In this note the spectra of certain endomorphisms of the disc algebra A are determined. Those endomorphisms T of A given by $Tf = f \circ \varphi$ for some $\varphi \in A$ with φ having a fixed point z_0 in the open unit disc are considered and it is shown that either the spectrum $\sigma(T)$ of T is the closed unit disc, or else $\sigma(T)$ is the closure of $\{(\varphi'(z_0))^n | n \text{ is a positive integer} \} \cup \{1\}$.

By an endomorphism of an algebra B we mean a linear map T of B into itself satisfying $T(fg) = (Tf)(Tg)$ for all $f, g \in B$. We denote by $\sigma(T)$ those complex numbers λ for which $(\lambda - T)^{-1}$ does not exist.

Throughout this note A will denote the sup-norm algebra of functions continuous on the closed unit disc and analytic on the open unit disc. If $T(\neq 0)$ is a endomorphism of A, then there is a function φ in the unit ball of A for which $Tf = f \circ \varphi$ for all $f \in A$. Indeed, if z is the identity function in A, then $\varphi = Tz$. We call T the endomorphism of A induced by φ. Clearly $\sigma(T)$ depends on φ.

We remark that it follows from Schwarz's Lemma that if a function $\varphi \in A$, $\|\varphi\| \leq 1$ has more than one fixed point in the open unit disc, then $\varphi(z) = z$ for all $z, |z| \leq 1$. It is well-known, however, that such $\varphi \in A$ can have infinitely many points on the unit circle with $\varphi(z) = z$ and yet φ need not be equal to the identity function z.

We begin by showing that if φ has a fixed point z_0 in the open unit disc, it is no restriction to assume that $z_0 = 0$.

Lemma 1. Let $\varphi \in A$, $\|\varphi\| \leq 1$ and T be the endomorphism of A induced by φ. Suppose $|z_0| < 1$ and $\varphi(z_0) = z_0$. Let g be the linear fractional transformation $g(z) = (z_0 - z)/(1 - \overline{z}_0 z)$ and T' the endomorphism of A induced by $\psi = g \circ \varphi \circ g$. Then $\psi(0) = 0$, $\psi'(0) = \varphi'(z_0)$ and $\sigma(T') = \sigma(T)$.

Proof. The map $\mathcal{H}: f(z) \rightarrow f((z_0 - z)/(1 - \overline{z}_0 z))$ is an isometry of A onto itself, and so $\sigma(T) = \sigma(\mathcal{H}^{-1} T \mathcal{H}) = \sigma(T')$. It is a routine verification that $\psi(0) = 0$ and $\varphi'(0) = \varphi'(z_0)$.

When T is an automorphism (a $1 - 1$ onto endomorphism) of A, then the spectrum of T is easy to determine. Indeed, if φ is the function which induces T, then φ is a schlicht mapping of the disc onto itself. By Lemma 1 we may assume that $\varphi(0) = 0$. Then φ
has the form $\phi(z) = cz$ for some c, $|c| = 1$. Now, for each positive integer k, c^k is an eigenvalue of T because $T(z^k) = (\phi(z))^k = (cz)^k = c^k z^k$, and so either $c^n = 1$ for some positive integer n in which case $T^n = I$ and $\sigma(T) = \{1, c, \cdots, c^{n-1}\}$ or else, if c is not a root of unity, then $\sigma(T) = \{\lambda | |\lambda| = 1\}$.

Definition. Let $\varphi \in A$ with $|\varphi| \leq 1$. If k is a nonnegative integer, we denote the kth iterate of φ by φ_k. That is, $\varphi_0(z) = z$ and $\varphi_k(z) = \varphi(\varphi_{k-1}(z))$, $|z| \leq 1$. Furthermore, we will call φ_0 range (φ_k) the fixed set of φ.

Straightforward topological arguments show that the fixed set of φ is a compact, connected subset of the unit disc and that φ maps its fixed set onto itself.

For the endomorphisms we are considering, the spectra will depend on the fixed set of the inducing maps.

Lemma 2. Let $\varphi \in A$, $|\varphi| \leq 1$, $\varphi(0) = 0$ and T be the endomorphism of A induced by φ. Then $\sigma(T) \supset \{(\varphi'(0))^n | n$ is a positive integer$\}$.

