
Pacific Journal of
Mathematics

ON A PROBLEM OF COMPLETION IN BORNOLOGY

V. B. MOSCATELLI

Vol. 46, No. 2 December 1973



PACIFIC JOURNAL OF MATHEMATICS
Vol. 46, No. 2, 1973
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In this note an example is given to show that the
bornological completion of a polar space need not be polar.
Also, a theorem of Grothendieck's type is proved, from which
necessary and sufficient conditions for the completion of a
polar space to be again polar are derived.

1* Notation and terminology are as in [4]. In particular, b.c.s.
means a locally convex, bornological linear space over the scalar
field of real or complex numbers.

In [4, 5. p. 160] Hogbe-Nlend lists, among unsolved problems in
bornology, the following one, which was first raised by Buchwaiter
in his thesis [1, Remarque, p. 26]:

Is the bornological completion of a polar b.c.s. again polar*!
The purpose of this note is to exhibit an example that answers

this question in the negative. We also prove a theorem of Grothen-
dieck's type for regular b.c.s. with weakly concordant norms, which
enables us to give necessary and sufficient conditions for the comple-
tion of a polar b.c.s. to be polar.

2* For each n let the double sequence a% — (α?, ) be defined by
afj = j for i ^ n and all j , α?,- = 1 for i > n and all i, and denote by
En the normed space of scalar-valued double sequences {xiό) with
only finitely many nonzero terms, under the norm

(l) l%l

Let E be the bornological inductive limit of the spaces En; thus
E = En algebraically, and a set BaE is bounded for the inductive
limit bornology if and only if there exist positive integers n, k such
that || (xi:j) \\n ̂  k for all {xi3) e B. It is easily seen that E is a polar
b.c.s. whose dual Ex consists of all scalar-valued double sequences (wίy)
such that

oo

Σ α£ I w*i I < oo for all n .

By [1, Theoreme (2.8.15)] the completion E of E is given by
E— lim En (bornological inductive limit), where En is the completion

of the normed space En, i.e., the Banach space of scalar-valued double
sequences (xiβ) such that \imifj^oaxijla'ij = 0 under the norm (1). It also
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follows from [1, Theoreme <(2.8.15)] that Ex = Ex. Thus, it remains
to show that the b.c.s. E is not polar with respect to the duality
(E, Ex}, i.e., that there is a bounded subset B of E whose bipolar
B00 is unbounded. In fact, the set

B — I (xi3) e E: sup | xi3 | ^ 1 , lim xi3 — 0
I i,j i,j-+oo

is bounded in the Banach space E1 and hence bounded in E; however,
since

B00 = \{xi3) e E: sup | xi3 \ fg l l ,

the sequence {(#£,•)} with xn

i3 — 0 for i Φ n and all j , x^ — 1 for i = n
and all j , is contained in B00 and yet is unbounded, for

Therefore, B00 is unbounded in E.

3. Let E be a regular b.c.s. with dual Ex. For a bounded, ab-
solutely convex set B c E we set:

EB — the normed space spanned by B,
B ~ the completion of B in the Banach space EB,
Ef

B = the dual of £7B,
B' = the unit ball of #;,,
β° = the polar of B in £7x,
J500 = the bipolar of B in £',
p 5 ~ the gauge of B° in i? v ,

jg^ = the normed space Ex/pB

](0).
Moreover, we denote by Ex* the algebraic dual of Ex and identify,
as usual, E£ with a σ(£ri;, J^^-dense subspace of EB.

THEOREM 1. Let E be a regular b.c.s. with weakly concordant
norms. The completion E of E consists, up to isomorphism, of all
those linear functionals on Ex whose restrictions to B° are bounded
and σ(Ex, EB)-continuous for some bounded, absolutely convex set
Bd E. Moreover, for every base & of the bornology of E, the family
& = {B: Be &} is a base of the bornology of E and we have

( 2 ) B= {xeB00: x is σ(Ex, EB)-continuous on B0}

for every B e .ζ@.

Proof. If xeE, then by [3, Theoreme 2, p. 221] there exists a
bounded, absolutely convex subset B of E such that x e EB; hence
there is a sequence {xn} c EB which converges to x in the Banach
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space EB. It is easily seen that {xn} converges to an element τ/e £7X*
for the topology σ(Ex*, Ex) and, therefore, y = x. Since {xn} is a
bounded sequence in EB, there is a positive number ikί such that
I <X, u> I ̂  Λf for all n and all w e B°. It follows that | <α?, u) ^ M
for all w e JB° It remains to show that the restriction of x to JS° is
<7(2£x, ^-continuous. By Grothendieck's theorem x is σ(EB, EB)-
continuous on 5 ' ; hence x determines a unique bounded linear func-
tional z on Eg whose restriction to the unit ball of Eg is σ(Eg, EB)~
continuous. Let φ be the canonical map Ex-+Eg. Since ps^O) =
(EB)°, Φ is continuous from (Ex, σ(Ex, EB)) to (Eg, σ(Eg, EB)) and,
therefore, the restriction of x — z o φ to 5° is σ(£ r χ, ^-continuous.

We have also proved that

(3) B c {x e 5 0 0 : X is (j(£rχ, ^-continuous on B0} .

Conversely, let xeEx* and suppose that, for some bounded, ab-
solutely convex subset B of E, the restriction of x to I?0 is σ(Ex, EB)-
continuous and satisfies

(4) I <α, u> i ^ ΛΓ for all u e J5° ,

with M > 0. By going through the mapping 0 introduced above we
see that x determines a unique bounded linear functional z on
EB (z o φ — x) whose restriction to the unit ball B°/pB

1(0) of EB is
σ(EB, ^-continuous. Now σ(EB, EB) is the topology induced by
σ(EB9 EB) on Eg, B'/p^O) is a σ(E'B, EB)-άense subset of 5 ' and B'
is a complete uniform space for the uniformity induced by that of
(Eΰ, σ(EB, Eβ)). It follows that z, being uniformly σ(EB, ^-continuous
on B*jpB'

ι(ϋ), has a unique extension ye(E'B)* which is uniformly
σ(E'B, ^-continuous on B\ By Grothendieck's theorem yeEB and,
by (4),

\<y,u>\^M for all u e B' .

This essentially proves the converse implication of (3). Thus (2)
holds and the proof is complete, in virtue of the fact that if J^? is

a base of the bornology of E, then & = {B: Be&} is a base of the
bornology of E by [3, Theoreme 2, p. 221].

COROLLARY. Let E be a regular b.c.s. with weakly concordant
norms. Then E is complete if and only if every linear functional
on Ex which is bounded and σ(Ex, EB)-continuous on B° for some
bounded, absolutely convex subset B of E, is σ(Ex, E)-continuous on
E*.

The referee has informed us of a Note [2] where Theorem 1 and
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its Corollary for polar b.c.s. are arrived at independently, and where
counter examples to the same effect as that given in Section 2 are
to be found. As every polar b.c s. has weakly concordant norms (the
converse being clearly false), the results in [2] are a particular case
of the ones given here.

An immediate consequence of Theorem 1 is the following criterion
for the completion of a polar b.c.s. to be again polar.

THEOREM 2. Let E be a polar b.c.s. The completion E of E is
polar if and only if every bounded subset B of E is contained in a
bounded, absolutely convex set CczE such that the restriction of every
xeB00 to C° is σ(Ex, E^-continuous.
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