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NEW PROOFS OF BING’S APPROXIMATION
THEOREMS FOR SURFACES

J. W. CANNON

We give alternative proofs of Bing’s Side Approximation
and Homeomorphic Approximation Theorems for surfaces in
3-manifolds.

0. Introduction. We give in §1 an alternative proof of Bing’s
Side Approximation Theorem (S.A.T.) [4] [7] [8]:

S.A.T. Suppose that S is a 2-sphere topologically embedded in E°.
Then, for each ¢ > 0, there are disjoint ¢-disks D,, ---, D, in S and
an ¢-homeomorphism % from S into E? such that

(1) &(S) is polyhedral, and

(2) S- U:;D;cExtnS).

One may require alternatively that

(2) S— U;D;cInth(S).

In §2 we deduce from the above the slightly stronger version of
the S.A.T. (also due to Bing) which one generally encounters in
applications.

In the strict sense, Bing’s proof of the S.A.T. is completely ele-
mentary. Our proof on the other hand uses freely local homology
and homotopy properties, Dehn’s lemma and related theorems, and
homology linking theory. We have attempted to substitute simplicity
of outline for simplicity of technique. This has the advantage that
the outline serves almost without change in a proof of the Moise
[15]-Bing [6] theorem on the triangulability of 3-manifolds and the
Armentrout [3] theorem on approximating cellular maps between
3-manifolds by homeomorphisms. We do not go into detail on these
latter theorems. Some details of the proof which are unique to the
S.A.T. (and which, in fact, make it harder than the triangulation
and cellular map theorems) have been proved in their more natural
setting, “ULC properties of embedded curves and surfaces in E*” [10,
§2 and the first half of §3]. This allows us to make the outline
even more transparent and unencumbered by detail. The necessary
information from [10] is summarized in four lemmas at the end of
this introduction. This quick summary allows the present paper to
be read independently of [10]. We give a short proof in § 8 of another
of Bing’s important theorems on surfaces, namely, the Homeomorphic
Approximation Theorem (H.A.T.) [5]. The shortness arises from the
fact that we use the S.A.T. to do the work that Bing did from scratch.

H.A.T. Suppose that S is a topologically embedded 2-sphere in
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E® and that, for each ¢ > 0, there is an e-homeomorphism from S into
IntS. Then SUInt S is a 3-cell.

Papers [9] and [10] are the basic references for this paper: Refer-
ence [9] includes descriptions of the Euclidean spaces (£, E?, E?, ---),
n-cells (B’ B!, B? --- and their homeomorphic images), n-spheres
(S°=Bd B, S* = Bd B?, --- and their homeomorphic images), com-
plexes, manifolds, disks (2-cells), ares (1-cells), simple closed curves
and loops, finite graphs (1-complexes), polyhedra, and general position
and cut-and-paste techniques. It also gives statements of Dehn’s
Lemma [16] (cf. [9, 4.5.1 and Addendum to 4.5.1], the Loop Theorem
[17], and the Sphere Theorem [16]). Such concepts are widely known
and need only be checked by the beginner. Reference [10] contains
technical material less widely known and summarized here:

NoraTION. We use p for the Euclidean metric, Diam for diameter,
Cl for closure, Bd for boundary (point set or combinatorial), Int and
Ext for interior and exterior, N(X, ¢) for the (open) e-neighborhood of
X in E® An e-set has diameter less than ¢; an e-map or homeomor-
phism moves no point as far as . If T is a triangulation (possibly
curvilinear) of some topologically embedded polyhedron, then 7% denotes
the i-skeleton of T, and | T%| denotes the underlying point set which
carries 7% (i.e., the union of the simplexes in T%).

Property ULC". Let A be a subset of E® and » a nonnegative
integer. Then A is ULC" if the following condition is satisfied: For
each ¢ > 0, there isa 6 >0 such that if 0 <i<mnand f: S — A is
a map from the ¢-sphere S* into a J-subset of A, then there is a
map f*: B"*'— A into an e-subset of A which extends f (recall that
St = Bd B+Y).

0.1. [19, p. 66]. If S is a 2-sphere in E® and U is a component
of E* — S, then U is ULC".

0.2. Ewxistence of mice arcs in 2—-spheres. Suppose S is a 2-sphere
in E® U, and U, are the components of E* — S, G is a finite graph in
S, and ¢ > 0. Then there is an e-homeomorphism k: S — S such that
Cl1(U,) — n(@) and Cl(U,) — h(G) are ULC".

Proof. [10; 2C.7(2). 2, 2C. 7(3). 2, 2C. 7(1), 2C. 3].

0.3. Suppose S is a 2-sphere in E°, U, and U, are the components
of E* — S, and J is a simple closed curve in S such that CI(U,) — J
and Cl (U,) — J are ULC?. Then J pierces an almost-polyhedral disk
at each point of J. (A 2-manifold is said to be almost-polyhedral if
it is locally polyhedral except at finitely many points.)
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Proof. [10; 3.2, 3.3].

0.4. Adjustments of maps in ULC sets. Suppose Cc E® and
C is ULC" (n a nonnegative integer). Suppose P is an (n + 1)-com-
plex, B is a closed subset of P, and F: P—ClC is a map. Then,
for each ¢ > 0, there is a map f*: P— Cl C such that

51 B=f|B
f*(P - B)c C, and
o(f* (=), f(x)) < e, for each xe P.

Proof. [10, 2C. 2].