Proof. The assertion is clearly true if T is an automorphism or if $\varphi'(0) = 0$. For the case $0 < |\varphi'(0)| < 1$, we show that for each positive integer k, $((\varphi'(0))^k - T)f \neq z^k$ for all $f \in A$.

For, suppose $f \in A$ and $(\varphi'(0))^k f - f(\varphi) = z^k$. Then

\[
(\varphi'(0))^k f'(z) - f'(\varphi(z))\varphi'(z) = kz^{k-1}
\]

At $z = 0$, (*) becomes $(\varphi'(0))^k f'(0) - f'(0)\varphi'(0) = 0$, or $f'(0) = 0$.

Further,

\[
(\varphi'(0))^k f''(z) - f''(\varphi(z))\varphi''(z) = k(k-1)z^{k-2}
\]

At $z = 0$, (**) becomes $(\varphi'(0))^k f''(0) - f''(0)\varphi''(0) = 0$, and since we already have $f'(0) = 0$, we obtain $(\varphi'(0))^k f''(0) - f''(0)\varphi''(0) = 0$, or $f''(0) = 0$.

Continuing, we obtain for $j < k$,

\[
(\varphi'(0))^k f^{(j)}(z) - f^{(j)}(\varphi(z))\varphi^{(j)}(z) = \frac{k(k-1)\cdots(k-j+1)}{(j-1)!} z^{k-j}
\]

so that at $z = 0$, $(\varphi'(0))^k f^{(j)}(0) - f^{(j)}(0)\varphi^{(j)}(0)$, or $f^{(j)}(0) = 0$.

For $j = k$,

\[
(\varphi'(0))^k f^{(k)}(0) - f^{(k)}(\varphi(0)) = (\varphi'(0))^k z^{k-1}
\]

- (terms of derivatives of f of degree $< k$)
The left side of (****) equals 0 at \(z = 0 \), while the right side equals \(k! \). Thus \(z^k \in \text{range } ((\varphi'(0))^k - T) \) so that \((\varphi'(0))^k \in \sigma(T) \) for all positive integers \(k \).

Lemma 3. Let \(\varphi \in A, \| \varphi \| \leq 1, \varphi(0) = 0 \) and \(T \) be the endomorphism of \(A \) induced by \(\varphi \). Assume \(\lambda \neq (\varphi'(0))^n \) for all positive integers \(n, \) and \(\lambda \neq 0, 1. \) If \(\nu \) is a positive integer, \(f, g \in A \) with \((\lambda - T)f = g \) and \(g(0) = g'(0) = \cdots = g^{(\nu)}(0) = 0, \) then \(f(0) = f'(0) = \cdots = f^{(\nu)}(0) = 0. \)

Proof. Assume \(\lambda f - f(\varphi) = g \) and \(g(0) = g'(0) = \cdots = g^{(\nu)}(0) = 0. \) Evaluating at \(z = 0 \) gives \(\lambda f(0) - f(0) = g(0) = 0, \) so that \(f(0) = 0 \) since \(\lambda \neq 1. \)

Further, \(\lambda f' - f'(\varphi)\varphi' = g'. \) At \(z = 0, \) this becomes \(\lambda f'(0) - f'(0)\varphi'(0) = g'(0) = 0, \) so that \(f'(0) = 0 \) since \(\lambda \neq \varphi'(0). \)

In general, for \(k \geq \nu, \)

\[
\lambda f(k) - f(k)(\varphi) = g(k) + (\text{terms in } f^{(j)}(\varphi), j < k).
\]

Again evaluating at \(z = 0 \) gives \(\lambda f^{(k)}(0) - f^{(k)}(0)(\varphi'(0))^k = 0, \) so that \(f^{(k)}(0) = 0 \) for \(k = 0, 1, \cdots, \nu, \) since \(\lambda \neq (\varphi'(0))^k, \) for all positive integers \(k. \)

When \(g = 0, \) Lemma 3 can be restated as

Corollary 4. If \(\lambda \neq (\varphi'(0))^n \) for all positive integers \(n \) and \(\lambda \neq 0, 1, \) then \(\lambda \) is not an eigenvalue.

