ON REALIZING HNN GROUPS IN 3-MANIFOLDS

C. D. FEUSTEL AND ROBERT JOHN GREGORAC
ON REALIZING HNN GROUPS IN 3-MANIFOLDS

C. D. FEUSTEL AND R. J. GREGORAC

In this paper we suppose that the fundamental group of a 3-manifold M has a presentation as an HNN group. We then show that under suitable conditions we can realize this presentation by embedding a closed, connected incompressible surface in M.

In [2], [3], and [4] we show that if $\pi_1(M)$ is constructed in certain ways, one can realize this construction by a surface embedded in M. In this paper we show that one can realize the HNN construction when certain relationships between $\pi_1(M)$ and M are present. The results in this paper are related to Theorem 2.4 in [10].

In this paper all spaces will be simplicial complexes, all maps will be piecewise linear, and all 3-manifolds will be 3-manifolds with boundary. However the boundary may be vacuous. Let X be a connected subspace of a space Y. As usual we shall denote the boundary, closure, and interior of X in Y by $\text{bd}(X)$, $\text{cl}(X)$, and $\text{int}(X)$ respectively. The natural inclusion map from X into Y will be denoted by ρ and the induced homomorphism from $\pi_1(X)$ into $\pi_1(Y)$ by ρ_*. Let S be a closed connected surface other than the 2-sphere of projective plane embedded in a space Y. Then S is incompressible in Y if $\rho_*: \pi_1(S) \to \pi_1(Y)$ is one-to-one. If S is a closed surface embedded in Y, then S is incompressible in Y if each component of S is incompressible in Y. Irreducible and P^2-irreducible are defined as in [7]. We denote the unit interval $[0, 1]$ by I throughout.

DEFINITION 1. Let K be a group and A a subgroup of K. Let S be a closed connected surface other than the projective plane or 2-sphere. Let $A_j \equiv \pi_1(S)$ and $A_j \subset A$ for $j = 1, 2$. Let k be an element of K not in A such that $A_i = k^{-1}A_2k$. Then if A and k generate K and all relations of K are consequences of the relations of A together with the relations k induces between the elements of A, and A_2, we shall say that K is an extension of A by k across A_1 and A_2. The reader will note that the class of groups defined above is a subclass of the Higmann, Neumann, Neumann (H.N.N.) groups [8].

Let M be a 3-manifold, x a point in M, and S an incompressible surface in M such that $M - S$ is connected. Then it is a consequence of Van Kampen’s Theorem that $\pi_1(M, x)$ is an extension of $\pi_1(M - S, x)$ by some element of $\pi_1(M, x)$ across appropriate subgroups of $\pi_1(M, x)$. One might then wonder “If $\pi_1(M, x)$ were such an extension, could we embed in M an incompressible surface which realizes this exten-
We will show blow that this can, in fact, be done. Let M be a compact 3-manifold and x a point of M. We suppose that $\pi_1(M, x)$ is an extension of A by k across A_1 and A_2 as given in Definition 1 above. We can represent this extension by an ordered sequence \(\langle \pi_1(M, x), A, A_1, A_2, k \rangle \). If for each component F of the boundary of M some conjugate $\rho_\ast \pi_1(F)$ is contained in A, we shall say that the extension preserves the peripheral structure of M. Suppose a second representation of $\pi_1(M, x)$ is given by \(\langle \pi_1(M, x), B, B_1, B_2, \hat{k} \rangle \) and this extension of B is induced by an incompressible, closed, two-sided surface S embedded in M and a loop l meeting S in the single point x, i.e., B is generated by the elements of $\pi_1(M, x)$ having representative loops which do not cross S, $\hat{k} = [l]$, $B_1 = \rho_\ast \pi_1(S, x)$ and $B_2 = [l]B_1[l]^{-1}$. We shall say that S realizes the extension of B if there is an isomorphism

\[
\Phi: \pi_1(M, x) \longrightarrow \pi_1(M, x)
\]

such that

1. $\Phi(A) = B$
2. $\Phi(A_j) = B_j$, $j = 1, 2$
3. $\Phi(k) = \hat{k}$.

Theorem 1. Let M be a compact 3-manifold such that $\pi_2(M) = 0$. Let S be a closed connected surface other than the 2-sphere or projective plane. Suppose $\pi_1(M, x)$ has a representation given by

\[\langle \pi_1(M, x), A, A_1, A_2, k \rangle \]

where $A_i \equiv \pi_1(S)$ and the extension above preserves the peripheral structure of M. Then there is an embedding of S in M which realizes the given extension.

