CONDUCTOR, PROJECTIVITY AND INJECTIVITY

Wolmer Vasconcelos
Here we discuss the role of the conductor of a ring extension vis-a-vis the descent of projectivity and injectivity. Regarding the former, the first result says that an injective homomorphism of commutative rings descends projectivity if it does so modulo the conductor. The cheap version—that with noetherian hypotheses—of the descent of projectivity by a finite homomorphism due to Gruson then follows easily. A carbon copy—with the natural modification—of the descent of injectivity is also proved.

The statement of the results follows very closely the lines of similar work of Ferrand ([2]) on flat modules rather than those of the remarkable [3].

1. Conductor and projectivity. Throughout rings will be commutative with identity element. The price to lift the restriction of commutativity would be to load the exposition with expressions like "two-sided ideal", "bi-module", etc., without any real gain, in view of the fact that for the applications the commutativity is critical.

The main result of this section is, almost word for word, the projective analogue of [2]. Rather than using the results already obtained there, at no cost, we will provide complete proofs based on simple calculations.

Theorem 1.1. Let \(h: A \rightarrow B \) be an injective homomorphism of rings, \(I \) an ideal of \(A \) and \(E \) an \(A \)-module. Then \(E \) is \(A \)-projective if and only if \(B \otimes_A E \) is \(B \)-projective and \(E/IE \) is \(A/I \)-projective in the following cases:

(i) \(I \) is also a \(B \)-ideal.

(ii) \(I \) is nilpotent.

Proof. (i) \((1)\) \(\text{Tor}_1^A(A/I, E) = 0 \):

We must show that the natural map \(I \otimes_A E \rightarrow E \) is injective. This follows from the commutative diagram

\[
\begin{array}{ccc}
I \otimes_A E & \rightarrow & E \\
\downarrow & & \downarrow \\
I \otimes_B B \otimes_A E & \rightarrow & B \otimes_B B \otimes_A E
\end{array}
\]

where the vertical map on the left is the natural identification while
the lower horizontal map is injective by the B-flatness of $B \otimes_A E$.

(2) $\text{Tor}_i^t(B, E) = 0$:

Let

$$(*) \quad 0 \longrightarrow G \xrightarrow{j} F \longrightarrow E \longrightarrow 0$$

be exact with F A-free. By tensoring it with B we get (from now on unadorned tensor products are taken over A)

$$(**) \quad 0 \longrightarrow \text{Tor}_i^t(B, E) \longrightarrow B \otimes G \overset{1 \otimes j}{\longrightarrow} B \otimes F \longrightarrow B \otimes E \longrightarrow 0.$$

As $B \otimes E$ is B-projective, this sequence splits piecemeal; by tensoring it with B/I over B, we get the exact sequence

$$0 \longrightarrow B/I \otimes_B \text{Tor}_i^t(B, E) \longrightarrow B/I \otimes_B B \otimes G \longrightarrow B/I \otimes_B B \otimes F \longrightarrow B/I \otimes_B B \otimes E \longrightarrow 0$$

which can also be written

$$0 \longrightarrow \text{Tor}_i^t(B, E)/I \cdot \text{Tor}_i^t(B, E) \longrightarrow B/I \otimes G/IG \longrightarrow B/I \otimes F/IF \longrightarrow B/I \otimes E/IE \longrightarrow 0.$$

By (1) it follows then that $\text{Tor}_i^t(B, E) = I \cdot \text{Tor}_i^t(B, E)$. Let now $x \in \text{Tor}_i^t(B, E)$: we can write $x = \sum a_i \cdot x_i$ with $a_i \in I$, $x_i \in \text{Tor}_i^t(B, E) \hookrightarrow B \otimes G$. It follows thus that x lies in the image of G in $B \otimes G$. But in the diagram

$$\begin{array}{ccc}
G & \longrightarrow & F \\
\downarrow & & \downarrow \\
B \otimes G & \longrightarrow & B \otimes F
\end{array}$$

the right vertical map is injective as $h: A \rightarrow B$ is injective and F is A-free. We then have $x = 0$.