Lemma 5. Let \(\varphi \in A, \| \varphi \| \leq 1 \) and \(T \) be the endomorphism of \(A \) induced by \(\varphi. \) If \(g \in A \) and \((\lambda - T)f = g, \) then

\[
(\lambda^n f = f(\varphi^n) + \lambda^{-n} g + \lambda^{-n-1} g(\varphi) + \cdots + \lambda g(\varphi^n) = g(\varphi^n)).
\]

Proof. By induction on \(n. \) (') is true for \(n = 1. \)

Assume (') is true for \(n. \) Then

\[
\lambda^n f = f(\varphi^n) + \lambda^{-n} g + \lambda^{-n-1} g(\varphi) + \cdots + \lambda g(\varphi^n) + g(\varphi^n).
\]

Also \(\lambda f(\varphi^n) = f(\varphi^n) + g(\varphi^n) \) by hypothesis. Hence

\[
\lambda f(\varphi^n) = f(\varphi^n) + g(\varphi^n)
\]
as needed.

Lemma 6. Let \(\varphi \in A, \varphi(0) = 0 \) and \(\| \varphi \| \leq 1. \) If \(|z| < 1 \) (or, in fact, if \(|\varphi_j(z)| < 1 \) for some positive integer \(j \)), then

\[
\lim_{m \to \infty} |\varphi(z)|^{1/k} \leq |\varphi'(0)|. \]

Furthermore, (1) if \(\varphi'(0) = 0, \) then given \(\varepsilon > 0, \) and \(r \in [0, 1), \) there exists \(B > 0 \) so that for each positive integer \(m, |\varphi_m(z)| \leq B \varepsilon^m \) for all \(z, |z| \leq r; \) (2) if \(0 < |\varphi'(0)| < 1, \) then given \(\varepsilon > 0 \) and \(r \in [0, 1), \)
there exists $B > 0$ so that for each positive integer m, $|\varphi_m(z)| \leq B((1 + \varepsilon)|\varphi'(0)|)^m$ for all $z, |z| \leq r$.

Proof.

(i) $\varphi'(0) = 0$.

By the definition of derivative, given $\varepsilon > 0$, there exists $\delta > 0$ so that $|\varphi(w)| \leq \varepsilon |w|$ for $|w| < \delta$. Using the fact that Schwarz's lemma implies $|\varphi(w)| < \delta$ when $|w| < \delta$, an induction argument shows that $|\varphi_n(w)| \leq \varepsilon^n |w|$ for all positive integers n and all $w, |w| < \delta$.

Now if $r \in [0, 1)$, there is a positive integer N with $|\varphi_N(z)| < \delta$ for all $z, |z| \leq r$. Thus $|\varphi_{n+N}(z)| = |\varphi_n(\varphi_N(z))| \leq \varepsilon^n |\varphi_N(z)|$ for $|z| \leq r$, and so $|\varphi_m(z)| \leq \varepsilon^m |\varphi_N(z)\varepsilon^{-N}|, m \geq N$ when $|z| \leq r$. Letting $B = (r/\varepsilon)^N$ proves (1).

Furthermore, since $|\varphi_m(z)|^{1/m} \leq \varepsilon B^{1/m}$, we find $\lim_m |\varphi_m(z)|^{1/m} = \varepsilon$. Since ε is an arbitrary positive number, we conclude that $\lim_m |\varphi_m(z)|^{1/m} = 0$.

(ii) $0 < |\varphi'(0)| < 1$.

Given $\varepsilon > 0$, there exists $\delta > 0$ so that $|\varphi(w)| \leq (1 + \varepsilon)|\varphi'(0)||w|$ for $|w| < \delta$. Again using Schwarz's lemma to show that $|\varphi(w)| < \delta$ if $|w| < \delta$, we can show by induction that $|\varphi_n(w)| \leq ((1 + \varepsilon)|\varphi'(0)||w|$ for all positive integers n and all $w, |w| < \delta$.

As before, if $r \in [0, 1)$, there exists a positive integer N for which $|\varphi_N(z)| < \delta$ for all $z, |z| \leq r$. Thus $|\varphi_{n+N}(z)| \leq ((1 + \varepsilon)|\varphi'(0)||^n |\varphi_N(z)|$ for $|z| \leq r$, so that $|\varphi_m(z)| \leq ((1 + \varepsilon)|\varphi'(0)||^m |\varphi_N(z)|((1 + \varepsilon)|\varphi'(0)||^{-N}$ for $m \geq N, |z| \leq r$. Letting $B = ((1 + \varepsilon)|\varphi'(0)||^{-N}$ proves (2).

