LENGTH OF PERIOD SIMPLE CONTINUED FRACTION EXPANSION OF \sqrt{d}

DEAN ROBERT HICKERSON
LENGTH OF PERIOD OF SIMPLE CONTINUED FRACTION EXPANSION OF \sqrt{d}

DEAN R. HICKERSON

In this article, the length, $p(d)$, of the period of the simple continued fraction (s.c.f.) for \sqrt{d} is discussed, where d is a positive integer, not a perfect square. In particular, it is shown that

$$p(d) < d^{1/2 + \log 2/\log \log d + 0 \log \log \log d / (\log \log d)^2}.$$

In addition, some properties of the complete quotients of the s.c.f. expansion of \sqrt{d} are developed.

It is well known that the s.c.f. expansion for \sqrt{d} is periodic if d is a positive integer, not a perfect square. Throughout this paper, $p(d)$ will denote the length of this period. It is shown in [2] (page 294), that $p(d) < 2d$. Computer calculation of $p(d)$ originally suggested that $p(d) \leq 2[\sqrt{d}]$. This was shown to be false for $d = 1726$, for which $p(d) = 88$ and $2[\sqrt{d}] = 82$. Further calculation revealed 3 more counterexamples for $d \leq 3000$. They were $p(2011) = 94$ while $2[\sqrt{2011}] = 88$, $p(2566) = 102$ while $2[\sqrt{2566}] = 100$, and $p(2671) = 104$ while $2[\sqrt{2671}] = 102$.

This suggests as a conjecture that

$$p(d) = O(d^{1/2}) \quad \text{and} \quad p(d) \neq o(d^{1/2}).$$

It follows from the corollary to Theorem 2 that

$$p(d) = O(d^{1/2 + \epsilon})$$

or more precisely, that

$$p(d) < d^{1/2 + \log 2/\log \log d + 0 \log \log \log d / (\log \log d)^2}.$$

We will need the following results which are given in or follow from §§ 7.1-7.4 and 7.7 of [1].

1. Any periodic s.c.f. is a quadratic irrational number, and conversely.

2. The s.c.f. expansion of the real quadratic irrational number $(a + \sqrt{b})/c$ is purely periodic if and only if $(a + \sqrt{b})/c > 1$ and $-1 < (a - \sqrt{b})/c < 0$.

3. Any quadratic irrational number ξ_0 may be put in the form $\xi_0 = (m_0 + \sqrt{d})/q_0$, where d, m_0, and q_0 are integers, $q_0 \neq 0$, $d \geq 1$, d is not a perfect square, and $q_0 \mid (d - m_0^2)$. We may then define infinite
sequences \(m_i, q_i, a_i, \) and \(\xi_i \) by the equations \(\xi_i = (m_i + \sqrt{d})/q_i, a_i = [\xi_i], m_{i+1} = a_i q_i - m_i, \) and \(q_{i+1} = (d - m_{i+1})q_i. \) Then, for \(i \geq 0, m_i, q_i, \) and \(a_i \) are integers, \(q_i \neq 0, \) and \(q_i \mid (d - m_i). \) Also, for \(i \geq 1, a_i \) and \(\xi_i \) are positive.

(4) In the notation of (3) above, we have for \(i \geq 0, \) \(\xi_i = \langle a_i, a_{i+1}, a_{i+2}, \cdots \rangle. \) In particular, \(\xi_0 = \langle a_0, a_1, a_2, \cdots \rangle. \)

(5) There is a positive integer \(N \) such that, if \(i > N, \) then \(q_i > 0. \)

(6) There exist nonnegative integers \(j \) and \(k \) such that \(j < k, m_j = m_k, \) and \(q_j = q_k. \) We may choose \(j \) to be the smallest integer such that for some \(k > j, m_j = m_k \) and \(q_j = q_k. \) We may then choose \(k \) to be the smallest integer such that \(j < k, m_j = m_k, \) and \(q_j = q_k. \) Then, if \(t \) is a nonnegative integer, then \(m_{j+t} = m_{k+t}, q_{j+t} = q_{k+t}, a_{j+t} = a_{k+t}, \) and \(\xi_{j+t} = \xi_{k+t}. \) Therefore, if \(i < j, \) then

\[
\xi_i = \langle a_i, a_{i+1}, \cdots, a_{j-1}, a_j, \cdots, a_{k-1}, \rangle,
\]

while if \(i \geq j, \) then \(\xi_i = \langle a_{i'}, a_{i'+1}, \cdots, a_{k-1}, a_k, a_j, a_{j+1}, \cdots, a_{i'-1}, \rangle, \) where \(i' \) is the integer such that \(j \leq i' \leq k - 1 \) and \(i \equiv i' \pmod{(k-j)}. \) In particular, \(\xi_0 = \langle a_0, a, \cdots, a_{j-1}, a_j, \cdots, a_{k-1}, \rangle. \)