(3) $(*)$ splits:

Let ϕ be a splitting for $(**)$, i.e., $\phi(1 \otimes j) = 1$. On the other hand, let ψ be a splitting of

$$0 \longrightarrow G/IG \xrightarrow{j'} F/IF \longrightarrow E/IE \longrightarrow 0.$$

The projectivity of F yields then a map $\theta: F \rightarrow G$ such that $\theta j = 1 + g$, with $g: G \rightarrow IG$.

From the product

$$(1 - (1 \otimes \theta)(1 \otimes j))(\phi(1 \otimes j) - 1) = 0$$

one gets
((1 \otimes g)\phi + (1 \otimes \theta))(1 \otimes j) = 1.

If we restrict the map \((1 \otimes g)\phi + (1 \otimes \theta)\) to \(F\), we get \((1 \otimes g)\phi + \theta)j = 1\) where \((1 \otimes g)\phi + \theta\) is actually a map from \(F\) into \(G\). This completes the proof of (i).

(ii) Say \(I^* = (0)\) and let \(I_i = (I^*, B) \cap A\). Then \(I_i \subset I_{i+1}\) and \(I_* = (0)\). By passing to \(A/I_{n-1}\) \(\xrightarrow{\sim} B/I_{n-1}, B\) we reduce the question, by induction, to the case \(I^2 = (0)\).

(1) \(\text{Tor}_1^A(A/I, E) = 0:\) This can be read off the diagram

\[
\begin{array}{ccc}
I \otimes E & \longrightarrow & E \\
& \downarrow & \\
I \otimes_{A/I} E/IE & \longrightarrow & E \\
& \downarrow & \\
IB \otimes_{A/I} E/IE & \longrightarrow & B \otimes E
\end{array}
\]

where the left vertical map is injective by the \(A/I\)-flatness of \(E/IE\) while the lower horizontal map is injective by the \(B\)-flatness of \(B \otimes E\).

(2) \(^(*)\) splits:

Tensor \(^(*)\) with \(A/I\) and get \(\phi: F \rightarrow G\) such that \(\phi j = 1 + g, g: G \rightarrow IG\). As \(g^2 = 0\), \((1 - g)\phi\) provides the desired splitting map.

REMARKS. (a) In (ii) above it is enough that \(I\) be \(T\)-nilpotent, for it follows from \([3, p. 60]\) that \(E\) is flat and the argument in (ii) yields a splitting. (b) If \(A\) is artinian, with \(I\) the radical of \(A\), one has that any injective homomorphism descends projectivity. (c) With \(k\) a field and \(A = k[x_1, x_2, i = 1, 2, \cdots], B = k[x_i]'s\) the conductor \(I\) of \(B\) in \(A\) is such that \(A/I = k\). Thus the inclusion \(A \rightarrow B\) descends projectivity.

COROLLARY 1.2. Let \(A, B\) be commutative rings under the conditions of (i) above, and let \(E\) be an \(A\)-module. If \(B \otimes E\) (and resp. \(E/IE\)) is finitely generated over \(B\) (resp. over \(A/I\)), then \(E\) is finitely generated over \(A\). (Descent of finiteness)

Proof. Pick \(n\) large enough such that there is a sequence

\[
A^n \longrightarrow E \longrightarrow C \longrightarrow 0
\]

such that \(B \otimes C = 0\) and \(C/IC = 0\). Then \(C\) is \(A\)-projective of trace
ideal, say, J. However the trace of $B \otimes C$ is then JB. Since $h: A \rightarrow B$ is injective, this implies $C = 0$.

Theorem 1.3. Let A be a noetherian ring, $h: A \rightarrow B$ an injective homomorphism of rings and B finitely generated as A-module. Let E be an A-module; if $B \otimes E$ is B-projective then E is A-projective.