The following information on linking is classical and is included
for the use of the reader in verifying certain intuitive claims made
in the proof of the S.A.T. and H.A.T. We give one example of such
a verification in an appendix following § 3.

Linking of Simple Closed Curves in E*® (ef. [1, Chapter 15] and
[18, § 77] for details). We use the notation L(J, K) for the (homolo-
gical) linking number (integer coefficients) of disjoint oriented simple
closed curves or loops in E® The integer L(J, K) may be calculated
as follows. Choose polygonal oriented simple closed curves J’ and K’
such that J is homologous to J’ in E* — K and K is homologous to
K’ in E® — J'. Let D be a polyhedral singular oriented surface in
E*® bounded by the oriented curve J’ and in general position with
respect to K'. Assume E°® oriented. Then each oriented simplex in
D can be assigned a positive and a negative side in E°® (intuitively,
by the right-hand rule). Then L(J, K) is the algebraic number of
times K’ cuts through D: an intersection at which the oriented K’
passes from the negative to positive side of D is counted as 41,
from the positive to the negative as —1. Then the following pro-
perties hold.

0.5. L(J, K) = L(K,J) and this integer is independent of the
choice of J’, K’, and D (in particular depends only on the homology
class [K] of K in E® — J).

0.6. If J is an oriented simple closed curve in E?, then there is
an isomorphism H,(E® — J; Z) ~ Z which sends [K] to L(J, K).

0.7. If D is a disk in E® (not necessarily polyhedral) and p € Int D,
then there is a simple closed curve J in (E® — D) U {p} for which
L(J,Bd D) + 0. Furthermore, if J is any such loop and J, is any
loop in E°® — Bd D, then J, is homologous in E®— BdD to some
multiple of J. In particular |L(J, Bd D)| =1 by (0.6).
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Finally, we mention that we shall use freely the standard cut-
and-paste procedures of 3-space topology without being too explicit
about the details. For the uninitiated (and even for the initiated
who finds the details of the proof of Lemma (4.2), § 4, somewhat out-
side the range of his experience) we recommend the note by Griffith
and Harrold in the Proceedings of the National Academy of Science
[12] where the procedure is carried out in some detail. (Note the
comments about [12] at the end of our paper.)

1. Proof of the S.A.T. Throughout this section, S will denote
a topologically embedded 2-sphere in Euclidean 3-dimensional space E°®
and ¢ a positive number.

Choose a triangulation T' of S which has mesh so small that the
simplicial neighborhood in T of each simplex has diameter less than
¢/8. By (0.2), we may assume that the carrier G = |T'| of the
1-skeleton T' of T is a finite graph such that Cl(IntS) — G and
Cl(Ext S) — G are ULC-"

Step 1. Building an almost-polyhedral 2-sphere S(v) about a
vertex v of T. We choose from the interior of the carrier of each
1-simplex o of T a point p(c). By (0.3), there is a very small almost-
polyhedral disk D(o) pierced by |T'| at p(o). Let v be a vertex of
T and o, +-+,0, = 0, the 1l-simplexes of T which emanate from wv.
We assume o,, ---, 0, = 0, indexed so that o, and o; are faces of a
common 2-simplex z,; of T if ¢ —j=1. Let s; be the arc in ¢,
bounded by v and p(o;). Let ¢(o;) be a point of (Intg,) — s; (¢(0,) =
q(oy)). Let s} be the arc in ¢; bounded by v and ¢g(o;). Let A;;(t — 7 =1)
denote a spanning arc of 7;; with endpoints ¢(s;) and ¢(s;). We re-
quire that A;; be very near homeomorphically to the arc s; Us,. Then
J = Ui—j-1 4;; is a simple closed curve in S which bounds a small disk

D (0'1)

9(01)

FIGURE 1
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D in S with U:s;CInt D. We may require that DN D(s;) = D NInt D(o;)
and that this intersection lie very close to p(c;). (See Figure 1.)

Since Cl(Int S) — | T'| and Cl1(Ext S) — | T*| are ULC", it follows
from (0.4) that there are maps f: D— S U Int S and g: D— SUExt S
which fix Bd D, move points of Int D only very slightly, and take
Int D into the complement of | 7"|. We may think of f(D) U g(D) as
a singular 2-sphere in E°. After slight adjustment we may assume
that f(D) U g(D) is in general position with respect to |J;D(g;).
We require that f and ¢ be chosen so near to the identity that
(fD)yUgD)NU:BdD(g;,) = @. We leave it to the reader to estab-
lish the following claim (e.g., by a linking argument):

Claim. If, for each 7 and j with ¢ — j = 1, the arc A4;; is very
close homeomorphically to the arc s; U s; and if the maps f and ¢ are
very near the identity map, then there is in f(D) U g(D) (as adjusted
for general position) a singular disk-with-holes D, which has the fol-
lowing properties:

(1) D,n U;:D(;) = Bd D,, and

(2) D, has in each D(o;) precisely one boundary curve which is
not homotopically trivial in D(o;) — {p(0;)}, and that boundary curve
is homotopic in D(o;) — {p(c;)} to a simple closed curve.

