ON A PROBLEM OF COMPLETION IN BORNOLOGY

V. B. MOSCATELLI
ON A PROBLEM OF COMPLETION IN BORNOLOGY

V. B. MOSCATELLI

In this note an example is given to show that the bornological completion of a polar space need not be polar. Also, a theorem of Grothendieck's type is proved, from which necessary and sufficient conditions for the completion of a polar space to be again polar are derived.

1. Notation and terminology are as in [4]. In particular, b.c.s. means a locally convex, bornological linear space over the scalar field of real or complex numbers.

In [4, 5. p. 160] Hogbe-Nlend lists, among unsolved problems in bornology, the following one, which was first raised by Buchwalter in his thesis [1, Remarque, p. 26]:

Is the bornological completion of a polar b.c.s. again polar?

The purpose of this note is to exhibit an example that answers this question in the negative. We also prove a theorem of Grothendieck's type for regular b.c.s. with weakly concordant norms, which enables us to give necessary and sufficient conditions for the completion of a polar b.c.s. to be polar.

2. For each n let the double sequence $\alpha^* = (\alpha^*_{ij})$ be defined by $\alpha^*_{ij} = j$ for $i \leq n$ and all j, $\alpha^*_{ij} = 1$ for $i > n$ and all j, and denote by E_n the normed space of scalar-valued double sequences (x_{ij}) with only finitely many nonzero terms, under the norm

\[\| (x_{ij}) \|_n = \sup_{i,j} \frac{|x_{ij}|}{\alpha^*_{ij}}. \]

Let E be the bornological inductive limit of the spaces E_n; thus $E = E^*_n$ algebraically, and a set $B \subseteq E$ is bounded for the inductive limit bornology if and only if there exist positive integers n, k such that $\| (x_{ij}) \|_n \leq k$ for all $(x_{ij}) \in B$. It is easily seen that E is a polar b.c.s. whose dual E^* consists of all scalar-valued double sequences (u_{ij}) such that

\[\sum_{i,j=1}^{\infty} \alpha^*_{ij} |u_{ij}| < \infty \]

for all n.

By [1, Théorème (2.8.15)] the completion \hat{E} of E is given by $\hat{E} = \lim_{\rightarrow} E_n$ (bornological inductive limit), where E_n is the completion of the normed space E^*_n, i.e., the Banach space of scalar-valued double sequences (x_{ij}) such that $\lim_{i,j \to \infty} x_{ij}/\alpha^*_{ij} = 0$ under the norm (1). It also
follows from [1, Théorème (2.8.15)] that \(\hat{E}^\times = E^\times \). Thus, it remains to show that the b.c.s. \(\hat{E} \) is not polar with respect to the duality \(\langle \hat{E}, E^\times \rangle \), i.e., that there is a bounded subset \(B \) of \(\hat{E} \) whose bipolar \(B^{oo} \) is unbounded. In fact, the set

\[
B = \left\{ (x_{ij}) \in \hat{E}: \sup_{i,j} |x_{ij}| \leq 1, \lim_{i,j \to \infty} x_{ij} = 0 \right\}
\]

is bounded in the Banach space \(\hat{E} \), and hence bounded in \(\hat{E} \); however, since

\[
B^{oo} = \left\{ (x_{ij}) \in \hat{E}: \sup_{i,j} |x_{ij}| \leq 1 \right\},
\]

the sequence \(\{(x^n_{ij})\} \) with \(x^n_{ij} = 0 \) for \(i \neq n \) and all \(j \), \(x^n_{ij} = 1 \) for \(i = n \) and all \(j \), is contained in \(B^{oo} \) and yet is unbounded, for

\[
(x^n_{ij}) \in \hat{E}_n \sim \hat{E}_{n-1}.
\]

Therefore, \(B^{oo} \) is unbounded in \(\hat{E} \).

3. Let \(E \) be a regular b.c.s. with dual \(E^\times \). For a bounded, absolutely convex set \(B \subset E \) we set:

\[
E_B = \text{the normed space spanned by } B,
\]

\[
\hat{B} = \text{the completion of } B \text{ in the Banach space } \hat{E}_B,
\]

\[
E_B' = \text{the dual of } E_B,
\]

\[
B' = \text{the unit ball of } E_B',
\]

\[
B^0 = \text{the polar of } B \text{ in } E^\times,
\]

\[
B^{oo} = \text{the bipolar of } B \text{ in } \hat{E},
\]

\[
p_B = \text{the gauge of } B^{oo} \text{ in } E^\times,
\]

\[
E^\times_B = \text{the normed space } E^\times/p_B(0).
\]

Moreover, we denote by \(E_B^* \) the algebraic dual of \(E^\times \) and identify, as usual, \(E_B^\sim \) with a \(\sigma(E_B^*, E_B) \)-dense subspace of \(E_B' \).