The proof of Theorem 1 above is similar in many respects to the proof of Theorem 1 in [3]. One first constructs a complex X having the same fundamental group as M. One then finds a map $f: M \longrightarrow X$ inducing an isomorphism from $\pi_1(M)$ to $\pi_1(X)$. The complex X is constructed to contain an embedded surface S realizing the given extension. One shows that there is a map g homotopic to f such that $g^{-1}(S)$ is an incompressible, connected, closed surface in M and that $g^{-1}(S)$ realizes the given extension.

The following three lemmas appear in [4]. We omit the proofs which are not difficult.

Lemma 1. Let M be a compact, connected 3-manifold such that $\pi_2(M) = 0$. Let X be a connected complex and S a closed incompressi-
ble surface embedded in X and having a neighborhood homeomorphic to $S \times I$. We suppose that no component of S is a 2-sphere or projective plane. Let $X_k, k = 1, \ldots, n$ be the components of $X - S$. We suppose that $\pi_i(X) = \pi_i(X_k) = 0$ for $i \geq 2$ and $k = 1, \ldots, n$. Let $f: M \to X$ be a map such that $f^*: \pi_i(M) \to \pi_i(X)$ is one-to-one. If $\text{bd}(M)$ does not meet S. Then there is a homotopy, constant on $\text{bd}(M)$, of f to a map g such that $g^{-1}(S)$ is an incompressible surface in M.

Lemma 2. Let S_1 and S_2 be disjoint, incompressible, connected, two-sided surfaces which are embedded in a P^2-irreducible 3-manifold M. Then if S_1 is homotopic to S_2 in M, $S_1 \cup S_2$ bounds an $S_1 \times I$ embedded in M.

Lemma 3. Let M be a compact, connected, 3-manifold, X a connected complex, and F and S incompressible connected surfaces in M and X respectively. We suppose that S is neither a 2-sphere or projective plane and $\pi_i(X) = 0$ for $i \geq 2$.

Let $f: (M, F) \to (X, S)$ be a map of pairs such that for some $x \in F$

$$f_*\pi_1(M, x) \subset \pi_1(S, f(x)).$$

Then f is homotopic under a deformation, constant on F, to a map into S.

Proof of Theorem 1. It is a consequence of Remark 1 in [9] that we may assume that M is irreducible.

Let (M_A, \hat{x}, p) be the covering space of (M, x) associated with $A \subset \pi_1(M, x)$. Let $f_1, f_2: (S, y) \to (M, x)$ be maps such that $f_j^*\pi_1(S, y) = A_j$ for $j = 1, 2$. Since $f_j^*\pi_1(S, y) \subset p_*\pi_1(M_A, \hat{x})$, there is a map $\hat{f}_j: (S, y) \to (M_A, \hat{x})$ such that $p\hat{f}_j = f_j$ for $j = 1, 2$. Let X be the union of M_A and $S \times I$ with identifications $\hat{f}_j(s) = (s, 0)$ and $\hat{f}_j(s) = (s, 1)$. We note that the arc $\{y\} \times [0, 1] \subset S \times I$ becomes a simple loop \hat{l} after the identification above since $\hat{f}_j(y) = \hat{f}_j(y) = \hat{x}$. Let $\Phi: A \cup \{k\} \to \pi_1(X, \hat{x})$ be a function defined by $\Phi(k) = [l]$ and $\Phi(a) = P^{*a}(a)$ for $a \in A$. Then Φ can be extended to an isomorphism of $\pi_1(M, x)$ onto $\pi_1(X, \hat{x})$ since X has been constructed so that $\pi_1(X, \hat{x})$ will have a presentation identical to the given presentation of $\pi_1(M, x)$.

It can be shown as in the proof of the theorem in [2] that $\pi_i(X) = \pi_i(X - S) = 0$ for $i \geq 2$.

We denotes $S \times \{1/2\} \subset X$ by S.