If we start with the disk-with-holes D, supplied by the claim,
then the boundary curves of D, which are trivial in some D(o;) —
{p(c;)} may be filled in by singular disks in D(s;) — {p(s;)}, and these
singular disks may then be pushed slightly to one side of D(s;) so
that (1) and (2) are still satisfied but so that the nontrivial boundary
curves promised by (2) are the only boundary curves of the adjusted
D,. These nontrivial boundary curves may in turn be replaced by
simple closed curves J; in D(o;) — {p(0,)}, by (2), so that (1) and (2)
are still satisfied. We continue to call the adjusted disk-with-holes D,.

Let D;(i = 1,---, n) be the disk in D(s;,) bounded by J;. Then
D,UD,U -+ UD, is an almost-polyhedral singular 2-sphere in E?
with no singularities near p(g,), ---, p(¢,). By Dehn’s Lemma([16];
note also [9, Addendum to Theorem 4.5.1]), there is a nonsingular
2-sphere S(v) in the union of D, U --- U D, and an arbitrarily small
neighborhood of Int D, such that velInt S(v) and such that S(v) is
polyhedral except possibly at the points »(c)), ---, p(c,). It follows
that, if D, is sufficiently close to D, we must have S(») N |T'| =
{p(@), -+, p(o,)} with | T*| piercing S(v) at each of the points p(c;).

Step 2. Building a polyhedral handlebody H about |T'|. It is
clear from the construction described in Step 1 that, if v, «--, v, are
the vertices of T, then we may choose the 2-spheres S(v,), ++-, S(v,)
so as to satisfy the following requirements:
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(3) [S() U Int S(w)] N [S(w;) U Int S(v;)] = S(v:) N S(v;)(@ # j); and
this intersection is either @ or it is a subdisk of some D(o) and con-
tains the corresponding (o).

(4) [S(w;) UIntS(w)]N7 =+ @ if and only if v; is a vertex of z,
for each ze T.

(5) Diam S(v;) < ¢/8.

Let H= U~ S(v;) UInt S(v;). We see that H is a polyhedral handle-
body as follows. Suppose S(v;) N S(v;)(Z > j) is nonempty, hence a
disk D;;,, Then Dj; is polyhedral modulo its one-point intersection
with | T'|. Use Dehn’s lemma to replace D;; by a polyhedral disk
D;; which differs from D;; only very near D;; N |T'|. The iteration
of this process changes each S(v;) into a polyhedral 2-sphere T(v;).
Then H = U, T(v;) U Int T(v;), and H is clearly a handlebody since
each of the sets C(v;) = T(v;) UIntT(v;) is a polyhedral 3-cell. If
v,, ¥, and v, (r > s >t) are the vertices of a single 2-simplex 7 in 7,
then

X(7) = C(v,) U C(v)) U C(v)

is a polyhedral solid torus. The disks D,,, D,, and D,, are called the
distinguished meridional disks of X(r) and the other disks D,; which
lie on Bd X(r) are called the distinguished boundary disks of X(z).
The totality of disks D,; are called the distinguished disks of H.

Step. 3. Spanning polyhedral disks across the “holes” in H. Let
7 and X(7) be as in the preceding paragraph. We may certainly
require that Bd z < Int X(7) and that Bd ¢ be homotopic in Int X(7) to
a centerline of X(z). As one consequence we find that there are sim-
ple closed curves J and K in Int7 such that Bdz and K bound an
annulus 4 in 7z N Int X(zr) with J separating Bdz from K in A. By
(0.2), we may assume that Cl(IntS) — K and Cl(IntS) — K are
ULC'. Let D be the subdisk of = bounded by J. By (0.4), there
are maps f: D— S UIntS and ¢: D — S U Ext S which fix Bd D, move
points of Int D only slightly, and take Int D into the complement of
K. We think of f(D) U g(D) as a singular 2-sphere and use the Sphere
Theorem [16] to replace f(D) U g(D) by a nonsingular polyhedral
2-sphere S(z) which lies arbitrarily close to f(D) U ¢g(D) and has K in
its interior. We may assume that S(r) is in general position with
respect to Bd H. We leave it to the reader to establish the following
claim. (Again we suggest a linking argument. Cf. also the argument
involving continua K, later in this section: if a curve in Bd D,(7)
bounds a disk in Bd X(z), then it does so in (Bd H) N X(7).)

Claim. If f and g are sufficiently near the identity and S(r) is
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sufficiently near f(D) U g(D), then there is a disk-with-holes Dy(z) in
S(z) which has the following properties:

(6) Dy7) N H = Bd D7) = Dyz) N X(z);

(7) Dy(z) has precisely one boundary component which does not
bound a disk in (Bd H) N X(zr) and that component is homotopic in
X(z) to Bdr.

Let 7, -+, 7, be the 2-simplexes of T and Dy(c,), « -+, Dy(z,) disks-
with-holes whose existence is assured by the construction just describ-
ed and the claim. We may clearly assume the following conditions
satisfied:

(8) Dofzs) N Dy(z;) = @ if 1+ J;

(9) Diam [D(z,) U X(z;)] < ¢/2.

We now proceed to adjust the Dy(z;)’s so that they are disks. If
the D.(z;)’s are not already disks, then there is an ¢ such that one
of the boundary components of D,(z;) bounds a disk £ in (Bd H) N X(z;)
(cf.(7) above) and (Int E') N U; Di(7;) = @. Add E to D,(r;) and push
that part of the new Dy(r;) which is near F slightly into E°* — H.
An iteration of this procedure changes each D,(z;) into a disk. Note
that we may maintain conditions (8) and (9).