Proof. It follows the path of [2]. Let I be a largest ideal of A such that E/IE is not A/I-projective. If $I \neq \sqrt{I} = J$, E/IE is A/J-projective and $B/IB \otimes E$ is also B/JB-projective ($A/J \hookrightarrow B/JB$) and by Theorem 1.1 we get a contradiction. Thus we may assume that A is reduced and such that E/LE is A/L-projective for each ideal $L \neq (0)$. We have the canonical inclusion $A \rightarrow A' = \oplus(A/P_i), P_i$ running through the minimal primes. Let $B' = \oplus (B/P_iB)$; then $A' \otimes E$ is A'-projective. However the conductor of A'/A is $\neq (0)$ and thus by Theorem 1.1 E is A-projective.

Assume then A to be a domain. We may take $B = A[y]$ and also a domain. Let $ay^n + \cdots + b = 0$ be a least degree equation satisfied by y. Then with $z = ay A \rightarrow B_0 = A[z] \rightarrow A[y], B_0$ is a free extension of A and hence it is enough to show that $B_0 \otimes E$ is B_0-projective. From the hypothesis on A it follows that for every ideal $M \neq (0)$ of B_0, $M \cap A \neq (0)$ and $B_0/MB_0 \otimes E$ is B_0/MB_0-projective. Also, since the conductor of B/B_0 is nonzero, a final application of Theorem 1.1 yields the desired conclusion.

2. Conductor and injectivity. Now we discuss the injective analogue of Theorem 1.1. The existence of injective envelopes is quite essential for the proof.

Theorem 2.1. Let $h: A \rightarrow B$ be an injective homomorphism of rings, I an ideal of A and E an A-module. Then E is A-injective if and only if $\text{Hom}_A(B, E)$ is B-injective and $\text{Hom}_A(A/I, E)$ is A/I-injective in the following cases:

(i) I is also a B-ideal.
(ii) I is nilpotent.

Proof. (i) (1) $\text{Ext}^i_A(A/I, E) = 0$:

Let

\[
0 \rightarrow E \overset{j}{\rightarrow} F \overset{\pi}{\rightarrow} C \rightarrow 0
\]

be exact with F an injective envelope of E. It yields

\[
0 \rightarrow \text{Hom} (A/I, E) \rightarrow \text{Hom} (A/I, F) \rightarrow \text{Hom} (A/I, C) \rightarrow 0
\]

\[
\rightarrow \text{Ext}^i (A/I, E) \rightarrow 0
\]
(where the lower A's are dropped without risk of confusion). But \(\text{Hom}(A/I, F) = IF = \{x \in F, Ix = 0\} \) is the injective envelope of \(E \) as an \(A/I \)-module and thus \(C = \text{Ext}^1(A/I, E) \). We also have the diagram

\[
\begin{array}{cccccc}
\text{Hom}(A, E) & \rightarrow & \text{Hom}(I, E) & \rightarrow & \text{Ext}^1(A/I, E) & \rightarrow 0 \\
\uparrow & & & & & \\
\text{Hom}(B, E) & \rightarrow & \text{Hom}_B(I, \text{Hom}(B, E)) & \rightarrow 0
\end{array}
\]

with the lower sequence exact by the \(B \)-injectivity of \(\text{Hom}(B, E) \). It thus follows that \(C = \text{Ext}^1(A/I, E) = 0 \).

(2) \(\text{Ext}^1(B, E) = 0 \):

The sequence

\[
0 \rightarrow \text{Hom}(B, E) \rightarrow \text{Hom}(B, F) \rightarrow \text{Hom}(B, C) \\
\rightarrow \text{Ext}^1(B, E) \rightarrow 0
\]

splits piecemeal as \(B \)-modules. Applying \(\text{Hom}_B(B/I, -) \) to it we get

\[
0 \rightarrow \text{Hom}(B/I, E) \rightarrow \text{Hom}(B/I, F) \rightarrow \text{Hom}(B/I, C) \\
\rightarrow \text{Hom}_B(B/I, \text{Ext}^1(B, E)) \rightarrow 0
\]

Since \(C = 0 \), \(\text{Ext}^1(B, E) = 0 \) also. Let \(\alpha \in \text{Hom}(B, C) \); say \(\alpha(1) = c \). Pick \(b \in F \) with \(\pi(b) = c \) and choose \(\beta: A \rightarrow F \) such that \(\beta(1) = b \). Let now \(\phi: B \rightarrow F \) extend \(\beta \). We claim that \(\pi\phi = \alpha \). For \(a \in I, x \in F \), \(a(\pi\phi - \alpha)(x) = \pi\phi(ax) - \alpha(ax) = 0 \). Thus \(I \), image \((\pi\phi - \alpha) = 0 \) and \(\pi\phi = \alpha \) as \(C = 0 \).