Let the boundary of M be expressed as $\bigcup_{m=1}^n F_m$ where F_m is a closed connected 2-manifold. Then some conjugate of $\rho_\ast \pi_1(F_m)$ is contained in A for $m = 1, \ldots, n$. Thus we can find a collection $\{\alpha_m | m = 1, \ldots, n\}$ of simple arcs embedded in M such that intersec-
tion of each pair of these arcs is \(x \), \(\alpha_m \) meets \(F_m \) in a single point, and there is a map \(\hat{\rho} : \bigcup_{m=1}^n (F_m \cup \alpha_m) \to M \) such that \(p \hat{\rho} = \rho \). Note that for each loop \(l_0 \) in \(\bigcup_{m=1}^n (F_m \cup \alpha_m) \) based at \(x \), \([\hat{\rho} l_0] = \Phi[l_0]\). Since

\[
\hat{\rho} \rho_* = \Phi \rho_* : \pi_1(\bigcup_{m=1}^n (F_m \cup \alpha_m), x) \to \pi_1(x, \hat{x})
\]

we can extend \(\hat{\rho} \) to a map \(f : M \to X \) such that \(\Phi = f_* : \pi_1(M, x) \to \pi_1(X, \hat{x}) \) by using standard techniques from obstruction theory. (See [2] or [3] for the details of this construction.) It is a consequence of Lemma 1 that there is a map \(g \), homotopic to \(f \) such that \(g_\gamma^-(S) \) is an incompressible surface in \(M \) and \(g_1 = f \) on the boundary of \(M \).

Since \(g_\gamma^-(S) \) and \(S \) are incompressible in \(M \) and \(X \) respectively, if \(S_0 \) is any component of \(g_\gamma^-(S) \), the homomorphism \((g_1 | S_0)_* : \pi_1(S_0) \to \pi_1(S) \) is one-to-one. Thus by Theorem 1 in [6] \(g_1 | S_0 \) is homotopic to a covering map. Thus after a deformation, constant outside of a small neighborhood of \(S_0 \), we may assume that \(g_1 | S_0 \) is a local homeomorphism. Thus we may assume that \(g_1 \) is a local homeomorphism on \(g_\gamma^-(S) \).

Let \(z \) be a point on \(S_0 \). Suppose that the isomorphism \(\Phi_z = g_1 | z : \pi_1(M, z) \to \pi_1(X, g_1(z)) \) does not carry \(\pi_1(S_0, z) \) onto \(\pi_1(S, g_1(z)) \). It is a consequence of the result in [1] that \(M \) is \(P^2 \)-irreducible. Since \(\Phi_z^{-1} \pi_1(S, g_1(z)) \) would properly contain \(\pi_1(S_0, z) \), we would have by Theorem 6 in [7] that \(S_0 \) bounds a twisted line bundle \(N \subset M \). One can easily show using the techniques of [7], as has been done in [5], that \(\rho_* \pi_1(N, z) \) may be taken to be \(\Phi_z^{-1}(\rho_* \pi_1(S, g_1(z))) \). It follows from Lemma 3 that there is a deformation of \(g \), to a map \(g_z \) which pushes \(g_1(N) \) first onto \(S \) and then to one side of \(S \) so that \(g_\gamma^-(S) = g_\gamma^-(S) - S_0 \). Thus we can assume that \((g_1 | S_0)_* : \pi_1(S_0) \to \pi_1(S) \) is an epimorphism for each component \(S_0 \) of \(g_\gamma^-(S) \).

Since \(\pi_1(M) \not\subset A \), \(g_\gamma^-(S) \) is not empty.

Let \(S_0 \) and \(S_1 \) be components of \(g_\gamma^-(S) \). We claim that \(S_0 \cup S_1 \) bounds a copy of \(S_0 \times [0, 1] \) embedded in \(M \). Since \(M \) is \(P^2 \)-irreducible, this will follow from Lemma 2 after we show that \(S_0 \) and \(S_1 \) are homotopic. Let \(z_0 \) be a point on \(S_0 \). Since \(g_1 | S_0 \) and \(g_1 | S_1 \) are assumed to be homeomorphisms, there is a unique point \(z_1 \) on \(S_1 \) such that \(g_1(z_0) = g_1(z) \). Let \(\alpha \) be an arc running from \(z_0 \) to \(z_1 \). Since \(g_1 \) is an isomorphism, we can find a loop \(l_1 \) based at \(z_0 \) such that the loops \(g_1(l_1) \) and \(g_1(\alpha) \) represent the same element in \(\pi_1(X, g_1(z_0)) \). Thus we may assume that \([g_1(\alpha)] = 1 \in \pi_1(X) \). Let \(\lambda_0 \) be a loop on \(S_0 \) based at \(z_0 \) and \(\lambda_1 \) a loop on \(S_1 \) such that \(g_1(\lambda_0) = g_1(\lambda_1) \). Since the loop \(g_1(\lambda_0) g_1(\alpha) (g_1(\lambda_0))^{-1} (g_1(\alpha))^{-1} \) is nullhomotopic and \(\pi_1(X) = 0 \), we can show as in the proof of Theorem 1 in [3] that \(S_0 \) and \(S_1 \) are homotopic. Our claim follows.