We now adjust the disks Dy(z), ---, Dy(z,) so that, for each 4,
Bd D,(z;) runs “straight around” Bd X(z;) in Bd H. The problem here
is descriptive rather than inherent. We therefore urge the reader to
examine carefully Figures 2 and 3 before attempting to read the
description which follows. We fix for consideration a 2-simplex 7 of

31'72 FIGURE 2
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FIGURE 3

T. Recall that X(r) is a solid torus divided by its distinguished
meridional disks, which we denote by D, D,, and D,, into 3-cells
C,Cy, and C,, where D,=C,nGC,D,=C,NGC; and D,=C,NC.
We denote the distinguished boundary disks of X(c) by

1 1 2 2 3 3
Ely M) ET(I): El, ttcy Er(2), El; ) Er(3) ’

where those with superseript ¢ lie in Bd C..

Each of the cells C; encloses a unique vertex »(C;) of T; each
distinguished disk D of H intersects a unique 1-simplex o(D) of T.
We assume the indices on the distinguished disks chosen so that each
successive pair from the sequence

(10) o(CE),---, 0(E,y), oCEY), -+, 0CE,y), 0CE), +++, 0CE,y),
o('E) is a pair of edges from a single 2-simplex of 7. It follows
from (7) that there are disjoint ares ‘A, ---,'4,4, %4, -, *4,,),
4, -+, %A, in Bd X(7) joining successive pairs of distinguished disks
from the list (10) (with o¢’s removed) and lying, for each pair, in
Bd D,(z’), where 7’ is the 2-simplex of T which has the corresponding
pair of edges in its boundary. Note that a single component K; of
C: N (U4, U’E,) contains the disks |J,*E, and intersects both of the
distinguished meridional disks of X(z) which lie in Bd C;. With our
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descriptive apparatus finally set up, we can define our task precisely:
reduce D,(z) N (D, U D, U D,) to exactly three points. The procedure
is straightforward and is contained in the next paragraph.

We may suppose Bd D(z) in general position with respect to the
union Bd D, U Bd D, U Bd D,. If the intersection of Bd D,(r) with this
union consists of more than three points, then since Bd D,(7) is homo-
topic in X(z) to a centerline of X(7), there is an arc A in Bd D,(7)
which lies in a single C; and has its endpoints on a single Bd D,.
The existence of the continuum K; (see the previous paragraph) forces
A to bound, together with an arc in Bd D;, a disk E in Bd C; whose
interior misses each distinguished disk in H. Then each of the sets
Dy(z,) which intersects £ can be adjusted by cut and paste near F
so as to have no intersection with E. In particular, this reduces the
number of intersections of D,(r) with Bd D; by at least two. Note
that these changes may be made so as to preserve the essential pro-
perties of the disks Dy(z,), -, Di(z,) as described in (6), (7), (8), (9), and
the paragraph following (9). The reduction of Dy(z) N (D, U D, U D,)
to three points therefore follows by induction (for each 7).

Step 4. Building a polyhedral e-approximation to S. On the
boundary of each distinguished disk D; of H there are precisely two
points which lie in {J, D,(z;). Let A; be a polygonal spanning arc of
D; which has those two points as endpoints. Let C; be any of the
polyhedral cells of which H is composed. Then [U; 4, U U Do(z»)] N C;
is a single polygonal simple closed curve J; in BdC;,. Let P, be a
polyhedral spanning disk of C; with boundary J;,. Then P =
(U: P:) U (U Do(z)) is a polyhedral 2-sphere that is homeomorphically
within € of S. We leave the easy construction of the homeomorphism
to the reader.

Step 5. Identifying polyhedral e-side approximations to S. One
sees immediately that the polyhedral 2-sphere P of Step 4 locally
separates Bd H into two components. Since P is a 2-sphere in E°
(as opposed to a one-sided surface in a 3-manifold), the separation is
also global. Let H, and H, be the components of Bd H — P in Int P
and Ext P, respectively. Then

S, =HU (ij Dyz;)) and S,= H,U ('7} Dy(z,))

are polyhedral 2-spheres which also homeomorphically within & of S.
Let D, be a subdisk of 7, in Intz, which contains (S,US,) N .
Then the disks D, ---, D, are the e-disks whose existence is asserted
by the S.A.T. and S, and S, satisfy
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S — LkJDkCExtSI,

and
S — LkJchIntSz.

2. Improving the S.A.T. The following lemma is an alternative
to [7, Theorem 14, p. 181]. Let H(X) denote the convex hull of any
set X in E°

2.1. Suppose that pe E® and that X,, ---, X, are compact subsets
of E°® satisfying
(1) If <,7, and & are distinct indices, then X; N X; N X, = @.
(2) If X;nX; + @, then HX, U X;) Cc E® — {p}.
Then X = |J; X, does not separate p from infinity.

