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The main theorem asserts that Sζ(D) = S(D) Π
where D is a polydomain in Cn, S(D) is the Shilov boundary
of H°°(D), ζ is an essential distinguished boundary point of
D, ^fζ(D) is the fiber over ζ of the maximal ideal space of
H°°(D), and Sζ(Π) is the Shilov boundary of the fiber algebra.
The main theorem includes Iversen's theorem for polydomains.

Introduction* This paper represents a continuation of the work
in [5] and [7], dealing with the study of bounded analytic functions
and cluster value theory from the "uniform algebra" point of view.
The central theme will be Iversen's theorem, stating roughly that
"the boundary cluster set contains the boundary of the cluster set".
There is an elementary Banach algebra theorem asserting that "the
image of the Shilov boundary contains the boundary of the image".
When applied to certain fiber algebras, the latter assertion is closely
related to Iversen's theorem, as had already been noted by Kakutani
[9]. It is our purpose here to study the connection between Iversen's
theorem and its abstract analogues. To describe more accurately
what this amounts to, we introduce some notation and definitions.

Let D be a bounded open set in Cn, let H°°(D) denote the algebra
of bounded analytic functions on D, and let ^?{D) denote the maximal
ideal space of H°°(D). The natural inclusion D c—> ^f(D) embeds D
homeomorphically as a subspace of ^£{Ό). [Problem: Is D open in
^(Z))?.] The functions in H~(D) will be regarded as continuous
functions on ^£{Ό). In particular, the coordinate functions zlf , zn

extend to ^€{Ό) and determine a projection

Z\ ΛT(D) >C*,Z= (zlf . , O .

If ζ e C , then Z~\{Q) = ^ ( D ) is called the fiber over ζ, and the
restriction of H°°(D) to ^fζ(D) is called the fiber algebra. The Shilov
boundary of the fiber algebra is denoted by Sζ(D), and the Shilov
boundary of H°°(D) is denoted by S(D). In §1, we show that always

SC(D) a S(D)

Although trivial examples show that equality does not generally hold,
it turns out that in some cases equality does hold, and that the
reverse inclusion is in some sense an abstract form of Iversen's
theorem.

From the work in [7] it follows that in the case DaC (i.e.,
n = 1), we have Sζ(D) = S(D) Π ̂ %(D) whenever ζ is an essential
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boundary point for D. In §§2 and 3 this result is used to give a
proof of a strong form of the one-variable version of Iversen's theorem.
This theorem is interpreted in §§4 and 5 as a theorem about represent-
ing measures. In §6, the representing measures are patched together
to obtain a continuous family of representing measures for points of
D satisfying a certain subsidiary condition which reflects Iversen's
theorem.

The remaining sections are directed towards polydomain algebras.
Section 7 contains background material on algebras on products D =
Uι x x Un of open planar sets. It includes a cluster value theorem
and other results which can be obtained by a straight-forward iterated
application of the techniques employed to obtain the corresponding
results in the one-variable case. In §8, continuous families of repre-
senting measures are obtained for polydomain algebras, by simply
taking the products of the representing measures of §6. The sub-
sidiary condition on these families of representing measures is rein-
terpreted in § 9, to obtain a version of Iversen's theorem for polydomains.
In §10, the results of §7 are combined with the multivariable form
of Iversen's theorem to prove that Sζ(D) = S(D) Π ̂ tζ(D) whenever
C — (ζi, •• ,ζ»), where each ζs is an essential boundary point of Uό.
This latter theorem includes both Iversen's theorem and the most
important special case of the cluster value theorem.

The author would like to acknowledge with gratitude several
beneficial conversations with 0. Bekken and with L. Zalcman.

Notation and Conventions* All norms will be supremum norms,
unless otherwise indicated. The supremum norm over a set E is
denoted by

Wf\\E = suV{\f(x)\:xeE}.

All measures are finite regular Borel measures. The closed support
of a measure μ is denoted by supp μ. The restriction of a measure
v to a set E is denoted by vE. If v is a measure on X, and π is a
continuous map from X to Y, then π*v is the measure defined on
Borel subsets JS7 of Y by (π*v)(E) = v(ir\E)). Then

for bounded Borel functions / on Y.
If v is a measure, then Σ(v) will denote the maximal ideal space

of I/°(\)). The Gelfand transform is an isometric isomorphism of L°°(v)
and C(Σ(v)). If E is a Borel set, the characteristic function of E in
L°°(v) corresponds in C(Σ(v)) to the characteristic function of a clopen
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subset of Σ(v), which is denoted by E. The measure v has a canonical
lift to Σ(v), which will be denoted by ί>, or simply by v when no con-
fusion can arise. Elementary topological properties of Σ(v), on the
level of I. 9 of [4], will be used freely.

By J(ζ; r) will denoted the open disc in the complex plane with
center ζ and radius r, or the open polydisc in Cn with center ζ and
multiradius r, depending on the context. If E is a subset of the
complex plane, then

\E\ = snp{\ζ\:ζeE} .

A reference for background material on uniform algebra theory
is [4].

1, The Inclusion Sζ(D) a S(D) f] ̂ Tζ(D). The main result of
this section serves to clarify the state of affairs, but it will not be
used in an essential way in anything that follows.

If {Ak}ΐ=1 is a sequence of uniform algebras, then l°°({Ak}) will
denote the algebra of sequences {fk}*=1, where fk e Ak, and sup \\fk || < oo.
The following theorem is a variation of the "independence of fibers"
theorem of J.-P. Rosay [11]. Generalized peak sets, or intersections
of peak sets, are defined and discussed in [4].

THEOREM 1.1. Regard H™{D) as a uniform algebra on the closure
D of D in ^(B). Let {Ek}ΐ=1 be a sequence of closed subsets of D,
and let E be the closure of (j Ek in D. Suppose that for each k, Ek

is a generalized peak set which does not meet the closure of \Jj^kE
j.

Then E is a generalized peak set. Moreover, the restriction algebra
H°°(D)\E is isometrically isomorphic to lco({H"(D)\Ek}).

The proof depends on the following lemma.

LEMMA 1.2. Let N be a neighborhood of E in D, let ε > 0, and
let gkeHco(D)\Ejc satisfy \gk\^l. Then there is GeH°°(D) such that
\\G\\ ̂  1 + ε, \G\ ̂ ε off N, and \G - gk\ ^ ε on Ek.

Proof. Shrinking N, if necessary, we can assume D\N is adherent
to D\N. Take εk > 0 such that Σεk = ε, and choose open neighborhoods
Mk of Ek such that MkaN and Mk Π Ms = 0 for j Φ k. Since
is a generalized peak set, there are fk e H°°{D) such that fk = gk on
Eh, HΛH ̂  1, and \fk\ < εk off Mk. The series G = Σfk then converges
uniformly on compact subsets of D, uniformly on D\( (J Mk) z> jD\iV,
and uniformly on each Mk Π D. Evidently GeH°°{D) satisfies | |G| | S

k
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1 + ε, I G\ ^ ε on D\N, and |G - gk | ^ ε on D Π Mh. Since D\N is
adherent to D\N, and Ek is adherent to D Π Λffc, G has the desired
properties.

Proof of Theorem 1.1. Suppose 27 is a measure on 5 orthogonal
to H°°(D). Let {iVi}7=1 be a shrinking sequence of open neighborhoods
of E in D such that |>? 1(^ .0) -> 0. By the lemma, there is G3 e H°°(D)
such that II G3 || ^ 2, | G, - 11 ̂  1/i off # , and | Gy | ^ 1/i off JVy. Then
G3 Ύ] 1 H°°(D), and G3rj converges weak-star to the restriction ηE of
η to E. Consequently rjE 1 if°°(jD), this for all η 1 H°°{D). By
Glicksberg's theorem, E is a generalized peak set. In particular,
H~(D) \E is a closed subalgebra of C(-K). The lemma shows that the
restriction algebra is dense in loo({H0O(D)\Ek}), so that it must coincide
with the latter algebra.

