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The following characterization is obtained:

THEOREM. Let G be a finite group generated by a con-
jugacy class D of subgroups of prime order p = 5, such that
for any choice of distinet A and B in D, the subgroup generated
by A and B is isomorphic to Z, X Z,, Lxp™) or SLy(p™), where
m depends on A and B. Assume G has no nontrivial solvable
normal subgroup. Then G is isomorphic to Sp.(q) or U.(q)
for some power q of p.

A much larger class of groups satisfies the analogous property
for p = 2 or 3, including many of the sporatic simple groups. The
classification for p = 2 appears in [3]. The classification for p = 3 is
incomplete, but a partial solution appears in [4].

For the most part the proof here mimics that in the papers
mentioned above. The exception comes in handling certain degenerate
cases. This is accomplished in §4 by first showing a minimal counter
example possesses a doubly transitive permutation representation, and
then utilizing numerous results on doubly transitive groups.

1. Notation. In general G is a finite group and D a G invariant
collection of subgroups generating G. G acts on D by conjugation with
this representation denoted by G”. If a S D is a set of imprimitivity
for this action we define

D, = {gea’:[a, gl = 1,a = )
at = {a} U D,
A, =a —at
V.= {Bea’ at = g*}
W. = {8ea®: D, = D;}
Df={B:BepeD,}.
For 2 < af, (2) is the graph with point set 2 and edges (a”,

a') where afe D,». < (2) is the geometry with point set 2 and block
set {8+ NR:gef}. For a,BeR the line through @ and B in <& (Q) is

axgB = N N2

realnglnag
axg is singular if ge D, and hyperbolic otherwise.
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A triangle is a triple (4, B, C) with Ae D, Ce D,, and Be A, N A,.

If G is a permutation group on a set 2,4 < 2 and X & G, then
X,, X(4) is the pointwise, global stabilizer of 4 in X respectively.
X! = X(4)/X, with induced permutation representation. F(X) is the
set of fixed points of X.

0.(G) is the largest normal solvable subgroup of G.

All groups are finite.

2. Locally D-simple groups. Let G be a finite group and D a
collection of subgroups of G such that D° = D. Represent G as a
permutation group on G by conjugation. G is said to be D-simple if
G is generated by any G invariant subset of D. G is locally D-simple
if D generates G and for any A and B in D either [4,B] =1 or
(A, B) is generated by A<*?. « is a set of imprimitivity for G” if
ana’ =g for ge G — Ny(), and @ =a =<ad N D # D.

LEMMA 2.1. Let G be locally D-simple and 4 a G invariant
subset of D. Then

(1) If H is a D-subgroup of G then H is locally (H N D)-simple.

(2) If a is a homomorphism of G then Ga is locally Da-simple.

(8) Let I' =<4 ND. Then [I',D—-T]=1.

(4) If G* is transitive them {4)* is transitive.

(5) IFf DN Z(G) is empty and G = {4> for some erbit 4 of G", then
G s D-simple.

Proof. (1) and (2) are straightforward. Let H = {(4). Then H <J
G. Let Ael',BeD — I'" and assume [A, B] + 1. Let X = (A4, B).
Then X = {A*Y < H so Bel', contradicting the choice of B. There-
fore, (3) holds.

Assume G? is transitive. Let K = (D — I'y. Then by (3) G is
the central product of H and K so for Aed, 4= A% = A" = A",
Thus (4) holds.

Finally assume G? is transitive, G = (4> and Z(G) N D is empty.
Suppose Q2 is an orbit of G” with K={Q>+# G. Thenas G={4),4NK
is empty, so by (3),[4, 2] = 1. Thus Q is centralized by G, a con-
tradiction. Thus (5) holds.

LEMMA 2.2. Let G be locally D-simple and ¢ a set of imprimitivity
for G°. Then

(1) If Acea,Bea’ + a and [4, B] = 1, then la, a’] = 1.

(2) <Ka% 1s locally {a)®-simple.