We wish to show that we may assume \(g_\gamma^-(S) \) contains exactly one component.

Suppose there is more than one component in \(g_\gamma^-(S) \) and that the
number of components of \(g_T^S \) cannot be decreased by a small deformation of \(g \). Let \(l : S^1 \to M \) be a loop in \(M \) such that \(g_\ast [l] = [\hat{l}] \). We may assume that

(i) \(g_\ast (l) \) meets \(S \) since the intersection number of \([\hat{l}]\) and \(S \) is one. Thus we can take our basepoint to lie on one of the surfaces in \(g_T^S \).

(ii) \(l \) crosses \(g_T^{-1}(S) \) at each point in \(l \cap g_T^{-1}(S) \) and thus \((g_\ast l)^{-1}(S) \) is a finite set whose cardinality cannot be reduced.

(iii) \(g_\ast (l \cap g_T^{-1}(S)) \) is a single point.

Let \(D \) be a disk and \(\beta_1 \) and \(\beta_2 \) arcs in the boundary of \(D \) such that \(\beta_1 \cap \beta_2 = \text{bd} (\beta_1) \). Then we can define a map \(\gamma : D \to X \) such that \(\gamma (\beta_1) \) is the loop \(g_\ast \mu (S^1) \) and \(\gamma (\beta_2) \) is the loop \(\hat{l} \).

We wish to show that \(g_T^{-1}(S) \) may be taken to be homeomorphic to \(S \) (connected). Assume that \(g_T^{-1}(S) \) is not connected; then it has been shown that each pair of distinct surfaces in \(g_T^{-1}(S) \) bounds a copy of \(S \times I \) embedded in \(M \). If this is the case, it is clear that \(l^{-1}g_T^{-1}(S) \) contains more than one point. Let \(\delta_1, \ldots, \delta_s \) be the closures of the components of \(S^1 - l^{-1}g_T^{-1}(S) \). After a general position argument we may assume \(\gamma^{-1}(S) \) contains an arc \(\beta_3 \) which cuts off an arc \(\beta_4 \subset \beta_1 \) and that \(g_\ast l(\delta_i) = \gamma (\beta_4) \). Now \(l \) carries \(\text{bd} (\delta_i) \) to one or two components of \(g_T^{-1}(S) \).

If \(l (\text{bd} (\delta_i)) \) is a single point, the loop \(l (\delta_i) \) is homotopic to a loop \(l_i \subset g_T^{-1}(S) \) such that \(g_\ast (l_i) = \gamma (\beta_3) \) since the restriction of \(g_\ast \) to each component of \(g_T^{-1}(S) \) is a homeomorphism and \(g_\ast \) is an isomorphism. It would follow that the number of points in \(l^{-1}g_T^{-1}(S) \) could have been reduced by a different choice of \(l \). Thus we conclude that \(l \) carries the points of \(\text{bd} (\delta_i) \) to distinct components of \(g_T^{-1}(S) \).

Let \(N \) be closure of the component of \(M - g_T^{-1}(S) \) which meets \(l (\delta_i) \). Let \(S_0 \) be a component of \(\text{bd} (N) \). Since \(g_\ast \mid S_0 \) is a homeomorphism and the loop \(g_\ast l (\delta_i) \) is homotopic to a loop in \(S_0 \) we may assume that the loop \(g_\ast l (\delta_i) \) is homotopic to a point. (One alters the image of \(l \) in a neighborhood of \(S_0 \).)

Since the loop \(g_\ast l (\delta_i) \) is nullhomotopic in \(X \), it can be shown that the map \(g_\ast \mid N \) is homotopic mod \(\text{bd} (N) \) to a map into \(S \); full details of a similar argument appear in [3]. It follows after an argument by induction that there exists a map \(g : M \to X \) homotopic to \(g_\ast \) mod \(\text{bd} (M) \) such that \(g^{-1}(S) \) contains exactly one component \(S_0 \) and \(g \mid S_0 \) is a homeomorphism. After an argument similar to the one given above, we can find a loop \(l \) meeting \(S_0 \) in a single point and based at \(x \in M \) such that \(g_\ast [l] = [\hat{l}] \).