LEMMA 1.3. For each ζ e Cn, the generalized peak points in
S(D) Π ̂ eζ(D) are dense in S(D) f]

Proof. Suppose φ e S(D) Π ̂ ?fζ(D). Let N be an open neighbor-
hood of φ. It suffices to produce a generalized peak point in N Π ^ζ{D).
Since φ cannot be isolated in S(D), and since the generalized peak
points are dense in S(D) we can find a generalized peak point φ1 and
an open neighborhood Nλ of φι such that

N.czN^ίN,, and | Z ( 9 Ί ) - C | < 1 .

Continuing in this fashion, we can construct a sequence {φ^f^i of
generalized peak points, and open neighborhoods Nό of φj9 such that
the Nj are disjoint, Nά c JV, and | Z ( ^ ) - ζ | < 1/i Then Theorem 1.1
applies to the singletons Eά = {<Pj} That theorem shows that the
closure of {φ3-} is a generalized peak interpolation set. In particular,
any cluster point of the sequence {φ3} is a generalized peak point,
which lies in N C)

THEOREM 1.4. If D is a bounded open subset of Cn, and ζ e Cn,
then

Sζ(D) a S(D) n Λ&D) .

Proof. Generalized peak points in S(D) Π ̂ i{D) are also gener-
alized peak points for H°°(D) \^ζ(D)9 and hence belong to Sζ(D). Taking
closures and applying 1.3, we obtain the desired inclusion.

Now we specialize to the case of a bounded open set U in the
complex plane C. A point ζ e d U is an essential boundary point for
U if not all the functions in H°°(U) extend analytically across ζ
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The set of essential boundary points E of U is a closed subset of
dU, and H°°(U) is isometrically isomorphic to H^iUXE). The pro-
jection Z(S(U)) of the Shilov boundary S(U) of H°°(U) coincides with
E. If ζe U\E, then ^l(U) consists of only one point, the homo-
morphism "evaluation at ζ", so that ^{U) = Sζ(U) = {ζ}. On the
other hand, if ζeE, then ^€£(£7) is quite large.

By Theorem 2.7 of [5], the restriction algebra H00{U)\^^m is a
closed subalgebra of C(^tζ(U))f whose maximal ideal space is ^£ί(U).
Theorem 6.8 of [7] asserts that if ζ is an essential boundary point,
then every generalized peak point in Sζ(U) for the fiber algebra is a
generalized peak point for H°°(D), and hence lies in S(U). Since such
points are dense in Sζ(U)9 we obtain Sc(ί7)gS(C7) Π ̂ i(U) whenever
ζ is an essential boundary point. Combining this with 1.4, we obtain
the following theorem.

THEOREM 1.5. If U is a bounded open subset of C, and if ζ is
an essential boundary point for U, then

sζ(u) = s(U) n

2* Harmonic measure on ^/£{Ό). For §§2 through 6, we let
U be a fixed bounded domain in the complex plane. In this section
we derive some elementary properties of the "harmonic measure" λ*
on ΛT(U) for ze U.

Let Δ be the open unit disc, and let dθ be the arc length measure
on dΔ. The correspondence between a function in H°°(Δ) and its radial
boundary values is an isometric isomorphism of H°°(Δ) and a weak-
star closed subalgebra H°°(dθ) of L~{dθ). The functions in H°°(dθ)
can consequently be regarded as continuous functions on the maximal
ideal space Σ{dθ) of the algebra L°°(dθ). Since H°°(dθ) separates the
points of Σ(dθ), Σ(dθ) can be regarded as a subset of ^€(Δ). It turns
out that Σ(dθ) is the Shilov boundary of H°°(Δ). If w e Δ, then the
Poisson measure mw on dΔ has a canonical lift to Σ(dθ), which will

also be denoted by mw. Then f(w) = \fdmw for all/e H°°(Δ) and all

we Δ.
Next we mention some facts which are developed in more detail

in §6 of [8]. Let π be the universal covering map of Δ over U.
Then π extends to a continuous map

For each ze U, choose we Δ such that π(w) = z, and define
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so that λ* is the projection onto ^€(TJ) of mw. Then \z does not
depend on the choice of w. We call Xz the harmonic measure on

for ze U. It satisfies

/(*)= J/dλ,, feH~(U),zeU.

Since the measures mw are mutually boundedly absolutely continuous,
so are the λβ. When we are concerned only with the absolute con-
tinuity class of λβ, we will abbreviate Xz to λ. The inclusion map
H°°( U) —* I/°°(λ) maps H°°(U) isometrically and isomorphically onto a
weak-star closed subalgebra of L°°(λ), consisting of precisely those

geL°°(X) such that \gdxz depends analytically on ze U.

For O g ^ 2τr, the image under π of the interval {reiθ: 0 ^ r < 1}
is called a conformal ray and denoted by yθ. A property is said to
hold for almost all conformal rays if it holds except for those conformal
rays corresponding to a set of θ's with zero length. For almost all
θ, the limit l im^ π{reiθ) exists and will be denoted by π(eiθ). For
such θ, the conformal rays Ίe is said to terminate at π(eiθ). Each
terminal point belongs to dU.

For each z e U, we define a measure μz on the terminal points of
the conformal rays as follows: select we A such that π(w) = z, and set

μ.(E) - mw({e™: π(eiθ) e E}) .

In other words, μz = 7?*(raw). Then μz does not depend on the choice
of w. For an indication of the proof of the following simple lemma,
see [5].

LEMMA 2.1. The "measure μz is the harmonic measure on dU for
ze U.

Let p: Σ{dθ) —> dΔ be the natural projection, and let dθ be the
lift of dθ to Σ(dθ). If / is a Borel function on 3J, then / o p is a
Borel function on Σ(dθ), which coincides a.e. dθ with the Gelfand
transform of/in C{Σ{dθ)). In the case / = ft, the Gelfand transform
is the restriction of Zoπ to Σ(dθ)f so that Zoπ = Hop a.e. dθ. It
follows that

Z*{π*{mw)) = π*{p*(ih,w)) , w e J .

Since the left hand side is Z*(Xg), z = π(w), and the right hand side
is ft*(mv) = μg9 we obtain the following.

LEMMA 2.2. For ze U, the projection Z*(XZ) of Xz onto D coincides
with the harmonic measure μz on dD for z.
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Now let feH°°(U), and let Q be a subset of dU. We define
C1Γ (/, Q) to be the essential cluster set of / along conformal rays
terminating in Q. In other words, a complex number b belongs to
Clr CΛ Q) if a n d only if for each ε > 0, there is a set of conformal rays
of positive measure, each of which terminates in Q, and along each
of which / has a limit within e of b. The λ-essential range of / on
Z~ι(Q) is the essential range of / with respect to the restriction
measure of λ to Z~\Q).

THEOREM 2.3. Let Q be a Borel subset of dU, and let feH°°(U).
Then C1Γ (/, Q) coincides with the X-essential range of f on Z~\Q).

Proof. Let g e L°°(dθ) be the nontangential boundary value func-
tion of g = foπeH°°(J). By definition, C1Γ (/, Q) coincides with the
cϋ#-essential range of g on π~1(Q)9 and this coincides with the dθ-
essential range of g = /o π on p~\7i-l(Q)) Q Σ(dθ). Since Z*(π*(mw)) =
π*(p*(mj))9 ρ-ι{π~\Q)) differs from π~ι{Z~ι{Q)) by a dθ-τm\\ set, so that
Clr (/, Q) coincides with the d#-essential range of / o π on π~\Z~ι(Q)).
Since π*(mw) = λβ, this coincides with the λ-essential range of / on
Z~\Q).