Proof. (1) A= A’eca® soa” = a. Thus 2.1.3 applied to {«, B)
implies [, B] = 1. But now the same argument shows [«’, C] = 1 for
each Cina. (2) Let H = () # K = {a’), and X = (H, K). Assume
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[H,K]+1and let Aca,Bea’. Thenby (1),[4,B]#1s0 Be{A“Py <
(H*). Thus X = {H*.

LEMMA 2.8. Let G be locally D-simple with G® transitive, and
A abelian. Then

(1) FEither V, or W, equals {A}.

(2) V, and W, are sets of imprimitivity for G°.

(3) Vi, ={Vy} and Wy, = {W,.

Proof. Straightforward.

LEMMA 2.4. Let G be locally D-simple with G® transitive and
(D) connected. Let Ae D. Then A is contained in a unique maximal
set of imprimitivity & of G and {D}> is D}-stmple.

Proof. Let H = {(D,>, w an orbit of H of maximal length on D,,
4= Kn) — ZKad) N D, I' = Ny(4) and a = I" — 4> ND. As =2(D)
is connected, |w]>1, so 4 is nonempty. We will show a has the
properties claimed in the conclusion of the lemma.

By 2.1.8, [a, 4] = 1. By 2.1.4 {x) is transitive on #. Thus trans-
itivity of G? and maximality of |7| imply 7 is an orbit of <{D;> on
Dy, for Bea. Therefore B < I'.

Suppose BeanNa®*+ a. Then A4S B* =17 =a’y 4°. Now {x)
is transitive on 7 so either 71 & 4 or r S a’. If 1 & 4° then 4 &
{7y S 4%, so 4 = 4° and therefore a = a?, a contradiction. Thus
TS a’, s0 4Z {x) & {a*) and therefore 4 & ar.

Sol'csaya’. Further /S, soar = C < forCe 4. Thus "=
aJa’. From the last remark of the second paragraph it follows that
I’ is a component of < (D), contradicting the hypothesis that < (D)
is connected.

It follows that « is a set of imprimitivity for G°. By 2.2.1, D} =
D, —a =4 — a. By construction, Z({4)) N 4 is empty, so D} = 4
and by 2.1.5, {(4) is 4-simple.

Finally let 8 be a set of imprimitivity for G containing A. 4
centralizes A, so 4 normalizes 5. If Be N 4 then as K = {4) is 4-
simple, 4 & (B*) < (B*) = (B). Thus 4 S B. As Ny(p) is transitive
on B,a & Dys<= g for a*eD,. Thus A< B, and transitivity of
Ny(B)? implies 3 is a component of <7 (D), contradicting the hypothesis
that = (D) is connected.

So 8N 4 is empty and by 2.1.8, [B, 4] = 1. Thus g & N,(4) —

= . Thus a is maximal as claimed.

Lemmas 2.6 and 2.7 are from §2 of [4]. 2.6 is a slight generaliza-
tion of its counterpart, but the same proof goes through.
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LEMMA 2.6. Let G be locally Q2-simple, let 4 & 2, and let H be
a 2-subgroup of G. Assume

(1) H takes the edge set of <= (A) onto the edge set of = (Q)
under conjugation.

(ii) There exists o partition A = XA, of A such that if a* € A for
some aed;, he H, then there exists r € Ny(4;) with a* = a".
Let G be a second group satisfying the hypothesis of G for which there
exists a permutation isomorphism T of H? H? and an isomorphism S
of 2 (A) and = (A) such that

(iii) T restricted to N(4,) commutes with S and Ny(a)T = Nz(aS)
for each ae A.
Then S extends to an isomorphism of < (D) and < (D).

A triangle in D is a triple (4, B, C) with AeD,CeD,, and Be
A, N A, D is locally conjugate in G if for A, Be D, A is conjugate
to Bin (A, B), or [A, Bl = 1.

LEMMA 2.7. Let  be locally conjugate in G with G? primitive
and Z(2) connected. Assume

* If (a,B,7) is a triangle and X = (&, B, 7>, then B NXE
B(:unx) and g < (B N X).
Then {a*) is transitive on A, and G° is rank 3.