(7) If \(\xi_0 = \sqrt{d}, \) then we may take \(m_0 = 0 \) and \(q_0 = 1 \) in (3). In (6), we have \(j = 1 \) and \(k = r + 1 \) for some positive integer \(r. \) Then \(\xi_0 = \langle a_0, a, \cdots, a_r, \rangle \) and, for \(i \geq 1, \) \(\xi_i = \langle a_{i'}, \cdots, a_r, a_i, \cdots, a_{i'-1}, \rangle, \) where \(i' \) is such that \(1 \leq i' \leq r \) and \(i \equiv i' \pmod{r}. \)

(8) In (7), if \(t \geq 0 \) then \(m_{i+t} = m_{r+i+t}, q_{i+t} = q_{r+i+t}, a_{i+t} = a_{r+i+t}, \) and \(\xi_{i+t} = \xi_{r+i+t}. \) It follows from this that if \(i \geq 1 \) and \(s \geq 0, \) then \(m_{i+s} = m_i, q_{i+s} = q_i, a_{i+s} = a_i, \) and \(\xi_{i+s} = \xi_i. \)

Throughout this paper it will be assumed that \(d \) is a positive integer, not a perfect square. The period \(r \) of the s.c.f. expansion of \(\sqrt{d} \) will be denoted by \(p(d). \)

2. Preliminary results. In this section, \(m_i, q_i, a_i, \) and \(\xi_i \) will refer to the sequences defined in (3)-(8) above, with \(\xi_0 = \sqrt{d}, m_0 = 0, \) and \(q_0 = 1. \)

Lemma 1. If \(i \geq 0, \) then \(q_i > 0. \)

Proof. From (5), there is an \(N \) such that, if \(i > N, \) then \(q_i > 0. \) Suppose \(i \geq 1. \) Then there is an integer \(s \) such that \(i + rs > N. \) By (8), \(q_i = q_{i+rs}. \) But since \(i + rs > N, q_{i+rs} > 0. \) Therefore, \(q_i > 0. \) That is, if \(i \geq 1, \) we are done. Since \(q_0 = 1, \) this result holds for \(i = 0 \) also, so the proof is complete.

Theorem 1. If \(i \geq 1, \) then \(0 < m_i < \sqrt{d} \) and \(\sqrt{d} - m_i < q_i < \sqrt{d} + m_i. \)
Proof. From (7), if $i \geq 1$, then $\xi_i = \langle a_{i'}, \cdots, a_r, a_i, \cdots, a_{i'-1} \rangle$ so the s.c.f. for ξ_i is purely periodic. But $\xi_i = (m_i + \sqrt{d})/q_i$, so from (2), $(m_i + \sqrt{d})/q_i > 1$ and $-1 < (m_i - \sqrt{d})/q_i < 0$. Since, from Lemma 1, $q_i > 0$, we obtain $m_i + \sqrt{d} > q_i$ and $-q_i < m_i - \sqrt{d} < 0$. This yields $m_i < \sqrt{d}$ and $\sqrt{d} - m_i < q_i < \sqrt{d} + m_i$.

Thus $-m_i < m_i$ and $m_i > 0$, so the proof is complete.

For given d, let $T = T(d)$ be the set of ordered pairs (m, q) which satisfy $m < \sqrt{d}$, $\sqrt{d} - m < q < \sqrt{d} + m$, and $q | (d - m^2)$. That is, $T = \{(m, q) | m < \sqrt{d}, \sqrt{d} - m < q < \sqrt{d} + m, q | (d - m^2)\}$. Let $g(d) = c(T)$, the cardinality of T.

From (6) and (7) of Section 1, if $1 \leq i < l \leq r$ then $(m_i, q_i) \neq (m_l, q_l)$. Therefore, the set $U = \{(m_i, q_i) | 1 \leq i \leq r\}$ has exactly r elements. By Theorem 1, $U \subset T$ so $r = c(U) \leq c(T) = g(d)$. Since $r = p(d)$, we obtain

Lemma 2. $p(d) \leq g(d)$.