3. Iversen's theorem* The cluster set of feH°°(U) at ζedU
is denoted by Cl (/, ζ). It consists of all complex numbers b for which
there is a sequence zne U satisfying zn —> ζ and f(zn) —• 6. Evidently
Cl (/, ζ) coincides with the range of / on the adherence of U in
^^(C7), so that in particular

C\(f,ζ)SfUA(U)), ζedU,feH"(U).

It is shown in [5] that equality always holds here, but we do not
need this fact for now. The following version of Iversen's theorem
is already a consequence of our discussion so far. We denote by μ
the harmonic measure on dU for some suppressed point z of U.

THEOREM 3.1. Let Q be a relatively open subset of supp μ and
letfeH~(U). If |C1Γ(/, Q)\ £ 1, then |C1 (/, ζ)| ^ 1 for all ζe Q.

Proof. The hypothesis and Theorem 2.3 show that the λ-essential
range of / on Z~ι{Q) is bounded in modulus by 1. Since / is continu-
ous on ̂ (U)9 we have | / | <£ 1 on Z~\Q) Π suppλ, a relatively open
subset of suppλ. Now the closed support of λ contains the Shilov
boundary for H~(U), so that \f\ ̂  1 on S(U) Π ̂ (U) for all essential
boundary points ζeQ. By Theorem 1.5, S(U) Γ) s%(U) = Sz(ϋ)9 so
that we obtain in turn \f(Sζ(U)) \ ^ 1, \f(^tζ(U)) \ ^ 1, and |C1 (/, ζ) | ̂  1
for essential boundary points ζ e Q. Since each / e H°°( U) is analytic
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on the subset of ϋ of nonessential boundary points of U, and since
the terminal points of conformal rays are appropriately dense in supp μ,
it is clear that the desired result holds also for those ζ e Q which are
not essential boundary points of U.

We will need a stronger version of Iversen's theorem. Note that
Theorem 3.1 emerges from the following theorem as a —> 1.

THEOREM 3.2. Let Q be a relatively open subset of suppμ, and
fix 1 < a < M. Then there exists an open subset V of U such that
Q does not meet the closure of U\V, and such that V has the follow-
ing property: If feH~(U) satisfies \\f\\ g M and \ClΓ(f, Q) | ^ 1,
then \f\^aonV.

Proof. We will argue by contradiction. Suppose the theorem is
not true. Then there exist fn e H°°( U) and zne U such that zn con-
verges to a point ζe Q, \fn(zn)\ > a, \\fn\\ ^ M, and | /J ^ 1 a.e. dx
on Z~ι(Q). We can assume that fn converges weak-star to/ in L°°(λ),
so that feH~(U), \\f\\ ^ M, and | / | ^ 1 a.e. dx on Z~\Q).

Suppose first that ζ is a regular boundary point of U. Then μz%

converges weak-star to the point mass at ζ, so that

Kn(Z-ί(Q)) = μ.n(Q)-+l.

The estimate

' £ M\,n((dU)\Z-ι(Q)) + \n(Z-ι(Q))

then shows that lim sup \fn{zn) \ <S 1, a contradiction.
Suppose next that ζ is an irregular boundary point of U. Then

{ζ} is a component of dΐl. For each ε > 0, we can find a simple closed
Jordan curve Jε in U which surrounds ζ and which is contained in
the ε-disc centered at ζ. Let Uε be the part of U inside Jε. We
assume ε is so small that Uε Π supp//gQ. By Theorem 3.1, we have
\fn\ ^a near points of Q n dUε. If n is large, then zne Uε. Since
\fn(zn) I > α> the maximum modulus principle implies that there is some
point xn e Jε such that \fn(xn) \ > a. Let ζε e Jε be a cluster point of
the sequence {xn}. By Schwarz's lemma, we will have |/(ζε) | ^ a.
Now ζ£ —> ζ as ε —• 0, so that |C1 (/, ζ) | ^ a. This contradicts Theorem
3.1, and the theorem is established.

4. Representing measures* In this section, we give two abstract
lemmas, which will be used to convert Iversen's theorem to informa-
tion on representing measures.
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Let X be a compact space, let A be a closed subalgebra of C(X)
containing the constants, and let φ be a nonzero complex-valued
homomorphism of A. A representing measure for φ is a positive
measure τ on X satisfying φ{f) = \fdτ for all / G A

LEMMA 4.1. Let T be closed subset of X, and let 1 < a < M.
Suppose that \<p(f) \ ̂  a whenever / e A satisfies \\f\\ ̂  M and \ f | ^ 1
on T. Then there is a representing measure z for φ such that τ(T) ^
1 — (log α)/log M.

Proof. According to IL2.1 of [4], it suffices to show that φ(u) ^
1 — (log α)/log M whenever ueΊle A satisfies u ^ 0, and u ^ 1 on T.
So suppose g e A satisfies Reg ̂  0, and Reg ̂  1 on Γ. Set

/ = ikΓexp(-glogM) .

Then | | / 1 | ̂  M, and | / | S 1 on T, so that

a ^ \φ(f) I - Mexp (-Re φ{g) log M) .

This yields Re φ{g) ^ 1 — (log α)/log M, as required.

LEMMA 4 2. Let σ be a positive measure on X, and let B be a
weak-star closed subalgebra of L°°(σ) containing the constants. Let
ψ be a nonzero complex-valued homomorphism of B which is continu-
ous in the weak-star topology of L°°(σ). Let F be a Borel subset of
X, and let 1 < a < M. Suppose that \ φ(f) | ^ a whenever feB satisfies
11/11 ^ My and | / | ^ 1 a.e. on F. Then there is heLι(σ) such that
hσ is a representing measure for φ, and

" hdσ^l- 2(log a)/log M
) F

Proof. B can be regarded as a closed subalgebra of C{Σ(σ)) con-
taining the constants. According to Lemma 4.1, there is a representing
measure τ for φ on Σ(σ) such that τ{F) ̂  1 — (log α)/log M. The
proof of the Hoffman-Rossi theorem (cf. IV. 2 of [4]) shows that there
is a net of representing measures for φ of the form hadσ, haeLι{σ),
which converges to τ in the weak-star topology of measures on Σ(σ).

In particular, \ hadσ = (haσ)(F) —>z(F), so we can take h = ha for
}F

an appropriate index a.

5* Existence of representing measures for H°°(U). Let C be
a Borel subset of ^ f ( U). There is then a Borel subset E of dΔ such
that E differs from π~ι{C) by a set of m^-measure zero. Then C
differs from π(E) by a set of λ-measure zero, so that
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Let G be the group of covering transformations of A over U, so
that H°°(U)°π consists of precisely the functions in H°°(A) which are
invariant under G. Evidently E is invariant under G, and E is
"almost" invariant under G, that is, for each TeG, T(E) differs from
E by a set of zero length.

LEMMA 5.1. The following are equivalent.
( i ) The evaluation functionals at points of U are continuous

in the weak-star topology of L°°(XC).
(ii) The closed support of Xc includes the Shilov boundary of

(iii) E is a boundary for H°°( U) ° π.
(iv) | |/ | | j = WfWε for all / £ H°°(A) which are invariant under G.
Moreover, if these conditions are satisfied, then the natural in-

clusion embeds H°°(U) isometrically as a weak-star closed subalgebra
of L°°(XC), the natural inclusion embeds H°°(U)oπ as a weak-star
closed subalgebra of L°°(dΘE), and the evaluation functionals at points
of A are continuous on H°°(U)oπ in the weak-star topology of L°°(dθE).

Proof. If (i) is true, then each z e U has a representing measure
absolutely continuous with respect to Xc. Each z e U then belongs
to the H°°(U) — convex hull of the closed support of Xc, so that the
closed support of Xc is a boundary for H°°(U), and (ii) is true.

That (ii) implies (iii) follows immediately from the relation λ^ =
Xπ{E). Evidently (iii) and (iv) are equivalent.