3. p-transvections. Let G be a finite group, » a prime. A set
of p-transvections of G is a G invariant collection D of subgroups
generating G such that for any A, BeD,|A| = p and (A, B) is the
homomorphic image of a subgroup of SL,(p"), with % and the image
depending on A and B.

If p =2 then D is a set of odd transpositions. Groups generated
by odd transpositions have been classified [3]; they include the sporatic
simple groups discovered by Fischer plus many infinite classes of simple
groups. Conway’s sporatic simple group -1 is generated by 3-transvec-
tions, as is the Hall-Janko group and Suzuki’s sporatic simple group.

LemMMA 3.1. Let D be a set of p-transvections of G, > 2, and
let M= 0.(G). Then

(1) G s locally D-simple

(2) If G is a p-group then G 1is abelian

(3) If G= M is not a p-group then p = 3 and G s a {2, 3} group

(4) If p> 8 then M/O(G) = Z(G/O(G)).

(5) Let M=1. Then G is a simple unless p =3 and G =
PG U,,(2).

Proof. Let A,BeD,[A,B]=1. Set X=<A,B). Then X is
isomorphic to SL,(p™) or L,(p™) unless p = 3 and X = SL,(5) or L.(5).
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This implies (1) and (2). If G = M then as L,(q) is simple for ¢ > 3,
X must be isomorphic to SL,(3) or A,. Therefore, 4.1 of [4] yields (3).

Assume p > 3. To prove (4) we may assume O,(G) = 1. Let @
be a minimal normal subgroup of G contained in M. Then Q is a ¢g-sub-
group for some prime g == p. If A centralizes @ then @ is in the center
of G = (D), so we can assume [4, Q] = 1. But then {4°) < 4Q is a
solvable D-subgroup whose order is divisible by ¢, contradicting (3).

Finally assume M = 1 and let H be a minimal normal subgroup
of G. If AL H and ze H then (A, A®) has a normal subgroup of
index p, so either A*e A* or (A, A*> = SL,(3) or A,. If AP < A-
then [H, A] is a normal abelian subgroup of H, so [H, A] = 1. Thus
H is centralized by G = {D), a contradiction. Therefore, if 4 £ H,
then [4] implies AH = PGU,,(2). PGU,(2) is normal in AutU,(2) so
G = C,(H)HA. By induction on |G|, G/H = C,(H)A = Z, or PGU,,(2).
But now [4] implies the latter case does not occur.

So we can take A < H. So G = (D) = H is simple.

The proof of the following lemma is due to David Wales.

LeEMMA 3.2. Let G = Ly(q) or SLy,q), ¢ = p™ odd, with Sylow p-
subgroup P. Assume G acts irreducibly on a n-dimensional vector
space over GF(p), such that n = 2 dim C,(P) and P acts semiregularly
on V— Cy(P). Then G = SL,(q), n = 2m, and G acts in its natural
representation on V.

Proof. Let B be a basis of V, and GF(r) the splitting field for the
representation of G on V. Extend the action of G to a vector space
W over GF(r) with basis B. W is the sum of & absolutely irreducible
G-invariant subspaces W, of W. By inspection of the irreducible repre-
sentations of SL,(q) (e.g. §30, [7]), dim C, (P) = 1 for all %. Thus as
n = 2dim C,(P) and P acts semiregularly on V' — C,(P), dim C,, (P) =
2. Again by inspection of the representations of SL,(g),q =71, G=
SL,(q), and G acts in its natural fashion on W,. Further G"% 1<
i <k, are the m equivalent representations obtained from G"* by
Aut GF(q). Thus n = 2m and G acts in its natural fashion on V.