Also, since $|\varphi_m(z)|^{1/m} \leq B^{1/m}(1 + \varepsilon)|\varphi'(0)|$, we find that $\lim_m |\varphi_m(z)|^{1/m} \leq (1 + \varepsilon)|\varphi'(0)|$. Since $\varepsilon > 0$ is arbitrary, we have $\lim_m |\varphi_m(z)|^{1/m} \leq |\varphi'(0)|$.

(iii) If $|\varphi'(0)| = 1$, then $\varphi(z) = cz$ for some $c, |c| = 1$, and for $z \neq 0, |\varphi_k(z)| = |z| \neq 0$, for all positive integers k. Clearly, $\lim_k |\varphi_k(z)|^{1/k} = 1 = |\varphi'(0)|, |z| \neq 0$.

Theorem 7. Let $\varphi \in A, |\varphi| \leq 1$ and T be the endomorphism of A induced by φ. Suppose φ has a fixed point in the open unit disc and that the fixed set of φ is infinite. If T is not an automorphism, then $\sigma(T) = \{\lambda | |\lambda| \leq 1\}$.

Proof. We may assume that 0 is the fixed point of φ and since T is not an automorphism we have $|\varphi'(0)| < 1$.

Now fix a positive integer n. We show that $\sigma(T) \supset \{\lambda | |\varphi'(0)|^n < |\lambda| < 1\}$.

Assume there exists $\lambda_0 \in \sigma(T)$ with $|\varphi'(0)|^n < |\lambda_0| < 1$. Then $(\lambda - T)^{-1}$ exists for λ in a neighborhood of λ_0 which we assume small enough so that each λ in this neighborhood satisfies $|\varphi'(0)|^n < |\lambda| < 1$.

Let \(g(z) = z^v \) and let \(f = (\lambda - T)^{-1}g \). By Lemma 5, for each positive integer \(n \), we have

\[
(*) \quad f(z) = f(\varphi_n(z))\lambda^{-n} + \lambda^{-1} \sum_{k=0}^{n-1} g(\varphi_k(z))\lambda^{-k}.
\]

Since \(g(0) = g'(0) = \cdots = g^{(v-1)}(0) = 0 \), Lemma 3 implies that \(f(0) = f'(0) = \cdots = f^{(v-1)}(0) = 0 \), and so \(|f(\varphi_n(z))| \leq ||f|| |\varphi_n(z)|^v \) for all positive integers \(n \). Of course, \(|g(\varphi_k(z))| = |\varphi_k(z)|^v \) for all positive integers \(k \).

Lemma 6 asserts that \(\lim_{n \to \infty} |\varphi_n(z)|^{1/n} \leq |\varphi'(0)| \) for all \(z, |z| < 1 \), so that for such \(z \),

\[
\lim_{n \to \infty} |f(\varphi_n(z))\lambda^{-1/n}| \leq \lim_{n \to \infty} (||f|| |\varphi_n(z)|^{-n})^{1/n} |(\varphi'(0))^{-1}| < 1.
\]

Hence the first term of the right hand side of \((*)\) approaches 0 as \(n \to \infty \).

Furthermore, \(\lim_k |g(\varphi_k(z))\lambda^{-k}|^{1/k} = \lim_k |\varphi_k(z)|^{-k} \leq |\varphi'(0)|^{-1} < 1 \) so that \(\sum_{k=0}^{\infty} g(\varphi_k(z))\lambda^{-k} \) converges for all \(z, |z| < 1 \). Thus for \(\lambda \) in some neighborhood of \(\lambda_0 \) with \(|\varphi'(0)|^{-1} < |\lambda| < 1 \),

\[
f(z) = (\lambda - T)^{-1}g(z) = \lambda^{-1} \sum_{k=0}^{\infty} g(\varphi_k(z))\lambda^{-k} \text{ for all } z, |z| < 1.
\]

Now let \(S \) be the fixed set of \(\varphi \). Since \(\varphi \) is analytic on the open unit disc, \(|\varphi'(0)| < 1 \) and \(\varphi \) maps \(S \) onto itself, we can construct a sequence \(\{x_n\}_{n=0}^{\infty} \) in \(S \) satisfying

(i) \(0 < |x_0| < 1 \), (ii) \(\varphi(x_n) = x_{n+1} \), and (iii) the \(x_n \)'s are distinct. If \(x_0 \) is fixed, then \(x_n = \varphi_n(x_0) \) are uniquely determined for \(n > 0 \), but unless \(\varphi \) is \(1 - 1 \) on \(S \), there may be many choices for \(x_{-1}, x_{-2}, \cdots \).