Suppose next that (iii) and (iv) are valid. Then the inclusion
H°°{U) o π Q L°°(dθE) is an isometry. We claim that H°°(U) o π is weak-
star closed in L°°(dθE). Indeed, suppose {/»} is a bounded sequence in
H°°{U)°π which converges a.e. dθE to some function /6 L°°(dθE). Let
F be a weak-star adherent point of the sequence {/„} in H°°(dθ). If
TeG, then/; oΓ = /,, so that F o T = F, and F e H°°( U) o π. Evidently
F = f a.e. dθE, so that F lies in the image of H°°(ί7)o7Γ in L°°{dθE).
By the Krein-Schmulian theorem (cf. IV. 2.1 of [4]), H°°(U) o π is weak-
star closed in L°°(dθE). The same proof shows that if zoe U, then
the ideal of functions /o πe H°°(U) o π satisfying f(z0) = 0 is weak-star
closed in L°°(dθE), so the point evaluation functionals are continuous
on H°°(U)oπ in the weak-star topology of L°°{dθE). It follows that
H°°(U) is weak-star closed in L°°(XC), and also that (i) is valid.

The assertion that JH"°°(C7) Q I/°°0W) is an isometry follows immedi-
ately from (ii). That completes the proof.

Now we fix a Borel subset E of dA such that E is invariant under
G, and such that the conditions of Lemma 5.1 are met. We say that
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h e Lι{dθE) represents π~ι{z) if hdθE is a representing measure for some
point (and hence for all points) of π~ι{z) on the algebra H~{U)oπ.
This occurs if and only if h ̂  0, and π*(hdθE) represents z on H°°(U).

THEOREM 5.2. Assume every boundary point of U is essential.
Let Q be a relatively open subset of dU and let ε > 0. Then there
exists an open subset V of U such that Q does not meet the closure
of U\V, and such that for each zeV, there is a function hze Lι(dθE)
representing π~1(z) which satisfies

\
Jτr-l(Z-l

hzdθE > 1 - ε

Proof. Choose 1 < a < M so that 2 (log α)/log M < ε, and let V
be the open subset of U given in Theorem 3.2, Fix z0 e V. We apply
Lemma 4.2 to σ — dθE, B = H°°( U) o π, and the homomorphism

φ(foπ)=f(z0),feH-(U).

The Borel set 7Γ\Z"\Q)) Π Σ{dθE)) differs from a clopen set F by a
set of d0-measure zero. Here F is a Borel subset of # , and we take
this to be the F of Lemma 4.2.

Suppose g = foπeH°°(U)oπ satisfies | | # | | <; M, and \g\ ^ 1 a.e.
on F. Then | / | ^ 1 a.e. π * d ^ on Z~\Q). Since π*dθE = Xc, and
since the closed support of λ^ includes S{U), we have \f\ ^ 1 on
S ί l / j n ^ - ' ί Q ) . By Theorem 1.5, | / | ^ 1 on ^ ( Z 7 ) , for all ζeQ.
Hence |C1(/, Q)| ^ 1. By Iversen's Theorem 3.2, we have |φ(#)| =
I f(z0) I ̂  α. Consequently the hypotheses of Lemma 4.2 are satisfied.
The existence of the h's then follows from 4.2.

6* Continuous selection of representing measures* In this
section we show how Theorem 5.2 can be used to obtain integral
representation formulae for fuctions in H°°(U), where the kernel func-
tions are to satisfy an accessory condition [Theorem 6.6 (iii)] which
embodies Iversen's theorem. The definitions and notation from the
preceding section will be preserved. In order to carry the results
over later to polydomain algebras, we must continue working with
measures hdθE on dA representing fibers π~~1{z).

LEMMA 6.1. Suppose z0 6 U, and suppose h e Lι{dθE) represents
π~ι(z0). Then for each compact subset J of Z7, there exists a constant
c such that

all feH~(U).
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Proof. Define an analytic function u on U by

(Z o 7Γ) —

Since %(«0) = 1, the zeros of u are isolated. By enlarging J, we can
assume that u does not vanish on dj. For fixed ζ e 3J, the function
[/ —/(OK* - Zo)/0 - 0 belongs to H°°(U) and vanishes at z0, so

oπ - zo)hdθE - 0 , /G H-(U) .
( Z o 7Γ) — ς

Solving for /(ζ), we obtain

o 7 Γ ) i f θ 7 Γ ί " z°kl^ 7 Γ ) if ί ru(Q J (ZOTΓ) — ζ
hdθE,feH-(U)9ζedJ.

This representation yields an estimate of the desired form for ζ e dj>
and by the maximum modulus principle the estimate persists on all
of J.

LEMMA 6.2. There are functions hz e L1{dθE)J ze U, such that hz

represents π~ι(z), and hz moves continuously in Lι{dθE) with z.

Proof. Suppose h e U(dθE) represents τr\z^ for some fixed zQ e U.
By 6.1, evaluation functionals on H°°(U)oπ at points of Δ are con-
tinuous in the norm of &(hdθE), and in particular they extend con-
tinuously to the closure H2{hdθE) of £Γ°°(?7)oπ in L2(hdθE). Yor ze U,
let Hl{hdθE) denote the closed subspace of functions in H2(hdθE) which
vanish on π~\z). Using 6.1 and Schwarz's lemma, one sees that the
evaluation functionals on H2(hdθE) move continuously in the dual space
of H\hdθE). Consequently the orthogonal projection Fz of 1 onto
H2(hdθE)ΘH2(hdθE) moves continuously in H\hdθE). Now FzH

2

z(hdθE)
is orthogonal to Fz in L2(hdθE), so that

- 0 , feH?(hdθE).

Then hz = \Fz\
2h/\\Fz\

2hdθE represents π~ι{z). Using 6.1 and an ele-
mentary estimate, one sees that \FZ\

2 moves continuously in U{hdΘE),
so that hz moves continuously in Lι(dθE).

LEMMA 6.3. For each zQ e U, there is a neighborhood W of zQ and
functions kze Lι(dθE), ze W, such that kz represents π~ι{z), and the
functions kjkβ are bounded and move continuously in L°°(ddE).
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Proof. Let J be an open disc centered at z0 whose closure is
contained in U, and let vz be the harmonic measure on dj for zeJ.
Let hz be as in 6.2, and define kz e &{dθE) by

Fix zιeJand ε > 0. Then there exists δ > 0 such that if |z — z1 \ < δ,
we have 1/(1 + ε) ̂  dvJdvH <; 1 + ε. For such s we obtain

(1 + ε)kZl -k,= \ Λζd[(l + ε ) ^ - yj ^ 0 ,

so that kz ^ (1 + ε)/^. Since the situation is symmetric, we obtain
1/(1 + ε) ̂  kz\kZχ ^ 1 + ε whenever \z — z±\ < δ, and this leads easily
to the continuity assertions of the lemma

LEMMA 6.4. Let z0 e U, and suppose p0 e Lι(dθE) represents π~ι(z<).
Then there is a neighborhood W of z0, a positive function peLι{dθE),
and functions qzeL°°(dθE), ze W, such that qzp represents π~ι(z), the
qz move continuously in jL°°(d^) with z, and qZQp = p0.

Proof. Let W and kz be as in 6 3 Shrinking W, if necessary,
we can find a continuous function c(z) on W such that 0 < c(z) ^ kz/kZQ9

and c(z0) = 1. Then kz + c(z)[p0 — kZQ] represents π"*1^). If p = ^ 0 + άZo,
and ĝ  is defined so that fc* + c(z)[p0 — kZQ] = g^p, then # and the ^2

have the desired properties.
The result we have been aiming at is the following.