LeEMMA 8.3. Let D be a class of p-transvections of G, p odd,
with G/O(G) = L,(q). Let M = 0,(G), Ae D, m = |AY| and Z = Z(G).
Assume O (G)/M = Z(G/M). Then forsome Be D, G = MX where X =
(A, B) = SLy(q), Z = [A*, M]IN[B*, M], M = [A, M][B, M], | M|Z| = m’
where m = |A"|, Z = Cy(x) for any p'-element of X, and [M, B] is
transitive on A",

Proof. As G/O.(G) = L,(q) there exists Be D with X = (4, B) =
L,(q) or SLy(g). Let o« = A*N X, and 2 = a*. Let K = [[.[M, B].
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By 3.1, [M, a] is elementary abelian, G = {JM, a], X> normalizes K
and [A, M/K}=1. So M= K. As X? is doubly transitive, Z, =
[M, a]l N [M, 8] = [M, 7] N [M,d] for all pairs («, B), (A, 6) from 2. So
as [M, «] is abelian, Z, < Z. Thus we can assume Z, = 1. Therefore,
M is elementary abelian. A is in m groups {4, C>, Ce B”, so there
are m® total D-subgroups isomorphic to L,(q) or SL,(q). Set G = G/Z.
7 = Cy(X), so m*= | X% = |M| = |[M, «][M, 8]]. On the other hand
m = |A"| < |[M, a]|, som = |[M, ]|, M= [M, «][M, 8], and AT = A7,
Lemma 3.2 implies X = SL,(¢) and Cs(x) = 1 for all p’-elements x ¢ X.
So it suffices to show Z = 1. Let (u) = Z(X). Then M = Z[M, u],
so D X[M,u]<1G. Thus Z = 1.

LemMA 3.4. Let D be a class of p-transvections of G, p odd, with
M = 0,(G), X a D-subgroup with X/Z(X) = U,(q), and G = MX. Let
Z=7Z(G),AcM and m = |AM|. Then Z < [A*, M} and | M/Z| = m®.

Proof. Let X =<(A4;,1<£1<3),A=A,leta; = AN Xand 2 =
at. Set Z, = Ja, M| N |a,, M]. As X? is doubly transitive Z, =[5,
M]n [y, M] for g,ve . [a, M] is abelian so G = (X, A" centralizes
Z,. Thus we can assume Z, = 1.

Set N =TI, [M, «;]. By 3.8, [M,a;]v = [Ma][M, a5}, so N is
normalized by G = {a,, a,, a;, My. A centralizes M/N, so M = N.
As Z, =1, M is abelian. Let w be the involution in {a,, a,) and v
the involution in {a,, @,>. We may assume [u,v] =1. M= Cy,(u) X
[M, u] and by 3.3, Cy,(uw) = Cyla)) N Cyle,) and [ M, u] = [M, ][ M, ).
Therefore, C,(u) N Cy(v) = Z and as X has one class of involutions,
ICu(w)|Z) = | M]Z]| = |Cy(w)/Z|m*. So |M/Z] = m*, and as | M| = w’,
Z=1. Thatis Z = Z, < [A, M].

4., Groups with </ (D) disconnected. This section consists of a
proof of the following theorem:

THEOREM 4.1. Let D be a conjugacy class of p-transvections, p =
5, of the group G. Assume < (D) is disconnected and O.(G) = 1.
Then G = L,(q) or Ufq) for some power q of p.

Throughout § 4, G is a counterexample of minimal order to
Theorem 4.1. For AcD let A be the component of <z (D) containing
A. Let D be the set of components. Write A~ B if A, Be D and
(A, B) is isomorphic to L,(p) or SL,(p). For A # B define

I's={CecA: A~ E ~ C for some EcB}.
Now for A = B, A~ B if and only if A U B* = BU A®*. Thusif 4~
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B then X =I5, I"s7) acts on I" = A B*f order p +1, so Y =
{IN'zy =AY, and X =<Y,B) =<{4,B)X,. By 8.1, X, =0.,(X) and
Y is a p-group. Further for fixed B = A, the sets I'y3, C € A, parti-
tion A.

Let m = |I",z], and let » be the number of classes [,z in A. If
m > 1 then applying 8.3 to X we have that (4, B) contains a central
involution u = u(A, B), and w centralizes only A in ",z

Let Ce A. {C, B) contains E e I",5 and v = u(E, B) is in the center
of {C, B). Indeed v = u(C, F) where C ~ Fe BN <{C, B). As v cen-
tralizes a unique member of ",z and I3, each member C, of I3
determines a distinet member F, of I",5 N <{C,, B>. Thus m = |I'¢5]
for all Ce A. Further u = u(C,, F)) for some C,elys F,elpz. So
C»(u) intersects each I',3 in A in a unique member. Set K = (C,(u)>
and H = (K, A). Minimality of G implies K = SIL,(q) for some power
g of p. So the set 4 of components of & (D) containing an element
of Cp(u) has order ¢ + 1 and Q = (C(u))> acts regularly on 4 — {4}.