Let \(B \) be the Banach algebra of bounded functions on \(\{x_n\} \) with component-wise addition and multiplication and sup-norm. The map \(\varphi \) induces an isometric automorphism \(\tilde{T} \), say, on \(B \), by \(\tilde{T}h(x_n) = h(\varphi(x_n)) = h(x_{n+1}) \), for \(h \in B \). For convenience, define \(\varphi_{-k} \) on \(\{x_n\} \) by \(\varphi_{-k}(x_n) = x_{n-k} \).

Now, \(\sigma(\tilde{T}) = \{\lambda \mid |\lambda| = 1\} \) so that if \(|\lambda| < 1 \), then \((\lambda - \tilde{T})^{-1} \) exists on \(B \) and \(F = (\lambda - \tilde{T})^{-1}g \) (on \(\{x_n\} \)) satisfies

\[
F(x_0) = -\tilde{T}^{-1}[(I - \lambda \tilde{T}^{-1})^{-1}g](x_0) = -\tilde{T}^{-1} \sum_{k=0}^{\infty} \lambda^k \tilde{T}^{-k}g(x_0) = -\sum_{k=0}^{\infty} \lambda^k \varphi_{-k}(x_0) = -\sum_{k=1}^{\infty} \lambda^k g(\varphi_{-k}(x_0))
\]

\[
= -\lambda^{-1} \sum_{k=0}^{\infty} g(\varphi_k(x))\lambda^{-k}.
\]

Therefore, for each \(\lambda \) in some ball about \(\lambda_0 \), with \(|\varphi'(0)|^{-1} < |\lambda| < 1 \), we have
\[
\lambda^{-1} \sum_{k=0}^{\infty} g(\varphi_k(x_0))\lambda^{-k} = - \lambda^{-1} \sum_{k=\infty}^{-1} g(\varphi_k(x_0))\lambda^{-k},
\]

since both expressions represent \(((\lambda - T)^{-1})g(x_0)\).

On the other hand, \(\sum_{k=0}^{\infty} g(\varphi_k(x_0))w^{-k}\) is the Laurent expansion of a function analytic in the annulus \(\{w \mid |\varphi'(0)|^r < |w| < 1\}\) since both expressions represent \(((\lambda - T)^{-1})g(x_0)\).

But (**) implies that \(\sum_{k=-\infty}^{\infty} g(\varphi_k(x_0))w^{-k} = 0\) in a ball about \(\lambda_0\) and so the analytic function \(\sum_{k=-\infty}^{\infty} g(\varphi_k(x_0))w^{-k}\) is identically zero in the entire annulus \(\{w \mid |\varphi'(0)|^r < |w| < 1\}\). Thus \(g(\varphi_k(x_0)) = 0\) for all integers \(k\).

Since \(\{\varphi_k(x_0)\}\) is infinite and \(\varphi_k(x_0) \to 0\) as \(k \to \infty\), the analytic function \(g\) vanishes on an infinite set with 0 as a limit point. Hence \(g = 0\). But this contradicts the assumption that \(g(z) = z^r\).

Therefore, the assumption that there exists \(\lambda_0 \in \sigma(T)\) with \(|\varphi'(0)|^r < |\lambda_0| < 1\) is false. Hence \(\sigma(T) \supset \{\lambda \mid |\varphi'(0)|^r < |\lambda| < 1\}\). Since \(\nu\) is arbitrary, \(\sigma(T) = \{\lambda \mid |\lambda| \leq \nu\}\).

Lemma 8. Let \(\varphi \in A, \|\varphi\| \leq 1, \varphi(0) = 0\) and \(T\) be the endomorphism of \(A\) induced by \(\varphi\). Let \(\nu\) be a positive integer. Suppose every function in \(A\) with a zero of order at least \((\nu + 1)\) at \(0\) is in the range of \((\lambda - T)^{-1}\), where \(\lambda \neq 0, 1, (\varphi'(0))^n, n\) a positive integer. Then \(1, z, z^2, \ldots, z^\nu\) are in the range of \((\lambda - T)^{-1}\).