LEMMA 6.5. Assume every boundary point of U is essential.
There exists a positive function Pe U(dθE), and functions Kz e L°°(dθE)

for ze U, such that
( i ) KZP represents TΓ""1^), that is, Kz ^ 0, and

f{z) = \{foπ)KzPdθE , ze U,feH~(U)

(ii) the Kz move continuously in L^idd^ with zeU; and
(iii) if zeU approaches ζedU, then Z*π*{KzPdθE) converges

weak-star to the point mass at ζ, that is, the mass of π*(KzPdθE)
accumulates at the fiber

Proof. For n^l, let Δn>u Jny2 be a finite cover of dU by
open discs of radius l/n9 and let Δ'nh be the open disc with the same
center as Δ%k and radius 2/n. By 5.2, we can find open subsets Vnk

of U such that JnkΠdU does not meet the closure of U\Vnk, and
such that each π~\z), z e Vnk9 has a representing function in L\dθE)



402 T. W. GAMELIN

with mass greater than 1 — 1/n on π^\Z^{Δ'nk)). We can arrange
that VnkQΔ'nk.

For n ^ 1, let Vn = \Jk Vnk, and set Fo = U. Then Fw lies inside
a 2/w-neighborhood of 3ί7, and U\Vn is at a positive distance from
dU. By shrinking the Vnk9 if necessary, we can arrange that Vn+1π
USVn, so the Vn shrink towards dU.

For fixed ξeU, let n be the largest integer such that ξ e Vn,
say ξ 6 F%ft. Then ξ £ Vn+2. Suppose pξ e L\dθE) represents ττι(ξ) and
has mass greater than 1 — 1/n on π~\Z~~\Δf

nk)). Let W{ξ) be an open
disc centered at ξ of radius less than 1/n, such that W(ξ)S Vn\Vn+2,
and such that the representing functions of 6.4 exist for z e W(ξ) and
all have mass larger then 1 — 1/n on TΓ^OZ^OO).

We can select a sequence {%} in U such that the open discs {W(zά)}
form a locally finite cover of U. Let p0eU{deE) and qzje L°°(dθE),
z e W(Zj), be the functions whose existence is asserted by 6.4, so that
QzjPj represents π~\z) for ze Wfe), and the qzj move continuously in
L°°(dθE) with z e W(zd). Let {gά} be a continuous partition of unity
subordinate to the cover {W(zj)}, satisfying 0 ^ 0 / ^ 1 , and define

oo

K = Σ QAΦQZJP*

Evidently /̂  6 L\dθE) represents π~ι{z). If we define P = Σ P /S5', and
if we define Kz so that hz — KZP, then evidently (i) and (ii) are valid.

Let ze U, and let m ~ m(z) satisfy ze Fm + 1\Fm + 2. Fix zs such
that ze W(Zj). Suppose z5e Vn\Vn+1, and let Vnk be the set entering
in the choice of the representing function qZ3pj9 so that the mass of
qzjPj on τr\Z~~\Δ'nk)) is larger that 1 — 1/n Since | z — zό \ < 1/n, and
since zd e J'nk, we have Δ(z\ δ/n) 3 Δf

nk. Hence

(q.jPjdθs)(7Γι(Z-ιV(z; S/n)))) > 1 - 1/n .

Now by construction, W{z5) is disjoint from Vn+2, so that 2 ί F w + 2 ,
and hence m^n. Consequently the above estimate remains valid if
we replace n by m. Multiplying by g3- and summing over j , we obtain

(hzdθE)(π^(Z^(Δ(z; 5/m)))) > 1 - 1/m, z e Vm+1\Vm+2.

If now z tends to ζedU, the index m = m(z) approaches + co, so
that the mass of π*(hzdθE) concentrates at the fiber over ζ. That
concludes the proof of the lemma.

If we define Kz* — π*(Kz) and P* = ττ*(P), we obtain immediately
the following theorem.

THEOREM 6.6. Let U be a bounded domain in C such that every
point of dU is essential, and let λ be the harmonic measure on
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Let C be a Borel subset of ^Jt(JJ) such that the closed support of Xc

includes S(U). Then there are real-valued nonnegative functions
P* e L^Xc) and K? e L°°(XC), z e U, which satisfy

( i ) f(z) = \fK?P*dxc, zeU,feH~(U);
(ii) K* moves continuously in L°°(XC) with ze U; and
(iii) as ze U approaches ζedU, the mass of K*P*XC accumulates

at the fiber

In many cases it is possible to find a subset C of ^€(U) such
that S(U) is homeomorphic to Σ(XC). This occurs for instance when
U is finitely connected, or when U is one of the domains "of type L"
treated by Zalcman [14]. In this case the functions K* can be re-
garded as continuous functions on S(U), and the K* will move con-
tinuously in C(S(U)) with ze U.

7 • Fiber algebras for polydomains* In this section we treat
bounded open sets D in Cn of the form

D = U, x x Un ,

where each Z7y is a bounded open subset of C. We begin with some
elementary observations concerning the fibers Λ&D).

In the case at hand, the coordinate projection Z maps ^{Ό)
onto D = ϋΊ x x Un. If ζ e D, then ^fζ(D) consists of only the
homomorphism "evaluation at ζ". Indeed, if /GJ?°°(Z)), there are
fu .--,fneH~(D) such that

f ( ) f ( Q ± ( i
3 = 1

Applying φ e ^J(D) to this identity, we obtain φ(f) = /(ζ) for all
feH°°(D), so that φ is the evaluation homomorphism at ζ.

Suppose next that ζ e 3D, and suppose that the indices are arranged
so that ζy edUj for 1 ^ j ^ k, while ζy e ?7, for & + 1 ^ i ^ ^. Let
D' = C/Ί x x ί7Λ. There are natural maps

defined by

These maps induce adjoint maps
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Since p°c is the identity, c*op* is also the identity, and p* must be
a homeomorphism of ^C(Z)') and a compact subset of ^f(D). We
claim that

p*^(Df) = {φe ^(D): Z3 (φ) = ζj9 k + 1 ^ j ^ n} .

Indeed, if φ e ^£{Df) and j > k, then Zά(ρ*φ) = 9>(/0Si) = ζ, , so we
have the inclusion " S " . On the other hand, suppose 9>e
satisfies Z, (φ) = ζ, , fc + 1 ^ j ^ w. If feH°°(D), we can find

Λ, .--,fk+1eH-(D)

such that

Σ

= (φf)(z)+ Σ (2i-Ci)/i(2).

If ^ = ί*φ, then J%o*f) = {φf){Ψ) =A<P)> so that <p = iO* ,̂ and the
reverse inclusion " 3 " also obtains.

Set ζ' = (ζ1? , ζfc) e 3C7Ί x x 3Z7Λ We have shown that
^-/%,(D') is homeomorphic in a natural way to ^^(D) Note that the
expression for / above also shows that the cluster set of / from D at
ζ G 3D coincides with the cluster set of / from Ώ' at ζ' e dD\ Con-
sequently both the study of fibers and cluster sets at ζ e 3D can be
reduced to the case in which ζ belongs to the "distinguished boundary"
of D, that is, in which ζ e dUι x x dUn.

Now we turn to the analogues for polydomains for some results
contained in [5] and [7] The proofs will often amount to writing
down the integral formulae in [5] and [7] in one variable at a time,
regarding the other variables as analytic parameters, and checking
that the same estimates obtain as in the one variable case. For this
reason, only sketches are given at certain points in the proofs. The
iteration procedure was first employed by Bekken [1], who dealt with
rational approximation on product sets. The fact that the iterative
methods yield 7.1-7.4 and the cluster value Theorem 7.5 has been
observed by several people.

LEMMA 7.1. Let ζ, e ϋlf let δ > 0, and let Do = [11,0 J^; δ)] x

U2 x x Un. Iffe H-(D0), then there exists F e H°°(D) and f, e H~(D0)
such that

F = / + (si - Ci)/i on Do
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Proof. Let g be a smooth function of one complex variable such
that g is supported on J(ζ :; 3), g — 1 on //(d; 3/2), and \dg/dw\ ^ 4/3.
Define

Fx(z) = g(zdf(z) + ^f&>*>-"''I *£-dudv ,
7Γ J J £ x — W OW

where w = w + m Then Fι — f — G is analytic and bounded on
d; 3/2) x i72 x x Z7Λ, so that the function

*2, ' , «»)]/(«! ~ Cl)

is bounded, and

f(z) + (zx

This is the desired decomposition. For the analyticity and estimates,
see [7].