Now there are m? involutions u(4,, B), 4, € "3, B, € "y, and m?
pairs (4, C), C,e";3, with u(A,, B) centralizing at most one pair.
It follows there exists # with A, Ce Q. So as @ is abelian, (4) is
abelian. Notice that if m =1 then A = I",5 N <{C, B), so again [A,
C] = 1, and {A) is abelian. Therefore:

LEMMA 4.2. {A) is abelian.

Let {c) = Ce A. We have shown there is an <¢) = E € C5(u) N ["o3,
and we can choose ¢ such that B°= B°. Thus as {(4) is abelian, B* =
B¢=PB%=PB? so Hactson 4= AU B?, and H= KH,= KO,(H) by 3.1.

Summarizing:

Levmma 4.3. 1) If m > 1 then {A, B) contains a central involu-
tion u. (2) If (A, B) contains a central involution u then (A, B) =
H = (Cp(w)>0,(H) with {Cp(u)) = SL,(q) for some power q of p.

Let J = NyA4),I=C,A). For X< G let F(X) be the set of
points in D fixed by X.

LEMMA 4.4. Assume u is an involution in the center of <A, B).
Then

(i) If v is an tnvolution in the center of (A, C> with [u,v] = 1,
then u = v.

() J= OWJ)C,(w).

Proof. Set H = {Cp(w)>. Let v be as in (i). Then v acts on H
and fixes A. There are ¢ + 1 members of D intersecting H, and
¢ +1 is even, by 4.3. Thus v fixes a second member E = A of D
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with ENH+# @. As H= SL,(q), v centralizes an element E of E.
Thus <u) = Z({A4, E)) = {(v), yielding (i). (i) and Glauberman’s Z*-
theorem imply (ii).

LEMMA 4.5. Assume m(A,B) =1 with A~ B. Let xc{A,B)
fix A and B. Then

(1) B = B(A) is the unique element of B with A ~ B.

(2) =« acts as scalar multiplication in GF(p) on Q = (A).

(8) Assume yeJ has scalar action on Q@ and fixes B. Then y
has the same action on {B) and if |«I/I| > 2 then F(x) = {A, B).

(4) If (A, C> = L,p") or SL,(p"), n odd, for all Cec B, then {A,
B) = Ly(q) or SLi(q).

(5) If p=5 and (A4, C) = L,(p™) or SLp"),n even, for some
C c B then there exists y with |Iy/I| = 4 inducing scalar action on Q
and {(B).

(6) m(A,C) =1 for all C # A.

Proof. (1) is just a restatement of m(4, B) = 1. Let CeA. <(C,
B> contains an element A4, of D centralizing C with A,~ B. Thus by
(1), A, = A(B)= A. So ze{A, B) <(C, B) and thus has the same action
on C as on A. This yields (2). Notice that (2) implies J = IC,(z).

Assume yeJ is as in the hypothesis of (3). Then for Cc A,y
fixes C and therefore B(C). So y acts on (C, B) with scalar action
on BN<{C,B). So y acts on B as on A.

Assume y has order r* for some prime r,# dividing » — 1, and
CeF(y) — {4, B). Suppose first that m(4, C) > 1. Then by 4.3, K =
(A,Cy = HM where H = (Cp(u)>, u = u(4,C), and M = O,(K). vy
fixes A so y fixes I'yy for A~ C. As |I";7| is a power of p and p =
1 mod r, x fixes a point C of I";5. As this holds for each Ac A4, we
can assume % normalizes H. Thus with 4.3, F(yu) = {4, C} and [y,
u] =1. Now J = IC,(y), so [M,y] = MNI=][A, M| by 3.3. So if
y acts by scalar multiplication on C, then [M, y] < [4, M] N [C, M] =
Z(K) by 3.3, so that y centralizes M/Z(K). But y does not even
centralize [A, M]/Z(K). So y does not have scalar action on C.

