

\[\varepsilon(A) = P_e(AHK) - \alpha_\varphi P(AK) \]

It is immediate that \(\varepsilon\) is a finite signed measure. It also follows
that for any \(A \in \mathcal{A}\)

\[P_e(AH^cK) = \beta_\varphi P(AK) - \varepsilon(A) \]
where $\beta_\alpha \equiv 1 - \alpha_\alpha$ inasmuch as it can be written that
\[
P(A) = P_\epsilon(A) = P_\epsilon(AH + AH^c) = P(AK^c) + \alpha_\alpha P(AK) + \varepsilon(A) + P_\epsilon(AH^cK).
\]
Thus, for $A' \in \mathcal{A}'$
\[
P_\epsilon(A') = P(A'K) + \alpha_\alpha P(A_c) + \varepsilon(A_c) + \beta_\alpha P(A_cK) - \varepsilon(A_c).
\]
(Let the sum of the underlined measures be called the canonical part of P_ϵ.)

It is clear that the extension, P_ϵ, of Proposition 1 is canonical if and only if the signed measure ε is identically zero.

Lemma 2. The signed measure ε is absolutely continuous with respect to P.

Proof. Let $B \in \mathcal{B}$ be a positive set for ε according to its Jordan decomposition and let $A \in \mathcal{A}$ with $P(A) = 0$. Then,
\[P_\epsilon(ABHK) \leq P(ABK) \leq P(A) = 0\]
and so $\varepsilon(AB) = 0$. If $C(=B^c)$ is a negative set for ε then it follows that $\varepsilon(AC) = 0$ where one merely inserts C for B in (2.1). Hence $\varepsilon \ll P$.

Lemma 3. If $\Omega_0 \in \mathcal{A}$ with $P(\Omega_0) = 1$ then $\varepsilon(\Omega_0) = 0$.

Proof. Immediate.

The following lemma is needed before the main result can be presented.

Lemma 4. Let (Ω, \mathcal{A}, P) be a probability space with $\mathcal{B} \subset \mathcal{A}$. Let P_\circ be another measure on \mathcal{A} with $P = P_\circ$ on \mathcal{B} and $P \ll P_\circ$. Suppose P_\circ is regular. Then, P_\circ is regular.

Proof. Let $p_\circ(\cdot | \mathcal{B})$ be a version of P_\circ such that $p_\circ(\omega, \cdot | \mathcal{B})$ is a measure ($P_\circ|_\mathcal{B}$ a.e.). Also, let $X = dP/dP_\circ$ where for all $A \in \mathcal{A}$
\[P(A) = \int_A X dP_\circ.
\]
Hence, define
\[(4.1) h(\omega, A) = \int_A X(\omega')p_\circ(\omega, d\omega' | \mathcal{B}).\]
From (4.1) it is immediate that $h(\cdot, A)$ is \mathcal{B}-measurable for every $A \in \mathcal{A}$ and for fixed $\omega \in \Omega$, $h(\omega, \cdot)$ is a measure on \mathcal{A}. It remains to show that for any $B \in \mathcal{B}$

$$\int_B h(\omega, A) P(d\omega) = P(AB).$$

To show this, begin by establishing that

$$X \in L_1(\Omega, \mathcal{A}, p_0(\omega, \cdot | \mathcal{B})) P_0 | \mathcal{B} \text{ a.e.}$$

This follows at once by observing that

$$\int_\Omega X(\omega') P_0(\omega', d\omega') = (E^o X)(\omega)$$

and

$$\int_\Omega (E^o X)(\omega) P_0(d\omega) = \int_\Omega X(\omega) P_0(d\omega) = 1.$$

Next, write

$$X = \lim_{n \to \infty} X_n$$

where $X_n = \sum_{k=1}^n \zeta_{k,n} \mathcal{F} A_k, n)$ where

$\zeta_{k,n}$ is a real constant, $\mathcal{F} A_k, n)$ is the characteristic function of $A_k, n) \in \mathcal{A}$ and $\{X_n\}_{n \geq 1}$ is an increasing sequence.