LEMMA 7.2. Let ζeD, let 3 > 0, and let DQ be the intersection
of D with the polydisc Λ(ζ; 3). Iffe H°°(DQ), then there exists F e H°°(D)
and flf • • • , /»€ H°°(D0) such that

F= f + Σ fe - ζi)/y o^ Do ,

Proof. For the first step, we apply Lemma 7.1, with Ϊ7, replaced
by U3 Π 4(ζ, ; 3) for 2 ^ j ^ n. This yields

such that Fx = / + (zx - ζJΛ on A , and HFJI ^ 3 3 | | / | | .
Now we apply 7.1 again, interchanging the variables appropriately,
and replacing the Z7/s of 7.1 by the appropriate sets. After n ap-
plications of 7.1, we arrive at 7.2.

LEMMA 7.3. Let ζeD. If fe H°°(D) satisfies

limJ(z) = 0,

then f = 0 on ^fζ(D).

Proof. Let ε > 0. Choose 3 > 0 so small that |/1 ^ ε on flΠ
J(ζ;3), and choose F as in 7.2. The functions fu •••,/» constructed
there actually belong to H^iD), because / does. For φe^€ζ{D), we
then have φ(f) = <p(F), so that \φ(f) \^\\F\\^ (33)nε. Letting ε — 0,
we have the result.
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THEOREM 7.4. Let ζeD. Let Vl9 , Vn be open subsets of C
such that Vj(Z Uh U3\Vj is at a positive distance from ζy. Then the
restriction map H°°{D) -> H"{Vι x ••• x F%) induces a homeomorphism

Proof. The proof is exactly the same as that of the correspond-
ing result in [5].

Recall that Cl (/; ζ) is the cluster set of feH~(D) at ζ. The
following cluster value theorem, which includes Lemma 7.3, follows
easily from 7 4.

THEOREM 7.5. If feH°°(D)9 and ζeD, then

fUfζ(D)) = Cl (/; ζ) .

Proof. The proof is the same as that of the corresponding result
of [5].

Recall that the fiber algebra associated with ζeD is the restric-
tion of H°°(D) to ^fζ(D). From 7.2 and 7.5, it follows that each
function / in the fiber algebra has an extension F e HCO{D) satisfying
\\F\\D ^ [(33)w + l]||/IUC(z» It follows that the fiber algebra is a closed
subalgebra of C{^fζ{D)). In order to study the Shilov boundary Sζ(D)
of the fiber algebra, we need sharper information on the extension of
functions in the fiber algebra. If ^£[{D) is a peak set, then abstract
results yield sharp extension theorems, and the equality S^D) =
S(D) Π ̂ fζ(D). In order to treat the case in which ^fζ(D) is not a
peak set, we must introduce a certain ideal Iζ which plays the role
of the kernel of the distinguished homomorphism from the one-variable
case, and we must prove the analogue of the extension Theorem 6.2
of [7] for Iζ.

Suppose that ζ1 e Ux is such that ^ c x ( 270 is n ° t a P e a k set for
H°°(U^. Let φ be the distinguished homomorphism in ^ ^ ( ί / Ί ) . For
fixed ξj e Uj, 2 ^ j ^ n, we have an identification

^T(Ud - Z-\{%i = ξj9 2 ^ j ^ n}) ,

and we denote by (φ, ξ2, , ξ%) the image of the distinguished homo-
morphism under this identification. There is a sequence {z[j)} in E7Ί
which converges to ζι in the topology of ϋlf and which converges to
φ in the norm of the dual space of H^U,). If feH°°(D), then
f(z[j), zif , zn) converges uniformly in (z2, •- ,zn)eU2x x Un to
f(φ, z2, , zn). In particular, f(φ, z2, , zn) depends analytically on
the z/s, j ^ 2. [Actually, this latter assertion is true for any φ e
distinguished or not.]
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Now suppose ζeD, and suppose for convenience that the variables
are ordered so that ^ζj(Uj) is a peak set for H°°{U3) if and only if
k < j ^ n. Let φ5 be the distinguished homeomorphism in ^^.{U^)
for l^j^k. We define Iζ to be the ideal of functions feH°°(D)
such that f(zl9 , z5_l9 φ3 , zj+1, , zn) = 0 for 1 <: j ^ k and zt e Z7<.

THEOREM 7.6. Le£ ζ e i 5 , αraZ letfelζ. Suppose p is a strictly

positive continuous function on ^(D) such that \f\^p on

There exists Felζ such that F = / on ^fζ{D), and \F\ ^ p on

Proof. According to abstract principles (cf. Lemma 6.1 of [7])>
it suffices to find a sequence {Hm} in Iζ such that the Hm are uniformly
bounded, Hm coincides with / on ^€J(D), and Hm converges uniformly
to zero on compact subsets of ^ ί ( J 9 ) \ ^ ( J 9 ) . By 7.5, this latter
requirement will be met whenever Hm converges uniformly to zero on
subsets of D at a positive distance from ζ.

So fix c > 0 and ε > 0. It suffices to find HeH°°(D) such that
H = f on Λί(D), | | H | | ^ ( 3 3 ) f e | | / | | , and | H | ^ (33)fcε off j? Π 4(ζ; c).
To produce the function fi", we apply A: times the procedure in Lemma
7.1, and then we handle the remaining n — k variables with a peaking
function. Each time we apply 7.1, we proceed as in the proof of
Theorem 6.2 of [7], the crucial point being the uniform estimate there
for Lδ(f), defined in Lemma 2.1 of [7] and estimated in Corollary 3.7
of [7].

To simplify matters, let us assume that k = 2. Consider the
decomposition F = / + {zx — Qfx = Fx + G(d, z2, , zn) obtained in
the proof of 7.1. For each fixed (z2, •••,«») in U2 x x Un, z1 —>
F(zl9 , zn) is analytic off Δ(ζι\ δ) and vanishes at z1 — oo. By Schwarz's
lemma, we can make F^z) uniformly small whenever | zt — d | > c,
by taking δ > 0 sufficiently small. Since /(?\, «2, , «») = 0, the
estimate of Corollary 3 7 of [7] shows that the term G(ζ19 z2, * ,2Λ)
is uniformly small if 8 > 0 is sufficiently small. Hence for <? > 0
small we have \F\ < ε off [ΪΛ ΓΊ 4(d;c)] x Z72 x x Z7«. Always
IIi<ΊI ^ 33H/II, and .F7 = / on ^ ( D ) . Since ^ f e - ζ:) = 0, we have
F(Φι> Z2, , ^ ) — 0. By inspecting the definition of Fγ and G, we
see that F(zlf φ2, «β, , £•) = 0, so that Fe 7C.

Now we apply the same procedure on the second variable to F,
obtaining F'elζ such that F'= f on Λ&D), \\F'\\ ^ (33) 2 | |/ | | , and
| F | < e off Ui x [?72 Π ̂ ί(ζ2; c)] x i73 x - x t7». The formula for F'
shows that if z1 e U\Δ(ζ{; c), then |F'\ ^ 33 ε. Consequently | F ' | ^ 33 ε
off [U, n Λ(ζi; c)] x [C72 n J(ζ2; c ) ] χ p , χ . . . χ un.

We are assuming that k — 2, so that for 3 ^ i ^ n, there is a
function h5 e H°°{Uό) which peaks on ^fζj{Uό), that is, Λj = 1 on ^£i0{Uj),
and |λ y | < 1 on ^(Us)\^?ζ.(Us). Then h = h3 - - hΛeH~(D) peaks
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on the set of φ e ^(U) satisfying Z5{ψ) — ζj9 3 ^ j ^ n. In particular,
h = 1 on ^fζ(D). If m is a large integer, then fem is small off

u, x u2 x [C7e n ^(ζ3; c)] x x [un n Λ(ζn; c)] .