We observe that \(S_0 \) and \(l \) induce an expression of \(\pi_1 (M, x) \) as an extension of a subgroup \(B \) of \(\pi_1 (M, x) \). Let \(B_1 \) and \(B_2 \) be the associated subgroups of \(\pi_1 (M, x) \). Then we see that our map \(g \) induces
an isomorphism \(g_\ast : \pi_1(M, x) \rightarrow \pi_1(M, x) \) such that

\[
\begin{align*}
(1) & \quad g_\ast(B) \subset A \\
(2) & \quad g_\ast(B_i) = A_i \\
(3) & \quad g_\ast B_i = A_i
\end{align*}
\]

Thus Theorem 1 is an immediate consequence of the remark preceding Lemma 2 on page 238 in [8] which shows that \(g_\ast \) sends \(B \) onto \(A \).

Remark 1. The remark mentioned above allows us to strengthen the statement of the theorem in [2] so that the splitting and the cutting are both actually realized.

Remark 2. We can also realize geometrically more general presentations of \(\pi_1(M) \) as an HNN group. In particular one might have that \(\pi_1(M) \) has a presentation as in the first definition in §4 in [8] where each of the subgroups \(L_i \) of \(K \) is isomorphic to the fundamental group of a closed connected surface other than \(S^2 \) or the projective plane and there are only finitely many of the \(t_i \). The proof of this result varies only slightly from the one given above.

Remark 3. Theorem 1 in this paper together with Theorem 1 in [3] or [4] give us a sort of converse to Van Kampen’s theorem as applied to a closed, connected, incompressible surface, other than \(S^2 \) or the projective plane, embedded in the interior of a compact 3-manifold.

Remark 4. This paper is in some sense a generalization of Stallings’ work in [11].

References

5. ———, On \(S \)-maximal subgroups of \(\pi_1(M^3) \), Canad. J. Math., 24 (1972), 439-449.

Received April 28, 1972 and in revised form October 3, 1972.

Virginia Polytechnic Institute and State University

Iowa State University
Christopher Allday, *Rational Whitehead products and a spectral sequence of Quillen* .. 313
James Edward Arnold, Jr., *Attaching Hurewicz fibrations with fiber preserving maps* .. 325
Catherine Bandle and Moshe Marcus, *Radial averaging transformations with various metrics* ... 337
David Wilmot Barnette, *A proof of the lower bound conjecture for convex polytopes* .. 349
Louis Harvey Blake, *Simple extensions of measures and the preservation of regularity of conditional probabilities* 355
James W. Cannon, *New proofs of Bing’s approximation theorems for surfaces* .. 361
C. D. Feustel and Robert John Gregorac, *On realizing HNN groups in 3-manifolds* .. 381
Theodore William Gamelin, *Iversen’s theorem and fiber algebras* .. 389
Daniel H. Gottlieb, *The total space of universal fibrations* .. 415
Yoshimitsu Hasegawa, *Integrability theorems for power series expansions of two variables* .. 419
Dean Robert Hickerson, *Length of period simple continued fraction expansion of \(\sqrt{d} \) .. 429
Herbert Meyer Kamowitz, *The spectra of endomorphisms of the disc algebra* .. 433
Dong S. Kim, *Boundedly holomorphic convex domains* .. 441
Daniel Ralph Lewis, *Integral operators on \(L_p \)-spaces* .. 451
John Eldon Mack, *Fields of topological spaces* .. 457
V. B. Moscatelli, *On a problem of completion in bornology* .. 467
Ellen Elizabeth Reed, *Proximity convergence structures* .. 471
Ronald C. Rosier, *Dual spaces of certain vector sequence spaces* .. 487
Robert A. Rubin, *Absolutely torsion-free rings* .. 503
Leo Sario and Cecilia Wang, *Radial quasiharmonic functions* .. 515
James Henry Schmerl, *Peano models with many generic classes* .. 523
H. J. Schmidt, *The \(\mathcal{F} \)-depth of an \(\mathcal{F} \)-projector* .. 537
Edward Silverman, *Strong quasi-convexity* .. 549
Barry Simon, *Uniform crossnorms* .. 555
Surjeet Singh, *\((KE)\)-domains* .. 561
Ted Joe Suffridge, *Starlike and convex maps in Banach spaces* .. 575
Milton Don Ulmer, *C-embedded \(\Sigma \)-spaces* .. 591
Wolmer Vasconcelos, *Conductor, projectivity and injectivity* .. 603
Hidenobu Yoshida, *On some generalizations of Meier’s theorems* .. 609