Proof. Let \(g\) be defined on the unit disc by \(g(z) = (\varphi(z))^r - (\varphi'(0))^rz^r\). Then \(g \in A\) and has a zero of order at least \((\nu + 1)\) at 0. By hypothesis we can find \(h \in A\) with \((\lambda - T)h = g\). Let \(f = (\lambda - (\varphi'(0))^r)^{-1}(h + z^r)\). Then
\[
(\lambda - T)f = (\lambda - (\varphi'(0))^r)^{-1}[(\lambda - T)h + (\lambda - T)z^r] = (\lambda - (\varphi'(0))^r)^{-1}[g + \lambda z^r - (\varphi(z))^r] = (\lambda - (\varphi'(0))^r)^{-1}[(\varphi(z))^r - (\varphi'(0))^rz^r + \lambda z^r - (\varphi(z))^r] = z^r.
\]

Thus if range \((\lambda - T)^{-1}\) contains all functions with a zero of order at least \((\nu + 1)\) at 0, and if \(\lambda \neq 0, 1, (\varphi'(0))^n\) for all positive integers \(n\), then \(z^r \in \text{range } (\lambda - T)\).

In the same way we can conclude, successively, that \(z^{\nu-1}, z^{\nu-2}, \ldots, z^r \in \text{range } (\lambda - T)\). Also \((\lambda - T)(\lambda - 1)^{-1} = 1\) showing that the constants are in range \((\lambda - T)\).

Theorem 9. Let \(\varphi \in A, \|\varphi\| \leq 1\) and \(T\) be the endomorphism of \(A\) induced by \(\varphi\). Let \(z_0\) be a fixed point of \(\varphi\) in the open unit disc and suppose \(\{z_0\}\) is the fixed set of \(\varphi\). Then \(\sigma(T) = \{(\varphi(z_0))^n \mid n\ is a positive integer\} \cup \{0, 1\}\).

Proof. By Lemma 1 we may assume that \(z_0 = 0\) and Lemma 2
implies that \(\sigma(T) \supset \{ (\varphi'(0))^n \mid n \text{ is a positive integer} \} \). Certainly 0 and 1 are in \(\sigma(T) \).

We prove that \(\sigma(T) = \{ (\varphi'(0))^n \mid n \text{ is a positive integer} \} \cup \{0, 1\} \) for the case \(0 < |\varphi'(0)| < 1 \). The case \(\varphi'(0) = 0 \) is entirely similar.

Since the fixed set of \(\varphi \) is \(\{0\} \), given \(r \in (0, 1) \), there exists a positive integer \(m \) with \(|\varphi_m(z)| < r \) for all \(z, |z| \leq 1 \). Choose \(\varepsilon > 0 \) so that \((1 + \varepsilon)|\varphi'(0)| < 1 \). Let \(\nu \) be an arbitrary positive integer and consider \(\lambda \) satisfying \(((1 + \varepsilon)|\varphi'(0)|)^{\nu + 1} < |\lambda| \).

By Lemma 6, there exists \(B_1 > 0 \) so that

\[
|\varphi_k(\varphi_m(z))| < B_1((1 + \varepsilon)|\varphi'(0)|)^k \quad \text{for all } z, |z| \leq 1, \text{ and all positive integers } k.
\]

Hence

\[
|\varphi_k(z)| < B((1 + \varepsilon)|\varphi'(0)|)^k \quad \text{for all } z, |z| \leq 1, \text{ and all positive integers } k, \text{ where } B = B_1((1 + \varepsilon)|\varphi'(0)|)^{-m}.
\]

Now let \(g \in A \) with \(g(0) = g'(0) = \cdots = g^{(\nu)}(0) = 0 \). We claim that \(g \in \text{range } (\lambda - T) \). To see this, we observe first that \(\sum_{k=0}^{\infty} g(\varphi_k(z))\lambda^{-k} \) converges uniformly in \(z \). Indeed, \(|g(z)| \leq ||g|| |z|^{\nu+1} \) and

\[
(*) \quad \left| \sum_{k=N}^{M} g(\varphi_k(z))\lambda^{-k} \right| \leq ||g|| \sum_{k=N}^{M} |\varphi_k(z)|^{\nu+1} |\lambda|^{-k} \\
\leq ||g|| B^{\nu+1} \sum_{k=N}^{M} \left[(1 + \varepsilon)|\varphi'(0)|)^{\nu+1} |\lambda|^{-1}\right]^k.
\]

Since \(((1 + \varepsilon)|\varphi'(0)|)^{\nu+1} < |\lambda| \), the right most term of \((*) \) goes to 0 as \(N, M \to \infty \).