Proof. By [13, Theorem VI 10, p. 97], it suffices to show that
X is nullhomotopic in E®* — {p}. The sets X, -+, X, cover X; let N
be the nerve of that covering: one vertex v; for each nonempty X,
one l-simplex v,v; for each nonempty intersection X; N X;. The nerve
N contains no higher dimensional simplexes by (1). The vertex o,
can be realized geometrically as a point of X;, the simplex v,v; as the
straight line segment in H(X; U X;) joining »; and v»;, Map the sets
X, N X; to the midpoints of the 1-simplexes v;v; and extend these
partial maps on the sets X; N X; to maps from the sets X, into the
stars of the vertices v, in N (the star is an absolute retract). This
map can be realized as the final stage of a straight line homotopy in
E?® from X into the (possibly singular) geometric realization of N
in UHX; U X)) | X;N X; + @}, The homotopy moves X only in
UHX,UX) | X;Nn X, = 0} E° — {p}. Since the geometric realiza-
tion of N is nullhomotopic in E° — {p}, the proof is complete.

2.2. Suppose S is a 2-sphere in E® and & > 0. Then there is
a 0 > 0 such that if K is a compact set in S and K has no com-
ponent of diameter > 4, there exists a finite number of disjoint e-disks
E,.--,E, in S such that Kc {J;Int E..

Proof. This can be deduced easily either from [9, Theorem 4.8.7]
or its proof.

2.3. Addendum to the S.A.T. [7, §7]. The following conclusion
may be added to the S.A.T.: There are disjoint ¢-disks £, ---, K,
on n(S) such that

(3) n(S)— U; E;cIntS.
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Proof. Choose pelIntS. We may assume that o(p, S) > 2¢. By
(2.2), there is a 6, 0 < 0 < ¢, such that if K is a compact subset in S
having no component of diameter greater than 30, there exist disjoint
¢/3-disks E,, ---, E,, in S such that K< {J; Int E.,.

By the S.A.T., there are disjoint o-disks D, ---, D, in S and
a d-homeomorphism from S into E*® such that

(1) &(S) is polyhedral, and

(2) S — U;D;c Exth(S).

Let K, = (S)NU:D; and K = k' (K,). Then K has no com-
ponent of diameter greater than 30 and is covered by the interiors of
disjoint ¢/3-disks K, ---, E, in S. Let E; = h(E}). Then E,---, E,
are disjoint e-disks on A(S) such that SN A(S) c U, Int E;. It remains
only to show that A(S) — U, E;CInt S. Since po(p, SU h(S)) > ¢ and
S is homeomorphically within & of S, pelInth(S) [13, Theorem VI
10, p. 97]. Since p(p, SU k(S)) > ¢ and each D; and E; has diameter
less than ¢, it follows from (2.1) that ({J;D;) U (U; E;) does not
separate p from infinity. Let R be a ray from p to infinity in £° —
[(U: D) U (U; E;)]. Let g be the first point of BN (S U A(S)). If one
had ¢e S, then one would have a contradiction to (2) S — U; D;c
Ext n(S). Hence ge h(S) and 3) (S) — U, E;cIntS. This com-
pletes the proof.

S.A.T. for open subsets of spheres [7, §8],[8]. If U is an open
subset of a 2-sphere in E° and f is a positive continuous real function
on U, then there exists a homeomorphism % of S into E* a locally
finite collection of disjoint disks {D,} in U and a locally finite collection
of disjoint disks {E;} in h(U) such that:

(1) & is the identity on S — U.

(2) p(x, =) < f(x) for each xe U.

(8) RU) is locally polyhedral.

(4) U — U Int D; c Ext i(S).

(5) WU) - UInt E;cIntS.

(6) Diam D, < min value of f on D,.

(7) Diam E; < min value of f on & 7'(E)).

Proof. The proof proceeds almost without change from that of
the S.A.T. One chooses an infinite triangulation of U rather than
a finite triangulation of S. Otherwise the argument is entirely local
and the desired result follows.

3. Proof of the H.A.T. (statement appears in §1.) Throughout
this section we assume that S is a 2-sphere in E° which satisfies the
hypothesis of the H.A.T.; i.e., for each ¢ > 0, there is an e-homeomor-
phism from S into IntS. By the S.A.T., we may assume that the
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image of S is a polyhedral 2-sphere in Int S which we call a poly-
hedral e-approximation to S in Int S.

DEFINITION. Suppose K is a (curvilinear) simplicial complex in
S. We say that K can be polyhedrally collared from IntS if there
is an embedding A: K x [0,1] — S U Int S such that

(1) hk,0)=Fk if kekK.

(2) MK x (0,1]) < Int S.

(3) h|K x (0,1] is locally piecewise linear. Then % is called
a polyhedral collar on K from IntS. (We identify K x [0, 1] with
some abstract simplicial complex for the purpose of defining piecewise
linear.)

3.1. Each simple closed curve J in S can be polyhedrally collared
from Int S.

Proof. In outline, the S.A.T. for open subsets of spheres (§2)
implies that we can raise a blister near one of the disks on S which is
bounded by J; we can then use the polyhedral approximations to S in
Int S supplied by the hypothesis of the H.A.T. to cut off the feelers of
the blister which reach back through S (see Figure 4).

In more detail, let D be a disk in S bounded by J. Let f(x) =
o, S — D) for each xelntD. By the S.A.T. for open subsets of
spheres (§2), there exists a homeomorphism of S into £?3, a locally
finite collection of disjoint disks {D;} in Int D, and a locally finite
collection of disjoint disks {F,} in A(Int D) such that:

(1) h|S — Int D = identity.