Set £ = B*. y has scalar action on E and B, so as above m(E,
B) = 1. (E, B) = SL,(q) or Ly(q) so there exists an involution ¢ with
cyele (K, B) inverting y mod C(B). Thus ut ¢ N(B) inverts y mod C(B),
while N(B) = C(B)C@)- So |yC(B/C(B)| = lylly| <2.

Assume |yI/y|> 2. Then as above m(F, F))=1 for all £, F e F(y)
and C,(y) fixes F(y) pointwise. Now if z is an element centralizing
A, B, and y then F(z) = {(C,(2)> N D and minimality of G implies F(z) N
F(y) = {A, B}. Thus z moves C,so z = 1. Now there exists an involu-
tion ¢ with cycle (4, B) inverting y modulo C(4) N C(B). Thus y* =
y~'. Similarly there exists s with cycle (B, C) inverting y. So ts
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moves A to C and centralizes y, a contradiction. Thus we have shown
3).

Assume the hypothesis of (4). Let Ec A, and C = B(E). Then
for ac Q@ N<A,C),¢adecA. So A= {a):aecQ}. Let 4= AU B
Clearly @ normalizes 4. Further for £ = {e) ¢ A, B’* = A Uy B<=-»no,
so as A = {{a): a € @}, B normalizes 4. Thus X = {4, B) normalizes
4. Further X? is 2-transitive with @’ <1 X3 and regular on 4 — {4}.
Therefore, a result [11] of Kantor and Seitz implies X“ = L,(¢). This
yields (4).

Assume the hypothesis of (5). Then there exists ¥ € (4, C)> with
|yI/I| = 4 inducing scalar action on @ N {4, C) and {B) N {4, C). By
(2), * = »* inverts @ and (B), so orbits of x on A have order at most
two. Suppose (4,, 4,) is such an orbit. Let B, = B(4,) and set X =
{4,, B;>. Then y normalizes X with « inverting @ N X, so y induces
scalar action on Q N X and fixes A,, a contradiction. Thus y fixes 4
pointwise and induces scalar action on Q. This yields (5).

It remains to show (6). Assume m(A4, C) > 1 and let u = u(4, C).
By 4.4,J = 0(J)Cy(u). As J = IC,(y), [u, y] = 0(I). Thus some con-
jugate v of » centralizes y. Now if p >5or p=>5 and {4, E) = L,(5") or
SL,(5"), n even, for some E ¢ B, then we can choose y with | Iy/I| > 2.
So by (3), F(y) = {4, B}). As [v,y] =1 and v fixes A, v fixes B. So
v centralizes some B¢ B, and by 4.3, as m(A, B) = 1,ve I. But this
is impossible as u ¢ I.

It follows from (4) that (A, B) = L,(q) or SL,(¢) with ¢ = p", n
odd. So A = {(ad:aec@}. But by 4.3, {4, C) = H = (C,(u))O,(H)
with O,(H) = Z(H). Thus there exists ac @ N O,(H) with (a) ¢ 4, a
contradiction.

LEMMA 4.6. m(A, B) =1 for all B # A.

Proof. Assume not. Then by 4.5.6, m(4, B) > 1 for all B # A.
Let w = u(4, B),v = w(A, C). By 4.4, u is conjugate to v under J,
so J takes C to a point of F(u). But by 4.3 and 4.4, C,(w)"™ is
2-transitive. Thus J is transitive on D — {A4}. Let K = {4, B), H =
{Cp(u)y and M = O,(K). Let 2 = Uxns Co(u*). Suppose w € u’ inverts
1+ 2eQ. Then wu* inverts & while by 4.4, wu* has odd order. So
X=[Q,u]=<Q—-2=ZMnQK by 3.3. But X<1J,J is transitive
on D — {4} and M N Q fixes B, so X fixes D pointwise, contradicting
3.1.5.