Theorem 1. Let \(E \) be a regular b.c.s. with weakly concordant norms. The completion \(\hat{E} \) of \(E \) consists, up to isomorphism, of all those linear functionals on \(E^\times \) whose restrictions to \(B^0 \) are bounded and \(\sigma(E^\times, E_B) \)-continuous for some bounded, absolutely convex set \(B \subset E \). Moreover, for every base \(\mathcal{B} \) of the bornology of \(E \), the family

\[
\hat{\mathcal{B}} = \{ \hat{B}: B \in \mathcal{B} \}
\]

is a base of the bornology of \(\hat{E} \) and we have

\[
(2) \quad \hat{B} = \{ x \in B^{oo}: x \text{ is } \sigma(E^\times, E_B) \text{-continuous on } B^0 \}
\]

for every \(\hat{B} \in \hat{\mathcal{B}} \).

Proof. If \(x \in \hat{E} \), then by [3, Théorème 2, p. 221] there exists a bounded, absolutely convex subset \(B \) of \(E \) such that \(x \in \hat{E}_B \); hence there is a sequence \(\{x_n\} \subset E_B \) which converges to \(x \) in the Banach
space \hat{E}_B. It is easily seen that $\{x_n\}$ converges to an element $y \in E^{x*}$ for the topology $\sigma(E^{x*}, E^{*})$ and, therefore, $y = x$. Since $\{x_n\}$ is a bounded sequence in E_B, there is a positive number M such that $|\langle x_n, u \rangle| \leq M$ for all n and all $u \in B^0$. It follows that $|\langle x, u \rangle| \leq M$ for all $u \in B^0$. It remains to show that the restriction of x to B^0 is $\sigma(E^{x}, E_B)$-continuous. By Grothendieck's theorem x is $\sigma(E'_b, E_B)$-continuous on B'; hence x determines a unique bounded linear functional z on E''_b whose restriction to the unit ball of E''_b is $\sigma(E''_b, E_b)$-continuous. Let ϕ be the canonical map $E^{*} \to E''_b$. Since $p''_b(0) = (E''_b)^0$, ϕ is continuous from $(E^{*}, \sigma(E^{*}, E'_b))$ to $(E''_b, \sigma(E''_b, E_b))$ and, therefore, the restriction of $x = z \circ \phi$ to B^0 is $\sigma(E^{*}, E_b)$-continuous.

We have also proved that

$$(3) \quad \hat{B} \subset \{x \in B^{\infty} : x \text{ is } \sigma(E^{*}, E_B)\text{-continuous on } B'\}.
$$

Conversely, let $x \in E^{x*}$ and suppose that, for some bounded, absolutely convex subset B of E, the restriction of x to B^0 is $\sigma(E^{x}, E_B)$-continuous and satisfies

$$(4) \quad |\langle x, u \rangle| \leq M \quad \text{for all } u \in B^0,
$$

with $M > 0$. By going through the mapping ϕ introduced above we see that x determines a unique bounded linear functional z on E''_b ($x \circ \phi = x$) whose restriction to the unit ball $B''/p''_b(0)$ of E''_b is $\sigma(E''_b, E_b)$-continuous. Now $\sigma(E''_b, E_b)$ is the topology induced by $\sigma(E''_b, E_b)$ on E''_b, $B''/p''_b(0)$ is a $\sigma(E''_b, E_b)$-dense subset of B'' and B'' is a complete uniform space for the uniformity induced by that of $(E''_b, \sigma(E''_b, E_b))$. It follows that z, being uniformly $\sigma(E''_b, E_b)$-continuous on $B''/p''_b(0)$, has a unique extension $y \in (E''_b)^*$ which is uniformly $\sigma(E''_b, E_b)$-continuous on B'. By Grothendieck's theorem $y \in \hat{E}_B$ and, by (4),

$$|\langle y, u \rangle| \leq M \quad \text{for all } u \in B'.
$$

This essentially proves the converse implication of (3). Thus (2) holds and the proof is complete, in virtue of the fact that if \mathfrak{B} is a base of the bornology of E, then $\hat{\mathfrak{B}} = \{\hat{B} : B \in \mathfrak{B}\}$ is a base of the bornology of \hat{E} by [3, Théorème 2, p. 221].

Corollary. Let E be a regular b.c.s. with weakly concordant norms. Then E is complete if and only if every linear functional on E^* which is bounded and $\sigma(E^*, E_b)$-continuous on B^0 for some bounded, absolutely convex subset B of E, is $\sigma(E^*, E)$-continuous on E^*.