(3) (***) splits:

Consider the exact sequences

\[
\begin{array}{cccccc}
0 & \rightarrow & \text{Hom}(B, E) & \xrightarrow{j'} & \text{Hom}(B, F) & \xrightarrow{\pi'} \text{Hom}(B, C) & \rightarrow 0 \\
\downarrow & & \downarrow \eta & & \downarrow \theta \\
0 & \rightarrow & \text{Hom}(A, E) & \xrightarrow{j} \text{Hom}(A, F) & \xrightarrow{\pi} \text{Hom}(A, C) & \rightarrow 0
\end{array}
\]

where \(\eta \) and \(\theta \) are onto by the injectivity of \(F \). Let \(\phi \) be a splitting for the upper sequence; let \(c \in C \) and \(\alpha \in \text{Hom}(B, C) \) be such that \(\theta(\alpha) = C \) that is, \(\alpha \) is such that \(\alpha(1) = c \). Define \(\psi(c) \in \text{Hom}(A, F) \) to be \(\eta(\phi(\alpha)) \). We claim that \(\psi \) is well defined and provides a splitting for the lower sequence. Assume first that \(\alpha(1) = 0 \): then \(I \), \(\alpha(B) = 0 \) and thus \(\alpha = 0 \), and \(\psi \) is well defined. Next, we have \(\pi(\phi(c)) = \pi(\eta(\phi(\alpha))) = \theta(\pi'(\phi(\alpha))) = c \).

(ii) Reduce first to the case \(I^2 = (0) \). It is enough now to show that \(\text{Ext}^1(A/I, E) = 0 \) for \(E \) is essential in \(F \) and thus \(C = 0 \) implies \(C = 0 \). Just read this off the commutative diagram.
\[
\begin{array}{c}
\text{Hom}(A, E) \longrightarrow \text{Hom}(I, E) \longrightarrow \text{Ext}^1(A/I, E) \longrightarrow 0 \\
\text{Hom}_{A/I}(I, E) \\
\text{Hom}_{A/I}(IB, E) \\
\text{Hom}_B(B, \text{Hom}(B, E)) \longrightarrow \text{Hom}_B(IB, \text{Hom}(B, E)) \longrightarrow 0
\end{array}
\]

where the right vertical map is surjective by the \(A/I\)-injectivity of \(E\) and the lower horizontal map is exact by the \(B\)-injectivity of \(\text{Hom}(B, E)\).

Corollary 2.2. Let \(h: A \rightarrow B\) be an injective homomorphism of rings, \(I\) the conductor of \(B/A\). Then if \(A/I\) and \(B\) are both noetherian rings and \(B/I\) is finitely generated as an \(A\)-module, \(A\) is noetherian (and hence \(B\) is finitely generated as \(A\)-module).

Proof. According to [1, p. 60] it is enough to show that a direct sum \(E = \bigoplus E_i\) of injective \(A\)-modules is injective. Clearly \(\text{Hom}(A/I, \bigoplus E_i)\) is \(A/I\)-injective. If \(f \in \text{Hom}(B, \bigoplus E_i), f(I) \subseteq f(A)\) and the finite generation of \(B/I\) implies that \(f(B)_i (=\text{projection of } f(B)\text{ in } E_i)\) is trivial for almost all \(i\)'s. Thus \(\text{Hom}(B, \bigoplus E_i) = \bigoplus \text{Hom}(B, E_i)\) and Theorem 2.1 takes over.

References

Received May 25, 1972. This research was partially supported by NSF Grant GP-19995.