Define \(f \) on the closed unit disc by \(f(z) = \lambda^{-1} \sum_{k=0}^{\infty} g(\varphi_k(z))\lambda^{-k} \). Then \(f \in A \) and

\[
\lambda f(z) - f(\varphi(z)) = \sum_{k=0}^{\infty} g(\varphi_k(z))\lambda^{-k} - \lambda^{-1} \sum_{k=0}^{\infty} g(k+1)(z)\lambda^{-k} = g(z).
\]

Hence, if \(((1 + \varepsilon)|\varphi'(0)|)^{\nu+1} < |\lambda| < 1 \) and \(g \) has a zero of order at least \((\nu + 1) \) at 0, then \(g \in \text{range } (\lambda - T) \). By the preceding lemma, if \(\lambda \) also is not equal to 0, 1, \((\varphi'(0))^n \) for positive integers \(n \), then \(1, z, \cdots, z^\nu \) also belong to range \((\lambda - T) \).

Now, every \(h \in A \) may be written as

\[
h(z) = \left(h(0) + \frac{h^{(\nu)}(0)}{\nu!} z^\nu \right) + g(z)
\]

where

\[
g(z) = \left(h(z) - h(0) - h'(0)z - \cdots - \frac{h^{(\nu)}(0)}{\nu!} z^\nu \right).
\]

Clearly, \(g(0) = g'(0) = \cdots = g^{(\nu)}(0) \). As we have shown, \(g \in \text{range } (\lambda - T) \) when \(|\lambda| > ((1 + \varepsilon)|\varphi'(0)|)^{\nu+1} \). Also, if \(\lambda \neq 0, 1 \), \((\varphi'(0))^n \), \(n \) a positive integer, then \(1, z, \cdots, z^\nu \) belong to range \((\lambda - T) \). Thus, for these \(\lambda \), every \(h \) in \(A \) is in the range of \((\lambda - T) \), so \((\lambda - T) \) is onto. Also, by Corollary 4, \((\lambda - T) \) is \(1 - 1 \) if \(\lambda \neq 0, 1 \), \((\varphi'(0))^n \), \(n \) a positive integer.
Hence, \((\lambda - T)^{-1}\) exists for all \(\lambda, |\lambda| > ((1 + \varepsilon)|\varphi'(0)|)^{+1}\) and \(\lambda \neq 0, 1, (\varphi'(0))^n, n \) a positive integer. Since \(\nu\) is arbitrary, we conclude that if \(\lambda \neq 0, 1, (\varphi'(0))^n, n \) a positive integer, then \(\lambda \in \sigma(T)\).

As we noted, Lemma 2 shows that for each positive integer \(n\), \((\varphi'(0))^n\) is in \(\sigma(T)\). Since 0 and 1 are in \(\sigma(T)\), \(\sigma(T) = (\varphi'(0))^n| n \) is a positive integer\} \(\cup \{0, 1\}\).

The case when \(\varphi'(0) = 0\) is similar. We just replace \((1 + \varepsilon)|\varphi'(0)|\) by \(\varepsilon\).

To summarize, we have shown that if \(T\) is the endomorphism of \(A\) induced by \(\varphi \in A, ||\varphi|| \leq 1\), and if there is a fixed point \(z_0\) of \(\varphi\) in the open unit disc, then the spectrum of \(T\) is determined as follows.

1. If \(\varphi\) is schlicht and onto, then \(T\) is an automorphism and \(\sigma(T)\) is the closure of \([((\varphi'(z_0))^n| n \) is a positive integer\} \(\cup \{0, 1\}\). We have seen that \(\sigma(T)\) is contained in the unit circle and that \(\sigma(T)\) may be finite.

2. If \(T\) is not an automorphism, but the fixed set of \(\varphi\) is infinite, then Theorem 7 shows that \(\sigma(T) = \{\lambda| |\lambda| \leq 1\}\).