Finally, since $X \in L_1(\Omega, \mathcal{A}, p_0(\omega, \cdot | \mathcal{B})) P_0 | \mathcal{B}$ a.e., the monotone convergence theorem can be used on the following chain of equalities to give the desired result:

$$\int_B h(\omega', A) P(d\omega') = \int_B \left\{ \int_A X(\omega) p_0(\omega', d\omega | \mathcal{B}) \right\} P(d\omega')$$

$$= \int_B \left\{ \lim_{n \to \infty} \sum_{k=1}^n \zeta_{k,n} p_0(\omega', A_k, n A | \mathcal{B}) \right\} P(d\omega')$$

$$= \lim_{n \to \infty} \left\{ \int_B \sum_{k=1}^n \zeta_{k,n} p_0(\omega', AA_k, n | \mathcal{B}) \right\} P(d\omega')$$

(since $P = P_0$ on \mathcal{B})

$$= \lim_{n \to \infty} \left\{ \int_B \sum_{k=1}^n \zeta_{k,n} p_0(\omega', AA_k, n B) \right\}$$

$$= \lim_{n \to \infty} \left\{ \int_{AB} \sum_{k=1}^n \zeta_{k,n} (\mathcal{F} A_k, n)(\omega) P_0(d\omega) \right\}$$

$$= \int_{AB} X(\omega) P_0(d\omega) = P(AB).$$

Lemma 4 gives immediately
THEOREM 5. Let \((\Omega, \mathcal{A}, P), \mathcal{B} \subset \mathcal{A}, \) and \(\mathcal{A}' \) be given. Let \(P_e\) be any simple extension of \(P\) to \(\mathcal{A}'\). Let \(P^*\) be regular. A sufficient condition that \(P^*_e\) be regular is that \(P^*_e\) be regular where \(P_e\) is the canonical part of \(P_e\). (Let \(K\) be the set which extends \(P\) canonically to \(\mathcal{A}'\) as in [1].)

Proof. It is immediate that \(P_e|_\mathcal{B} = P = P_e|_\mathcal{B}\). Thus the proof will be complete by Lemma 4 if it can be shown that \(P_e \ll P\). To do so, suppose \(A' \in \mathcal{A}'\) with \(A' = A_1H + A_2H'\) and \(A_i \in \mathcal{A}, i = 1, 2\). If \(P_e(A') = 0\), it follows that \(P(A_1K) = P(A_2K) = 0\). Thus

\[
\varepsilon(A_iK) = \varepsilon(A_2K) = 0
\]

by Lemma 2. But, by Proposition 1 it follows that \(\varepsilon(A) = \varepsilon(AK)\) for all \(A \in \mathcal{A}\); hence \(\varepsilon(A_i) = \varepsilon(A_2) = 0\) and thus \(P_e(A') = 0\).

COROLLARY 6. With the notation of Theorem 5, assume \(P^*_e\) is regular with \(0 < \alpha_0 < 1\). Let \(P_e\) be any other canonical extension of \(P\) to \(\mathcal{A}'\), then \(P^*_e\) is regular.

Proof. \(P_e \ll P\) and the proof is complete by Lemma 4.

The representation of an arbitrary simple extension as constructed in Proposition 1 helps establish the following interesting

PROPOSITION 7. Let \((\Omega, \mathcal{A}, P)\) be given with \(\mathcal{A}\) countably generated and \(\{\omega\} \in \mathcal{A}\) for all \(\omega \in \Omega\). Suppose \(H \in \mathcal{A}\) with \(P^*(H) = 0\) and \(P^*(H) = 1\). Then there exists no simple extension \(P_e\) of \(P\) to \(\mathcal{A}' \equiv \sigma(\mathcal{A}, H)\) such that \(P^*_e\) is regular.

Proof. With \(H\) so chosen, it follows that the set \(K\) associated with the canonical part of \(P_e\) has \(P\)-measure one.

By Proposition 1 write

\[
P_e(A') = \alpha_2P(A_1K) + \varepsilon(A_1) + \beta_2P(A_2K) - \varepsilon(A_2)
\]

for any \(A' \in \mathcal{A}'\) with \(A' = A_1H + A_2H'\) and \(A_i \in \mathcal{A}, i = 1, 2\). It may be assumed that \(0 < \alpha_0 < 1\); otherwise, \(P_e\) would be canonical (see [1]) and the result would follow directly as in [3], p. 210.