3. An upper bound on $g(d)$.

Theorem 2. $g(d) < d^{1/2+\log 2/\log \log d+O(\log \log \log d/\log \log d)^2}$.

Proof.

\[
g(d) = c(T) = c((m, q) | 0 < m < \sqrt{d}, \sqrt{d} - m < q < \sqrt{d} + m, q | (d - m^2))
\]
\[
= \sum_{m=1}^{[\sqrt{d}]} c((q \mid \sqrt{d} - m < q < \sqrt{d} + m, q \mid (d - m^2))) \leq \sum_{m=1}^{[\sqrt{d}]} \tau(d - m^2),
\]

where $\tau(n)$ denotes the number of divisors of n.

It is shown in [3] that

\[
\log \tau(N) < \frac{\log 2 \log N}{\log \log N} + O\left(\frac{\log N \log \log \log N}{(\log \log N)^2}\right).
\]

It follows that

\[
\tau(N) < N^{\log 2/\log \log N+O(\log \log \log N/\log \log N)^2}.
\]

Therefore, for $m = 1, 2, \cdots, [\sqrt{d}]$,

\[
\tau(d - m^2) < d^{1/2+\log 2/\log \log d+O(\log \log \log d/\log \log d)^2},
\]

and the theorem follows by summing this expression over the $[\sqrt{d}] < d^{1/2}$ values of m.

Corollary. $p(d) < d^{1/2+\log 2/\log \log d+O(\log \log \log d/\log \log d)^2}$.

Proof. This follows immediately from Lemma 2 and Theorem 2.
4. A lower bound on the order of \(g(d) \). Theorem 2 shows that \(g(d) = O((d^{1/2} + \varepsilon)^2) \) for any \(\varepsilon > 0 \). It will follow from Theorem 3 that \(g(d) \neq o(d^{1/2}) \). Thus, Theorem 2 is almost best possible. This, however, is not necessarily true of its corollary.

Theorem 3. There exist infinitely many positive integers \(d \) for which \(g(d) > \sqrt{d} \).

Proof. Let \(n \) be an arbitrary positive integer. Let

\[
S = \{(m, q) \mid q - n \leq m, n + 1 - q \leq m, m \leq n\}.
\]

Then, for \(n^2 + 1 \leq d \leq n^2 + 2n \), \(T(d) = \{(m, q) \mid (m, q) \in S \text{ and } d \equiv m^2 \pmod{q}\} \). Given \((m, q) \in S\), let \(f(m, q) \) denote the number of integers \(d \) for which \(n^2 + 1 \leq d \leq n^2 + 2n \) and \(d \equiv m^2 \pmod{q}\). Then \(\sum_{d=n^2+1}^{n^2+2n} g(d) = \sum_{(m, q) \in S} f(m, q) \). However, it is easily seen that if \((m, q) \in S\), then \(f(m, q) \geq \lfloor 2n/q \rfloor \). Also, note that \(S = \{(m, q) \mid 1 \leq q \leq n, n + 1 - q \leq m \leq n\} \cup \{(m, q) \mid n + 1 \leq q \leq 2n, q - n \leq m \leq n\} \). If \(1 \leq q \leq n \), then \(\lfloor 2n/q \rfloor > 2n/q - 1 \). If \(n + 1 \leq q \leq 2n \), then \(\lfloor 2n/q \rfloor = 1 \). Therefore,

\[
\sum_{d=n^2+1}^{n^2+2n} g(d) = \sum_{(m, q) \in S} f(m, q) \geq \sum_{(m, q) \in S} \left\lfloor \frac{2n}{q} \right\rfloor = \sum_{1 \leq q \leq n} \left\lfloor \frac{2n}{q} \right\rfloor + \sum_{n+1 \leq q \leq 2n} \left\lfloor \frac{2n}{q} \right\rfloor
\]

\[
= \sum_{q=1}^{n} q \left\lfloor \frac{2n}{q} \right\rfloor + \sum_{q=n+1}^{2n} (2n + 1 - q) \left\lfloor \frac{2n}{q} \right\rfloor \geq \sum_{q=1}^{n} q \left(\frac{2n}{q} - 1 \right)
\]

\[
+ \sum_{q=n+1}^{2n} (2n + 1 - q) = 2n^2.
\]

It follows from this inequality that at least one of the \(2n \) numbers \(g(d) \) with \(n^2 + 1 \leq d \leq n^2 + 2n \) must be greater than \((2n^2/2n) = n \). Since \(n = \lfloor \sqrt{d} \rfloor \) for any such \(d \), there is a \(d \) such that \(n = \lfloor \sqrt{d} \rfloor \) and \(g(d) > \sqrt{d} \). Since this is true for any positive \(n \), the theorem follows.