(2) p, (@) < f(x) for each xze Int D.

(3) R(Int D) is locally polyhedral.

(4) Int D — U Int D; < Ext h(S).

(5) h(Int D) — JInt E;cInt S.

(6) Diam D; < min value of f on D..

(7) Diam E, < min value of f on A7'(E)).

Feeler

Int S FIGURE 4
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Let V denote the component of A(Int D) — S which has limit
points in J. Note that A(Int D) — {J Int E; c V. By the hypothesis
of the H.A.T., S, and hence also each disk D,, can be approximated
very closely by a polyhedral set in Int S. It follows easily that there
is a null sequence D;, D;, .- - of disjoint polyhedral disks in Int S, each
D; approximating the corresponding disk D, and each in general posi-
tion with respect to 2(S) such that

(8) D:NMmS)clInt E,.

(9) No component of V — U D; has limit points both in J and
in Int D.

Let W be the component of V — J D; which has limit points in
J. Note that 2(Int D) — {J Int E; © W. Consider the set Cl (W) — W.
The components of this set form a null sequence J, J,, J,, -+ - of simple
closed curves, each J; lying in some Int D} and only finitely many of
the J; in any one Dj;. For those curves J; which lie in Int Dj, we
fill in the holes in Cl (W) bounded by the J; with disks D(J;) in D;
and push these disks slightly to one side of D), pushing those furthest
which are innermost on D;. If this is continued sequentially (say, in
the order D}, D;, ---) and if care is exercised in the adjustments which
push the disks D(J;) away from the disks D}, one will obtain thereby
a disk £ = Cl (W) U D(J;) (adjusted) which has J as boundary and
has interior which is a locally polyhedral subset of IntS. A poly-
hedral subset of IntS. A polyhedral collar for J from IntS ecan
easily be identified in E.

3.2. If K is a #-curve in S (i.e., the union of three arcs with
common endpoints and disjoint interiors) and J is a simple closed
curve in K, then any polyhedral collar on J from IntS can be ex-
tended to a polyhedral collar on K from Int S.

Proof. Let D be the disk in S which is bounded by J and con-
tains the arc a = C1 (K — J). Let B be an arc which has the same
endpoints p and ¢ that « has and which lies except for » and ¢ in
S —D. Then J'=aUpB is a simple closed curve in S. Let D’ be
a disk bounded by J’ in S.

We are given by hypothesis an annulus A which polyhedrally
collars J from Int S. The annulus A comes equipped with an assigned
product structure A = J x [0,1] (J = J x {0}) which we shall consider
in more detail at the end of the proof. The proof of (3.1) showed
how to construet a disk E very near the disk D’ such that J' =
Bd E, Int Ec Int S, and Int E is locally polyhedral. It is clear from
the proof of (3.1) (choose f appropriately) that we may further require
that EN(J x {1}) = @. We require that Int £ and A be in general
position.
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The inexperienced reader should compare the following discussion
with [12]: Since Int £ and A are in general position, there are only
countably many components K, K,, ---of AN IntE and they form
a null sequence, locally finite except possibly at p and ¢ (the endpoints
of a), and satisfying for each individual ¢ either

(1) Cl(K;) = K; is a simple closed curve in Int E,

(2) CI(K;) = K; U {p} or K;U {g} is a simple closed curve con-
taining p or ¢, or

(3) CUK;) = K;U{p,q} is an arc from p to q.

If E is chosen near enough to D', then is follows that each com-
ponent K, of type (1) or (2) bounds a (unique) disk A(K;) in A. Such
a K; also bounds a (unique) disk E(K;) in E. Let

E,=F — U {Int E(K;) | K; is of type (1) or (2)}, and

E' = E,U[U {Int A(K)) | K; is of type (1) or (2) and K;C E}]. If
K, U K;C E\(i # j), K; and K, are of type (1) or (2), and A(K;) c A(K}),
then one is to understand that E’ contains two copies of A(K)) — {p, g},
one corresponding to K;, the other lying in A(K;) and corresponding
to K;. With this understanding, £’ is a singular disk which may be
made nonsingular by pushing the sets A(K;) — {p, q} slightly to one
side of A in Int S. If A(K;) c A(K;), then the copy of A(K;) correspond-
ing to K; must be pushed further away from A than is the copy of
A(K;)) in A(K)).

If each of the sets A(K)) — {p, q} is pushed to the appropriate
side of A and other appropriate care is taken, the nonsingular E’
obtained will satisfy all of the conditions that the original E satisfied
except that there will be only finitely many components of A N Int E’
and each will be of type (3).

Since J separates Inta = « — {p, ¢} from Int g in S, it follows
that A N Int B’ #+ &, hence that there is a disk E” in E’ such that
E"N A is a single arc in AN Bd E” from p to ¢ and such that the
complementary arc in Bd E” is the original arc . Standard cut and
paste techniques allow one to adjust E” so that the arc A N Bd E”
runs up the fiber {p} x [0,1] in A = J x [0, 1], arond the upper rim
J x {1} of A, and back down the fiber {¢} x [0,1]. The desired poly-
hedral collar for K from Int S can be identified in A U E” (adjusted).
This completes the proof of (3.2).

3.3. COROLLARY TO (3.2). If T is a curvilinear triangulation of
S, then the l-skeleton of T can be polyhedrally collared from Int S.
If T is a curvilinear derived subdivision of T, them any polyhedral
collar from Int S on the 1-skeleton of T can be extended to a polyhedral
collar from Int S on the 1-skeleton of T'.