Consequently for m sufficiently large, the function H = /zΛi*7' 6 /ζ has
the desired properties.

8* Representation formulae for polydomains• In this section,
we will extend Theorem 6.6 to polydomains.

Let dθ = dθι dθn denote the volume measure on the distin-
guished boundary {3A)n of the open unit polydisc Δn in C\ lΐfeH°°(Δn),
then limr^ f(reίθl, , reiθn) exists for almost all θ = (θl9 , θn), defin-
ing a boundary value function almost everywhere on (dΔ)n. Again
the correspondence between a function and its radial boundary values
is an isometric isomorphism of H™(Δn) and a weak-star closed sub-
algebra H~{dθ) of L°°(d9), so that the functions in H°°(An) can be
regarded as continuous functions on Σ(dθ). It is known (cf. [10])
that H°°(Δn) does not separate the points of Σ(dθ). However, once
appropriate point identifications are made, one can regard Σ(dθ) as a
subset of ^€{Δn) which contains the Shilov boundary S(Δn). The
natural lift of the measure dθ to Σ(d9) will also be denoted by dθ,
and the projection of dθ onto ^-f/{Δ%) will be denoted also by dθ.

Fix bounded domains Uu , Un of C such that each boundary
point of each U3- is essential, and let D = Uι x x Un. Let π3 be
the universal covering map of Δ over Uj9 and let π = (πu •••, π%) be
the universal covering map of Δn over D. Then TΓ extends to a con-
tinuous map

π:

Indeed, the map /—>/<>π of H~{D) into H°°(Δn) has an adjoint whose
restriction to ^/ί{Δn), regarded as a subset of FI°°(Δn)*, yields the
desired extension of π.

Let G3 be the group of covering transformations of Δ over U,,
so that πjo T = πό for all T e Gjf and let G = Gi x x Gn be the
group of covering transformations of J w over D. Then H°°(D) is
isomorphic to the algebra of functions in H°°(Δn) which are invariant
under G.

LEMMA 8.1. Suppose f e Hco(Δn). For almost all θn, the function

is defined almost everywhere dθι dθn_lf and is the boundary value
function of a function F(wu , wn_ιy eiθn) in H°°(Δn~'1). For each
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fixed (wl9 , wn^) e Δn~\ the function eiθn —• F(wl9 , wn__u e
iθn) is the

boundary value function of the function wn —>f(wl9 , wn_l9 wn) in
H°°(Δ). If f is invariant under G, then for almost all θn,

F(wlf , wn_l9 eiθ-)

is invariant under G1 x x Gn__x.

Proof. The first two assertions are true if / is an analytic
polynomial. In the general case, take a sequence of analytic poly-
nomials {fk}ΐ=ι such that the fk are uniformly bounded, and /*.—•/
a e dθι dθn on (dΔ)n. Fix θn so that fk(eiθl, , eidn) converges a.e.
dθλ dθn^. For that fixed θn, the functions fk(wl9 , wn^l9 eiθn) con-
verge for all (w19 , wn_λ) e Jn~\ to some function F(wlf , wn__u e

iθι»)
in ί f 0 0 ^-* 1 ), whose boundary value function with respect to the first
n — 1 variables coincides with f(eiθl, , eiθn-\ eίθn). In particular, for
each (wl9 , w»_i) e J"" 1, the functions fk(wl9 , tc;Λ_lf β^w) converge
to F(wl9 , wΛ-i, eiθn) a.e. cZ %̂. Since /fc converges pointwise to / on
Δn, the function F(wl9 , w%_i, e^%) must be the boundary value
function of f(wl9 , w»_i, wn).

If / is invariant under G, then in particular / is invariant under
G1 x x Gw_i, so taking boundary values in the last variable, we
see that F has the asserted invariance property.

Now for each U3 , we select a Borel subset Ed oίdΔ as in §5, so
that Ej is invariant under Gj9 and E5 enjoys the equivalent properties
of Lemma 5.1. Choose P, £ Lι{dθEj) and functions K*. e L~{dθE^ zά e Us,
which have the properties of Lemma 6.5, and define kernel functions

P(eiθ\ -, β " ) = PSfi*9') Pn{eiθ*)

Kz{eι\ , e*°») = K^(eiθή . . Kz

n

n(eίθ-)f zeD ,

on the subset

E = E,x x En

of

LEMMA 8.2. If feH°°(D), then

f(z) = \ (foπ)(eiθ)Kz(eiθ)P(eiθ)d9,zeD.
JE

Proof. Here eiθ = (e^1, •• ,e ί ^), and (/o7r)(eίθ) is interpreted as
the boundary values of the function /ojc on J \ The lemma is true
for w = 1, and we can suppose that the lemma is true with n replaced
by n - 1. Let F be the function on Δn~ι x dΔ related to foπeH°°(Δn)
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by Lemma 8.1. For almost all θn, F is automorphic under G1 x x (?»_!,
so by the induction hypothesis, F{wu , wn_u eiθn) is given by the
integral

( ί (/ o π)(e^)Kz\(e^) . . . K£ι(e»»->)Pι(έ»>)

x P-W^dθt . Λ?.^ ,

where πj(wj) = zs e Uj9l ^ j ^ n — 1. Now the function

ίXWi, , wn^, eiθ«)

is automorphic under Gn, so when we multiply by K?n(eiθn)P%{eiθn)dθ n

and integrate over En, we obtain the desired result.

The point identification mapping Σ(dθ) -+^/f(Δn), carrying dθ to
a measure by the same name on ^(Δn), preserves absolute continuity
and bounded absolute continuity. Hence the functions P and Kz,
determine (a.e. dθE) functions on ^f(Δn), which will be denoted
ambiguously by the same symbols. For these, we have the following
extension of Lemma 6.5, which leads also immediately to an exten-
sion of Theorem 6.6.

THEOREM 8.3. Let D •=• Uι x x Un be a bounded polydomain
in Cn such that each boundary point of each Uo is essential.

Let PeL1{dΘE) and KaeL~(d9E) be the positive functions con-
structed above, for ze D. Then

(i) f(z)=\ (/ o π)KzPd9E, f e H~(D), zeD.
(ii) Kz moves continuously in L^idβ^ with zeD; and
(iii) if ζedUιx x dUn, then the mass of π*(KzPdθE) accumu-

lates at the fiber ^ζ(D) as zeD approaches ζ, that is, (Zoπ)*(KzPd9E)
converges weak-star to the point mass at ζ as zeD approaches ζ.

Proof. Property (i) follows from Lemma 7.2, while property (ii)
follows from the corresponding property of Lemma 6.5 for the factors
of Kz.

Let Ψ3 be the natural map of ^/f(D) onto ^f{Uj), obtained by
restricting ψ e ^/ί{D) to the functions in H°°(D) which depend only
on the jth variable. These yield a map

x x

Similarly we have natural maps Φ: ̂ £{Δn) —> /̂̂ {Δ)% and

Σ(dθ) -> Σ(dθJ x x Σ(dθn) ,
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and one verifies that the following diagram is commutative:

x ••• x Σ(dθn) >^(J) ^ - — ^ ( t 7 i ) x ••• x

y y ι
Σ(dθ) > Λ{Δ^ -^-> ̂ /S{D) > Ut x x Un .

If we start with the measure KzPdθE on Σ(dθ) and take the low
road, we obtain the measure (Zoπ)*(KzPd9E) of the theorem. On
the other hand, if we take the high road around we obtain a measure
on ΌΊ x x Un which is a product of the projections of the kernel
measures dealt with in Lemma 6.5. Applying Lemma 6.5 (iii) to each
factor, we obtain assertion (iii). That concludes the proof of Theorem
8.3.