Suppose there exists a version of \(P^*_e\), \(p_e(\cdot, \cdot | \mathcal{A})\), such that \(p_e(\omega, \cdot | \mathcal{A})\) is a measure on \(\mathcal{A}'\). Define

\[
B \equiv \{\omega | p_e(\omega, H | \mathcal{A}) = 0\}
\]

It follows that \(P(B) < 1\), otherwise write
\[0 = \int_B p_\omega(\omega, H | 21) P_\omega(d\omega) = P_\omega(BH) = \alpha_0 P(BK) + \varepsilon(B) \]
\[= \alpha_0 P(B) + \varepsilon(B) = \alpha_0 , \]

where \(P(B) = 1 \) and \(\varepsilon(B) = 0 \) by Lemma 3, and get \(\alpha_0 = 0 \), a contradiction.

Define a set \(E \) where \(E \) is the set of points \(\omega \) for which it is not true that \(p_\omega(\omega, D | 21) = (\psi D)(\omega) \) identically for all \(D \in 21 \) (where \(\psi D \) is the characteristic function of \(D \)). Since \(21 \) is countably generated, \(P(E) = 0 \) (see [3, p. 210]).

It then follows that \((E \cup B)^c \subset H\). Suppose otherwise; that is, \(\omega \in (E \cup B)^c \) and \(\omega \notin H^c \) and get
\[
0 = (\psi\{\omega}\rangle \cup H | 21) = (\psi\{\omega}\rangle | 21) + p_\omega(\omega, H | 21) = \varepsilon(\{\omega}\rangle | 21) + p_\omega(\omega, H | 21) > 1 ,
\]
a contradiction.

But \(P((E \cup B)^c) > 0 \) and \((E \cup B)^c \subset H\). This contradicts construction of \(H \) and so \(P^*_\omega \) cannot be regular for any simple extension of \(P \) to \(21' \).

References

Received February 22, 1972.

Worcester Polytechnic Institute
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $48.00 a year (6 Vols., 12 issues). Special rate: $24.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
Christopher Allday, *Rational Whitehead products and a spectral sequence of Quillen* .. 313
James Edward Arnold, Jr., *Attaching Hurewicz fibrations with fiber preserving maps* .. 325
Catherine Bandle and Moshe Marcus, *Radial averaging transformations with various metrics* .. 337
David Wilmot Barnette, *A proof of the lower bound conjecture for convex polytopes* .. 349
Louis Harvey Blake, *Simple extensions of measures and the preservation of regularity of conditional probabilities* 355
James W. Cannon, *New proofs of Bing’s approximation theorems for surfaces* .. 361
C. D. Feustel and Robert John Gregorac, *On realizing HNN groups in 3-manifolds* ... 381
Theodore William Gamelin, *Iversen’s theorem and fiber algebras* .. 389
Daniel H. Gottlieb, *The total space of universal fibrations* 415
Yoshimitsu Hasegawa, *Integrability theorems for power series expansions of two variables* .. 419
Dean Robert Hickerson, *Length of period simple continued fraction expansion of \sqrt{d}* ... 429
Herbert Meyer Kamowitz, *The spectra of endomorphisms of the disc algebra* ... 433
Dong S. Kim, *Boundedly holomorphic convex domains* 441
Daniel Ralph Lewis, *Integral operators on L_p-spaces* 451
John Eldon Mack, *Fields of topological spaces* 457
V. B. Moscatelli, *On a problem of completion in bornology* 467
Ellen Elizabeth Reed, *Proximity convergence structures* 471
Ronald C. Rosier, *Dual spaces of certain vector sequence spaces* ... 487
Robert A. Rubin, *Absolutely torsion-free rings* 503
Leo Sario and Cecilia Wang, *Radial quasiharmonic functions* ... 515
James Henry Schmerl, *Peano models with many generic classes* ... 523
H. J. Schmidt, *The \bar{F}-depth of an \bar{F}-projector* 537
Edward Silverman, *Strong quasi-convexity* 549
Barry Simon, *Uniform crossnorms* ... 555
Surjeet Singh, *(K E)-domains* .. 561
Ted Joe Suffridge, *Starlike and convex maps in Banach spaces* ... 575
Milton Don Ulmer, *C-embedded Σ-spaces* 591
Wolmer Vasconcelos, *Conductor, projectivity and injectivity* 603
Hidenobu Yoshida, *On some generalizations of Meier’s theorems* ... 609