Proof. The 1l-skeleton of a triangulation can be built up from an



NEW PROOFS OF BING’S APPROXIMATION THEOREMS FOR SURFACES 375

initial simple closed curve by adding arcs spanning the 2-cells of in-
creasingly fine cellular subdivisions of S. Thus the corollary follows
directly from (3.1) and (3.2).

3.4. Suppose T'is a curvilinear triangulation of S, k: | T*| x [0, 1] —
S U Int S is a polyhedral collar on the 1-skeleton T of T from Int S,
and « and g are positive numbers less than 1. Then there is a poly-
hedral embedding f: S — Int S such that:

(1) f(S) separates A(| T*| x {1}) from S in E?,

(2) f@) = h(t, o) for each te|T"|, and

(3) f(Into)c N(e URBde x [0, a]); 8) — k(] T*| x [0, 1]) for each
2-simplex o e T2

Proof. Suppose that, for each 2-simplex o€ T? we have shown
how to construct a polyhedral disk ¢’ such that Bdo = 2(Bd o X {a})
and Into’ c N(o U h(Bd o x [0, a]); B) — k(| T*| x [0,1]). Then, for g
sufficiently small (which we may certainly assume), S’ = J {0’ |o e T%
will automatically be a polyhedral 2-sphere in E® which separates
h(|T*| x {1}) from S in E® and a homeomorphism f: S — S’ satisfying
the requirements of (3.4) can be constructed by defining f||T"| by
requirement (2) and then, for each oe¢ T? extending f|Bdo across
Into to take o to ¢’. Thus it suffices to construct o’.

Suppose that o is a 2-simplex in the 2-skeleton T* of 7. Let S,
be a polyhedral g-approximation to S from Int S with ~(Bd o x [0, 1])
and S, in general position. For g sufficiently small it will be true
that

(4) S,NnABdo x[0,1) chBdo x (0, @),

(5) S, separates h(Bd o x {1}) from S, and

(6) some component C of S — A(] T*| x [0, 1]) will lie in N(c; B),
have its boundary components in N(Bd o x [0, 1]), and have precisely
one boundary component which is not contractible in the annulus
k(Bd o x [0, 1]).

Fill in those boundary components of C which are contractible in
hBd o x [0, 1]) with the disks they bound in 2(Bd ¢ x [0, a]) and push
them to the “0”-side of A(Bdo x [0, @]). This yields a disk ¢’ with
Bdo’ = Kand Into’cInt S — h( T*| x [0, 1]). Since the simple closed
curves K and h(Bd o x {a}) are parallel in A(Bdo x (0, @]), cut and
paste can be used to slide K upward in the annulus A(Bd o x [0, a])
so as to coincide with A(Bdo x {a}) as required. This completes the
construction of ¢’ and the proof of (3.4).

Proof of the H.A.T. We now construct a homeomorphism from
S U Int S to the unit ball B® in E? centered at the origin.
Let T, denote a curvilinear triangulation of S and T, T, ---
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successive curvilinear derived subdivisions of T, so chosen that mesh
T,—0 as ©1— oo,

By (3.3), there exist for 7 = 1, 2, --- polyhedral collars &;: | (T;)"'| x
[0,1] — SU Int S on the 1-skeletons (T;)' of these triangulations, h,,,
extending #;. We may clearly require that, for each ¢e|(T)'|, Diam
ha({td % [0, 1/3]) < 1/i. |

By (3.4), there exist for 7 = 1, 2, - -- polyhedral embeddings f;: S —
Int S such that:

(1) fiS) separates h;(| (T)"'| x {1}) from S in E?,

(2) fi®) = hi(t, 1/27) for each te |(T))'|, and

(3) fi(Into) < N(a, 1/2¢) — k(| (T:)'| x [0,1]) for each 2-simplex
o€ (T,

Let n, =1, n, -+ be a subsequence of 1,2, ---so chosen that
Fai(S) N Fay(S) = @ for i+ j. Let H,, be the restriction of the poly-
hedral collar &, to the set |(T.,,)'| x [0,1/2n;]. Then

X =S U{U: /2, U {U: Image H,}
is the template which we shall use to describe a homeomorphism

h:SUIntS— B®.

Description of h|S. Let h|S:S— (S* = Bd B®) be any homeo-
morphism.

Description of h|Image H,. If te|(T,)'| and ac|0,1/2n], let
h(H,(t, @)) be on the radius joining A(t) and the origin in B® and at
a distance a from A(t).

Description of h|f,(S). If seS, let h(f,(s)) be on the radius
joining h(s) and the origin in B® and at a distance 1/2n; from hk(s).

Description of h|(SUIntS) — X. Let U be a component of
(SulIntS) — X. Then Bd U is a polyhedral 2-sphere in X of which
U is the interior. By Alexander’s Theorem (see [2], [11] or [14]),
UUBAU is a 3-cell. The map k|Bd U is already defined and takes
Bd U homeomorphically onto a curvilinear 2-sphere i(Bd U) in Int B®.
Obviously, 2(Bd U) U Int A(Bd U) is also a 3-cell. Since both U U BdU
and A(Bd U) U Int #(Bd U) are 3-cells, there is an extension of A |Bd U
which takes U U Bd U homeomorphically onto A(Bd U) U Int ~(Bd U).
We take o |U U BAU to be this homeomorphism.