The referee has informed us of a Note [2] where Theorem 1 and
its Corollary for polar b.c.s. are arrived at independently, and where counter examples to the same effect as that given in Section 2 are to be found. As every polar b.c.s. has weakly concordant norms (the converse being clearly false), the results in [2] are a particular case of the ones given here.

An immediate consequence of Theorem 1 is the following criterion for the completion of a polar b.c.s. to be again polar.

Theorem 2. Let E be a polar b.c.s. The completion \hat{E} of E is polar if and only if every bounded subset B of E is contained in a bounded, absolutely convex set $C \subseteq E$ such that the restriction of every $x \in B^o$ to C^o is $\sigma(E^x, E^-)$-continuous.

References

Received April 25, 1972. This work was supported by an Italian National Research Council grant.

Westfield College, University of London
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher Allday, Rational Whitehead products and a spectral sequence of Quillen</td>
<td>313</td>
</tr>
<tr>
<td>James Edward Arnold, Jr., Attaching Hurewicz fibrations with fiber preserving maps</td>
<td>325</td>
</tr>
<tr>
<td>Catherine Bandle and Moshe Marcus, Radial averaging transformations with various metrics</td>
<td>337</td>
</tr>
<tr>
<td>David Wilmot Barnette, A proof of the lower bound conjecture for convex polytopes</td>
<td>349</td>
</tr>
<tr>
<td>Louis Harvey Blake, Simple extensions of measures and the preservation of regularity of conditional probabilities</td>
<td>355</td>
</tr>
<tr>
<td>James W. Cannon, New proofs of Bing’s approximation theorems for surfaces</td>
<td>361</td>
</tr>
<tr>
<td>C. D. Feustel and Robert John Gregorac, On realizing HNN groups in 3-manifolds</td>
<td>381</td>
</tr>
<tr>
<td>Theodore William Gamelin, Iversen’s theorem and fiber algebras</td>
<td>389</td>
</tr>
<tr>
<td>Daniel H. Gottlieb, The total space of universal fibrations</td>
<td>415</td>
</tr>
<tr>
<td>Yoshimitsu Hasegawa, Integrability theorems for power series expansions of two variables</td>
<td>419</td>
</tr>
<tr>
<td>Dean Robert Hickerson, Length of period simple continued fraction expansion of \sqrt{d}</td>
<td>429</td>
</tr>
<tr>
<td>Herbert Meyer Kamowitz, The spectra of endomorphisms of the disc algebra</td>
<td>433</td>
</tr>
<tr>
<td>Dong S. Kim, Boundedly holomorphic convex domains</td>
<td>441</td>
</tr>
<tr>
<td>Daniel Ralph Lewis, Integral operators on L_p-spaces</td>
<td>451</td>
</tr>
<tr>
<td>John Eldon Mack, Fields of topological spaces</td>
<td>457</td>
</tr>
<tr>
<td>V. B. Moscatelli, On a problem of completion in bornology</td>
<td>467</td>
</tr>
<tr>
<td>Ellen Elizabeth Reed, Proximity convergence structures</td>
<td>471</td>
</tr>
<tr>
<td>Ronald C. Rosier, Dual spaces of certain vector sequence spaces</td>
<td>487</td>
</tr>
<tr>
<td>Robert A. Rubin, Absolutely torsion-free rings</td>
<td>503</td>
</tr>
<tr>
<td>Leo Sario and Cecilia Wang, Radial quasiharmonic functions</td>
<td>515</td>
</tr>
<tr>
<td>James Henry Schmerl, Peano models with many generic classes</td>
<td>523</td>
</tr>
<tr>
<td>H. J. Schmidt, The \mathcal{F}-depth of an \mathcal{F}-projector</td>
<td>537</td>
</tr>
<tr>
<td>Edward Silverman, Strong quasi-convexity</td>
<td>549</td>
</tr>
<tr>
<td>Barry Simon, Uniform crossnorms</td>
<td>555</td>
</tr>
<tr>
<td>Surjeet Singh, (KE)-domains</td>
<td>561</td>
</tr>
<tr>
<td>Ted Joe Suffridge, Starlike and convex maps in Banach spaces</td>
<td>575</td>
</tr>
<tr>
<td>Milton Don Ulmer, C-embedded Σ-spaces</td>
<td>591</td>
</tr>
<tr>
<td>Wolmer Vasconcelos, Conductor, projectivity and injectivity</td>
<td>603</td>
</tr>
<tr>
<td>Hidenobu Yoshida, On some generalizations of Meier’s theorems</td>
<td>609</td>
</tr>
</tbody>
</table>