As in §2, we could define a harmonic measure λ on ^£{JD), by
defining \z — ττ*(mw), when mw is the Poisson kernel for weJn

f and
z = π(w). The commutative diagram above serves to compensate for
the fact that mw and λ* are not product measures on ^£{Δ%) and
^€(Ώ) respectively. The commutative diagram and results from §2
show for instance that Z*(XZ) is the product of harmonic measures
μ Z l X ••• X μ Z n o n dU, X ••• X dUn.

9* Iversen's theorem in polydomains* We retain the notation
of the preceding section. Preceding in analogy with §2, the conformed
ray Ύθ in D is defined to be the image under π of the interval
{reiθ: 0 ^ r < 1}. Almost all (dθ) conformal ray terminate at a point
of dΐlί x ••• x dUn, and every feH°°(D) has limits along almost all
conformal ray. Let Γ(E) denote the family of conformal ray 7Θ, where
θ belongs to the set E = Eι x x En of the preceding section. If
Q is a subset of dϋΊ x x dUn, and feH°°(D), we define C1Γ(JS)(/, Q)
to be the essential cluster set of / along conformal ray in Γ(E) which
terminate in Q. In other words, b e GlΓUS)(f, Q) if and only if for each
e > 0, there is a set of conformal ray in Γ(E) corresponding to a sub-
set of E of positive d9-measure, each of which terminates in Q, and
along each of which / has a limit within e of δ.

L E M M A 9.1. Let Q be a Borel subset of dUtx ••• x dUnf and

let feH°°(D). The π*{dΘE)-essentίal range of f on Z~ι{Q) coincides

with ClriE)(f9 Q)

Proof. The proof is essentially the same as that of Theorem 2.3.
Let T be the set of eiθ e E such that the conformal ray yθ terminates
in Q. By definition, ClΓ{E)(f, Q) coincides with the ^©-essential range
of the boundary value function of / o π on V, and this is the range
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of / o π on T. As in 2.3, f differs from E Π π"\Z-ι{Q)) by a set of
dθ-measure zero. Consequently ClΓ(i?)(/, Q) coincides with the dθE-
essential range of /oττ on π~\Z~1{Q)), and this is the π^dθ^-essential
range of / on Z~\Q).

As before, we denote by Cl (/, Q) the cluster set from D of a
function feH~(D) at the set Q.

THEOREM 9.2. Let U3 be the bounded domain in the complex plane
such that each point ofdU3 is essential, l^j^n. Let D — UtX x Un9

and let Q be a relatively open subset of dU1x x dUn. If fe H°°(D)
satisfies \ClΓiE)(f, Q) | ^ 1, then |C1 (/, Q) | ^ 1.

Proof. Fix ζeQ, and represent/by the integral formula of §8.

f(z) - \ ( f o π ) K M P d θ E = \ f π * ( K z P d θ E ) , zeD.

According to the hypothesis and Lemma 9.1, we have | / | ^ 1 a.e.
π*(dθE) on the relative neighborhood Z~ι{Q) of ^£[{D) in the closed
support of π*(dθE). By Theorem 8.3, the mass of π*(KzPdθE) con-
centrates at ζ as z e D tends to ζ, so that

lim sup \f(z) | ^ 1 .

That establishes the theorem.

10. The Shilov boundary of the fiber algebra. Now we are
in a position to prove a multivariable version of Theorem 1.5.

THEOREM 10.1. Let D — Uxx x Unbe a bounded polydomain
in Cn. Let ζ = (ζu * ,ζ%), where each ζ3- is an essential boundary
point of U3: Then

Sζ(D) - S(D) n Λί(D) .

We can assume that each point of dUj is essential, 1 ̂  j ^ n.
The proof will be broken into several lemmas. We fix ζ as above.

LEMMA 10.2. Suppose E = Eλ x x En is chosen as in § 8.
Then the closed support of π*(dθE) contains Sζ(D).

Proof. Suppose fe H°°(D) is such that | / | < 1 on the intersection
of ^fζ(D) and the closed support of π*(dθE). Then there is ε > 0
such that I/I < 1 a.e. π*(dθE) on Z~\Δ{ζ\ ε)). By Lemma 9.1 and
Theorem 9.2, or by the proof of Theorem 9.2, we have |C1 (/, ζ) | ^ l
By Theorem 7.5, | / | ^ 1 on ^tζ{D). This shows that the intersection
of ^^^Ώ) with the closed support of π*(dθE) is a boundary for the
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fiber algebra, so that it includes SC(D).
Now we will work with the distinguished ideal Iζ introduced in

§7.

L E M M A 10.3. There exists Fe Iζ such that \\F\\ = 1, while \F\ = 1

on Sζ(D).

Proof. Assume that the indices are arranged so that there is a
distinguished homomorphism φ3 in ^lά{U3) for 1 S j ^ k, while
^tCj(Uj) is a peak set for H^iUj) when k + 1 ^ j ^ n. Fix l^j^k.
According to a theorem of Fisher (cf. [2], [6]), there is a function
FjβH-iUj) such that \F3\ <1 on U3, while \F3\ = 1 on S(£/,•)• Then
li^l < 1 on the Gleason part of E7}, so that \F3 (φ3)\ < 1. By com-
posing Fj with an analytic automorphism of the unit disc, we can
assume that F3(φ3) — 0. Then F — F1 Fk belongs to Iζ and satisfies

Let ε > 0 be small. The subset of Λ?(UJ) on which \F3\ > 1 - ε
is a neighborhood of S(U3). By taking this to be the set C of Lemma
5.1, we see that we can choose the set E3 so that \F3oπ3-\ ^ 1 — ε
a.e. dθEp l^j^k. Then |Foττ| ^ (1 - ε)k a.e. dθE, so that \F\^
(1 — ε)k a.e. π*(dθE). According to Lemma 10.2, we must have
\F\ ^ (1 - ε)fe on Sζ(D). Letting ε~> 0, we obtain | F | = 1 on Sζ(D).

Proof of Theorem 10.1. Let φ e Sζ(D) be a generalized peak point
for the fiber algebra. Let p be a continuous function on ^/£{D) such
that 0 < p ^ 1, and p(φ) = 1. Then there is # e H°°(D) such that
#(<p) = 1, and \g\ ^ p on ^£[{D). Multiplying g by a unitary multiple
of the function F of Lemma 10.2, we can assume furthermore that
g e Iζ. By Theorem 7.6, there is G e H~(D) such that G(φ) = 1, and
|G| ^ p on ^f(D). It follows that φ is a generalized peak point for
H°°{D), so that φeS(D). Such <ρ's are dense in Sζ(D), so that
Sς(J5) S S(D) Π ̂ ί{D). The reverse inclusion follows from Theorem
1.4. That completes the proof.

Several remarks are in order, concerning 10.1. The first observa-
tion is that the multivariable version 9.2 of Iversen's theorem follows
from Theorem 10.1, just as the single-variable version 3.1 followed from
Theorem 1.5. However, Theorem 10.1 is somewhat stronger that 9.2.
It implies immediately a weak form of the cluster value theorem,
that | / ( ^ ( D ) ) | ^ | C l ( / , ζ ) | .

Secondly, in order to prove Theorem 10.1 one can bypass the
work in §6, basing the proof on Theorem 5.2.

Finally Theorem 10.1 remains valid whenever D = Ux x x Un

where each U3 is an open (not necessarily connected) subset of C on
which there exists a nonconstant bounded analytic function. To see
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this in the case in which the Uό are bounded, one proceeds as follows.
Let U be a bounded open subset of C, and let Vl9 V2, be the
components of U. Then each ^€(Vj) can be regarded as a clopen
subset of ^f(U). Let λ, be harmonic measure on ^t{Vό), and define
harmonic measure on ^£(JJ) to be λ = ΣXd/2j. Working with the
measure λ, and working with a covering space over U consisting of
a disjoint union of discs, one for each Vjy one can carry through the
analogues of the results in §§2 through 6. The results in §§8 through
10 then can also be modified to cover the disconnected case,
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