One checks easily that 7% defined piece by piece above defines a
homeomorphism from S U Int S onto B®. This completes the proof of
the H.A.T.
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APPENDIX. We give an example of the type of argument one
might use in establishing such things as the claims in Steps 1 and 3
of the proof of the S.A.T., Property (9) in the proof of (3.1), and the
statements involving “for g sufficiently small” in the proof of (3.4).
Such details are often omitted as essentially obvious in the mathema-
tical literature (or hidden under the rug, depending on one’s viewpoint).

EXAMPLE (cf. the second paragraph of the proof of (3.4)). Let
S be a 2-sphere in E® D a disk in S; and suppose J = Bd D has a
polyhedral collar A:J x [0,1] — S U Int S from IntS. For each ¢ > 0,
there is a 0 > 0 such that if S has a polyhedral d-approximation
f:S—1Int S from Int S with f(S) and A(J x [0, 1]) in general position,
then:

(1) f(S) separates i(J x [0,1]) from S in E?, and

(2) there is a component C of f(S) — h(J x [0,1]) such that
Cc N(D, ¢) and Cl (C) — C has precisely one component in h(J x [0, 1])
which does not bound a disk in A(J x [0, 1]).

(Note that if f(S) N A(J x {1}) = @ and if C’ is any component of
J(S) — h(J x [0, 1]), then Cl (C’) is a disk-with-holes with interior equal
to C’ and boundary curves in A(J x [0, 1]).)

Proof. We first require an auxiliary construction: let a and g
be arcs with common endpoints peInt D and ge S — D such that
a—{p,g}cIntS— w(J x[0,1]) and B — {p, ¢} c Ext S. Let D,cIntD
and D,c S — D be disks such that peInt D, and qeInt D,.

We choose 6 > 0 and smaller than the following numbers

9, = O[S, h(J x {1})]

9, = o[D, U D, h(J x [0, 1])]

= min {¢/2, o[S — N(D, ¢/2), h(J x [0, 1D]}
=0oS — IntD,UInt D), aU B] .

w

N

0
0

o

(a) f(S) separates h(J x {1}) from S in E*:Indeed, 6 < 6, im-
plies that S and f(S) are homotopic in E®* — h(J x {1}), hence that
h(J x {1}) € Int f(S) by [13, Theorem VI 10, p. 94]. Since S < Ext f(S),
the result follows.

(b) f(D)NrJ x[0,1]) = @ = f(D,) N h(J x [0, 1]) since 6 < &,

(c¢) The component C of f(S) — h(J x [0,1]) which contains
J(D,) (such exists by (b)) does mnot comtain f(D,): Indeed, suppose
{f(p), f(@} = C. Let v be an arc in C from f(p) to f(g). Let v, and v, be
the straight line segments in £° joining p to f(p) and f(q) to ¢, respec-
tively. Let ' be an arc from ¢ to p in Ext(S) U {p, ¢}. Because §<d,,7,N
ScIntD and v,NnScS— D. It follows that the loop /" which
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traverses v, 7,, 7', and 7, (in that order) has linking number +1 with
J. Since 0 < d,, I'NA(J x [0,1]) = @. Hence L(I", h(J x {1})) = x1
by (0.5) or (0.6), and I" is noncontractible in E® — h(J x {1}) by (0.5).
But I is homotopic in E® — h(J x {1}) to the loop I which traverses
first f~(v) and then v since 6 < 4,, and [ is contractible in the
simply connected set S U Ext S, a contradiction.

(d) Cc N(D,e). The proof is like that of (c) with the following
adjustments. One uses ¢’ such that f(¢’) e C — N(D, ¢) instead of the
original ¢ in the construction of I". One uses the fact that 6 < d, to
prove that v,N Sc S — D and that "' N AWJ x [0,1]) = @.

(e) Cl(C) — C has a component which bounds mo disk in h(J X
{0, 1}). Indeed, L(Bd D,, @ U 8) = =*1 by construction (cf. (0.7)). Also,
Bd D, and f(Bd D,) are homotopic in E® — (a U ) since § < d,. Thus
L(f(Bd D,),a U B) = +£1. If each component of Cl(C) — C bounded
a disk in 2(J x [0, 1]), then f(Bd D,) would bound a singular disk in
[C —Int D] URJ x [0,1]) € E® — (@ U B), a contradiction to (0.5).

(f) Cl(C) — C has at most one component which bounds no disk
in A(J x [0,1]). For otherwise, at least one such component would
bound a disk in f(S) — (D, U D,) © E® — (¢ U ) even though it would
link @ U B, a contradiction.

Added in proof. 0. G. Harrold has pointed out an unwarranted
assumption at the beginning of [12] (ef. paragraph 3 of the proof of
our Lemma 3.2) which invalidates the main result of [12] but does
not invalidate the very nice treatment of infinite cut and paste
techniques in [12]. Indeed, the false assumption of [12] is valid in
many situations, including ours (i.e., the paragraph cited above is
correct). L. Keldy$ has also claimed the main result of [12], her
proof is also incorrect [Math. USSR Shornik, 10 (1970), 267-287]. The
status of the main result of [12] is apparently undecided.
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