3. If the fixed set of \(\varphi\) consists of the single point \(z_0\) in the open unit disc, then Theorem 9 shows that \(\sigma(T) = ((\varphi'(z_0))^n| n \) is a positive integer\} \(\cup \{0, 1\}\).

Some simple examples of the various types of endomorphisms we have discussed are (i) \(T\) is induced by a linear fractional transformation \(\varphi\) of the unit disc onto itself. Then \(T\) is an automorphism and \(\sigma(T) = \{\lambda| |\lambda| \leq 1\}\) if \(\varphi(1)\) is not a root of unity; otherwise, if \(c^n = 1, \sigma(T) = \{1, c, \cdots c^{n-1}\}\).

(ii) \(T\) is induced by \(\varphi(z) = (z + z^2)/2\). Here one can show that the fixed set is infinite and hence \(\sigma(T) = \{\lambda| |\lambda| \leq 1\}\).

(iii) \(T\) is induced by \(\varphi(z) = (z + z^2)/4\). Here the fixed set of \(\varphi\) is \(\{0\}\), \(\varphi'(0) = 1/4\), and so \(\sigma(T) = \{4^{-n}| n \) is a nonnegative integer\} \(\cup \{0\}\).

(iv) \(T\) is induced by \(\varphi(z) = cz^k, k\) a positive integer > 1. If \(|c| = 1\), then the fixed set of \(\varphi\) is the entire disc and \(\sigma(T) = \{\lambda| |\lambda| \leq 1\}\), while if \(|c| < 1\), then the fixed set of \(\varphi\) is \(\{0\}\) and \(\sigma(T) = \{0, 1\}\).

As a final remark, the question of determining the spectra of endomorphisms induced by \(\varphi \in A\) with fixed points only on the unit circle is still open. Again the spectra seem to depend on the fixed set of \(\varphi\), but only partial results have been obtained.

Received September 15, 1971. Partially supported by NSF grant GP 11281.

University of Massachusetts at Boston
Christopher Allday, Rational Whitehead products and a spectral sequence of Quillen .. 313
James Edward Arnold, Jr., Attaching Hurewicz fibrations with fiber preserving maps .. 325
Catherine Bandle and Moshe Marcus, Radial averaging transformations with various metrics 337
David Wilmot Barnette, A proof of the lower bound conjecture for convex polytopes .. 349
Louis Harvey Blake, Simple extensions of measures and the preservation of regularity of conditional probabilities 355
James W. Cannon, New proofs of Bing’s approximation theorems for surfaces .. 361
C. D. Feustel and Robert John Gregorac, On realizing HNN groups in 3-manifolds .. 381
Theodore William Gamelin, Iversen’s theorem and fiber algebras .. 389
Daniel H. Gottlieb, The total space of universal fibrations .. 415
Yoshimitsu Hasegawa, Integrability theorems for power series expansions of two variables 419
Dean Robert Hickerson, Length of period simple continued fraction expansion of \(\sqrt{d} \) .. 429
Herbert Meyer Kamowitz, The spectra of endomorphisms of the disc algebra .. 433
Dong S. Kim, Boundedly holomorphic convex domains .. 441
Daniel Ralph Lewis, Integral operators on \(L_p \)-spaces .. 451
John Eldon Mack, Fields of topological spaces .. 457
V. B. Moscatelli, On a problem of completion in bornology .. 467
Ellen Elizabeth Reed, Proximity convergence structures .. 471
Ronald C. Rosier, Dual spaces of certain vector sequence spaces .. 487
Robert A. Rubin, Absolutely torsion-free rings .. 503
Leo Sario and Cecilia Wang, Radial quasiharmonic functions .. 515
James Henry Schmerl, Peano models with many generic classes .. 523
H. J. Schmidt, The \(\mathcal{F} \)-depth of an \(\mathcal{F} \)-projector .. 537
Edward Silverman, Strong quasi-convexity .. 549
Barry Simon, Uniform crossnorms .. 555
Surjeet Singh, \((KE) \)-domains .. 561
Ted Joe Suffridge, Starlike and convex maps in Banach spaces .. 575
Milton Don Ulmer, C-embedded \(\Sigma \)-spaces .. 591
Wolmer Vasconcelos, Conductor, projectivity and injectivity .. 603
Hidenobu Yoshida, On some generalizations of Meier’s theorems .. 609