References

Received April 28, 1972.

University of California, Davis
PACIFIC JOURNAL OF MATHEMATICS

EDITORS

D. GILBARG AND J. MILGRAM
Stanford University
Stanford, California 94305

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

R. A. BEAUMONT
University of Washington
Seattle, Washington 98105

RICHARD ARENS
University of California
Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA
STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON
AMERICAN MATHEMATICAL SOCIETY
NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial "we" must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $48.00 a year (6 Vols., 12 issues). Special rate: $24.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher Allday, Rational Whitehead products and a spectral sequence of Quillen</td>
<td>313</td>
</tr>
<tr>
<td>James Edward Arnold, Jr., Attaching Hurewicz fibrations with fiber preserving maps</td>
<td>325</td>
</tr>
<tr>
<td>Catherine Bandle and Moshe Marcus, Radial averaging transformations with various metrics</td>
<td>337</td>
</tr>
<tr>
<td>David Wilmot Barnette, A proof of the lower bound conjecture for convex polytopes</td>
<td>349</td>
</tr>
<tr>
<td>Louis Harvey Blake, Simple extensions of measures and the preservation of regularity of conditional probabilities</td>
<td>355</td>
</tr>
<tr>
<td>James W. Cannon, New proofs of Bing's approximation theorems for surfaces</td>
<td>361</td>
</tr>
<tr>
<td>C. D. Feustel and Robert John Gregorac, On realizing HNN groups in 3-manifolds</td>
<td>381</td>
</tr>
<tr>
<td>Theodore William Gamelin, Iversen's theorem and fiber algebras</td>
<td>389</td>
</tr>
<tr>
<td>Daniel H. Gottlieb, The total space of universal fibrations</td>
<td>415</td>
</tr>
<tr>
<td>Yoshimitsu Hasegawa, Integrability theorems for power series expansions of two variables</td>
<td>419</td>
</tr>
<tr>
<td>Dean Robert Hickerson, Length of period simple continued fraction expansion of \sqrt{d}</td>
<td>429</td>
</tr>
<tr>
<td>Herbert Meyer Kamowitz, The spectra of endomorphisms of the disc algebra</td>
<td>433</td>
</tr>
<tr>
<td>Dong S. Kim, Boundedly holomorphic convex domains</td>
<td>441</td>
</tr>
<tr>
<td>Daniel Ralph Lewis, Integral operators on L_p-spaces</td>
<td>451</td>
</tr>
<tr>
<td>John Eldon Mack, Fields of topological spaces</td>
<td>457</td>
</tr>
<tr>
<td>V. B. Moscatelli, On a problem of completion in bornology</td>
<td>467</td>
</tr>
<tr>
<td>Ellen Elizabeth Reed, Proximity convergence structures</td>
<td>471</td>
</tr>
<tr>
<td>Ronald C. Rosier, Dual spaces of certain vector sequence spaces</td>
<td>487</td>
</tr>
<tr>
<td>Robert A. Rubin, Absolutely torsion-free rings</td>
<td>503</td>
</tr>
<tr>
<td>Leo Sario and Cecilia Wang, Radial quasiharmonic functions</td>
<td>515</td>
</tr>
<tr>
<td>James Henry Schmerl, Peano models with many generic classes</td>
<td>523</td>
</tr>
<tr>
<td>H. J. Schmidt, The \mathfrak{F}-depth of an \mathfrak{F}-projector</td>
<td>537</td>
</tr>
<tr>
<td>Edward Silverman, Strong quasi-convexity</td>
<td>549</td>
</tr>
<tr>
<td>Barry Simon, Uniform crossnorms</td>
<td>555</td>
</tr>
<tr>
<td>Surjeet Singh, (KE)-domains</td>
<td>561</td>
</tr>
<tr>
<td>Ted Joe Suffridge, Starlike and convex maps in Banach spaces</td>
<td>575</td>
</tr>
<tr>
<td>Milton Don Ulmer, C-embedded Σ-spaces</td>
<td>591</td>
</tr>
<tr>
<td>Wolmer Vasconcelos, Conductor, projectivity and injectivity</td>
<td>603</td>
</tr>
<tr>
<td>Hidenobu Yoshida, On some generalizations of Meier's theorems</td>
<td>609</td>
</tr>
</tbody>
</table>