Rutgers University
The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, (not dittoed), double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. The editorial “we” must not be used in the synopsis, and items of the bibliography should not be cited there unless absolutely necessary, in which case they must be identified by author and Journal, rather than by item number. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. Index to Vol. 39. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is issued monthly as of January 1966. Regular subscription rate: $48.00 a year (6 Vols., 12 issues). Special rate: $24.00 a year to individual members of supporting institutions.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 270, 3-chome Totsuka-cho, Shinjuku-ku, Tokyo 160, Japan.
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Christopher Allday, Rational Whitehead products and a spectral sequence of Quillen</td>
<td>313</td>
</tr>
<tr>
<td>James Edward Arnold, Jr., Attaching Hurewicz fibrations with fiber preserving maps</td>
<td>325</td>
</tr>
<tr>
<td>Catherine Bandle and Moshe Marcus, Radial averaging transformations with various metrics</td>
<td>337</td>
</tr>
<tr>
<td>David Wilmot Barnette, A proof of the lower bound conjecture for convex polytopes</td>
<td>349</td>
</tr>
<tr>
<td>Louis Harvey Blake, Simple extensions of measures and the preservation of regularity of conditional probabilities</td>
<td>355</td>
</tr>
<tr>
<td>James W. Cannon, New proofs of Bing’s approximation theorems for surfaces</td>
<td>361</td>
</tr>
<tr>
<td>C. D. Feustel and Robert John Gregorac, On realizing HNN groups in 3-manifolds</td>
<td>381</td>
</tr>
<tr>
<td>Theodore William Gamelin, Iversen’s theorem and fiber algebras</td>
<td>389</td>
</tr>
<tr>
<td>Daniel H. Gottlieb, The total space of universal fibrations</td>
<td>415</td>
</tr>
<tr>
<td>Yoshimitsu Hasegawa, Integrability theorems for power series expansions of two variables</td>
<td>419</td>
</tr>
<tr>
<td>Dean Robert Hickerson, Length of period simple continued fraction expansion of \sqrt{d}</td>
<td>429</td>
</tr>
<tr>
<td>Herbert Meyer Kamowitz, The spectra of endomorphisms of the disc algebra</td>
<td>433</td>
</tr>
<tr>
<td>Dong S. Kim, Boundedly holomorphic convex domains</td>
<td>441</td>
</tr>
<tr>
<td>Daniel Ralph Lewis, Integral operators on L_p-spaces</td>
<td>451</td>
</tr>
<tr>
<td>John Eldon Mack, Fields of topological spaces</td>
<td>457</td>
</tr>
<tr>
<td>V. B. Moscatelli, On a problem of completion in bornology</td>
<td>467</td>
</tr>
<tr>
<td>Ellen Elizabeth Reed, Proximity convergence structures</td>
<td>471</td>
</tr>
<tr>
<td>Ronald C. Rosier, Dual spaces of certain vector sequence spaces</td>
<td>487</td>
</tr>
<tr>
<td>Robert A. Rubin, Absolutely torsion-free rings</td>
<td>503</td>
</tr>
<tr>
<td>Leo Sario and Cecilia Wang, Radial quasiharmonic functions</td>
<td>515</td>
</tr>
<tr>
<td>James Henry Schmerl, Peano models with many generic classes</td>
<td>523</td>
</tr>
<tr>
<td>H. J. Schmidt, The \mathcal{F}-depth of an \mathcal{F}-projector</td>
<td>537</td>
</tr>
<tr>
<td>Edward Silverman, Strong quasi-convexity</td>
<td>549</td>
</tr>
<tr>
<td>Barry Simon, Uniform crossnorms</td>
<td>555</td>
</tr>
<tr>
<td>Surjeet Singh, (KE)-domains</td>
<td>561</td>
</tr>
<tr>
<td>Ted Joe Suffridge, Starlike and convex maps in Banach spaces</td>
<td>575</td>
</tr>
<tr>
<td>Milton Don Ulmer, C-embedded Σ-spaces</td>
<td>591</td>
</tr>
<tr>
<td>Wolmer Vasconcelos, Conductor, projectivity and injectivity</td>
<td>603</td>
</tr>
<tr>
<td>Hidenobu Yoshida, On some generalizations of Meier’s theorems</td>
<td>609</td>
</tr>
</tbody>
</table>