LEMMA 4.7. (1) There exists a prime r such that for all B = A,
J = IN,(R) for some r-group with F(R) = {4, B}.
(2) G* is doubly transitive.
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Proof. (1) implies that there exists a prime # such that for any
B + A, a Sylow r-subgroup of G53 fixes only two points. This implies
G” is doubly transitive. So it suffices to proof (1). But unless p = 5
there exists a prime 7~ dividing p — 1 and an r-element ye <4, B)
fixing A and B with |Iy/I| > 2. So 4.5 implies (1) unless »p = 5 and
(A, B) = H= L,5" or SLy,(5"), n odd. As 5" = |Q|=|<{A>], this holds
for all B = A.

Suppose u is an involution in I and let (C, E) be a cycle in « and
X =<(C,E>. As u does not centralize X, u acts fixed point free on
XN D, so as n is odd, u induces an outer automorphism in PG L,(5")
on X, and thus there exists a 2-element y € X inducing scalar action
in GF(5) on (C) and (&) with ¥* not centralizing <C>. Thus by 4.5,
|F(y)| = 2, so |D| = m is even.

Assume m is odd. Then I has odd order. Let z be the involution
in (4,B>NndJ. By 4.5, J= IC,(x). But as m is odd J contains a
Sylow 2-subgroup of G, so the Z*-theorem contradicts O.(G) = 1.
Therefore, m is even.

If a Sylow 2-subgroup of G733 fixes exactly two points for every
B + A, then G” is doubly transitive. So choose B such that a Sylow
group of G5 fixes more than two points. Then H = (A, B) = L,(5"),
C,(H) has odd order and the involution ¢ Hyz fixes three or more
points. Suppose y® = & for some ye G. If (C,E) is a cycle of y in
F(x) then y normalizes X = (C, E) so as y* = = and = is odd, ¥ fixes
two points in X N D, which must be C and £. This is a contradiction,
so @ is not rooted in this manner.

Suppose I has odd order. Then by 4.5, J = IC,{(y) for any involution
yedA,C> and any C = A. So yea’. Let u be an involution. We
may assume % has cycle (4, B). So % normalizes H, and as I has odd
order and x is not rooted in {u, H), v € H. Thus uw e Thus G has one
class of involutions, so as « is not rooted, a Sylow 2-subgroup of G is
elementary abelian. Walter’s classification of such groups [13] implies
G = L.,5"), a contradiction. So I has even order. Thus z centralizes
some involution u e I; as |D| is even, there exists R e F(z) N Fl(u) —
{4}; minimality of G implies (C3(u)> = L5"), SLy5" or U(5"), so
F(x) N F(u) = {A, R).

Consider Cy(x)"*'. Arguments such as in 4.5.3 and in the last
paragraph show that nontrivial elements of C(x)”* fix at most two
points. Let (C,E) be a cycle of w in F(x). We have shown z is
rooted modulo C(C) N C(E), while x is not rooted. So C(C) N C(E) has
even order and there exists an involution v e C(x)"*, fixing C and E,
and centralizing u. v acts on F(») N F(u)={A, R}. Let L=C%'. L
acts semiregularly on F(x) — {4, R} and C.(v) acts on F(v) N F(z) =
{C, E}, so vy = Cy(u). So a Sylow 2-subgroup S of {(L,v) = L* is
semidihedral or dihedral, and there are one or two classes of involu-
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tions in L* — L, respectively. But if Tec F(x) — {4, R} let t be the
involution in C(x)** fixing T and T* and centralizing u. Then te
vi,1=1 or 2, one of the (at most) two classes of involutions in L* —
L. So L takes F(t) N F(x) = {T, T* to F(x) N F(v;). Thus L has one
orbit, or two orbits of equal length, on F(x) — {4, R}, for S semidihedral
or dihedral, respectively. It now follows easily that C(x)’*® is 2-
transitive. But J and therefore C,(x) cannot take B to R as there
is no involution in I fixing B. This last contradiction completes the
proof of 4.7.
Set L = Gy, H= (A, B), K = C,(H), and Q = (A).

LemMmA 4.8. (1) J=IL and K+ 1.
(2) H = Ly(g) or SLy(q)-

Proof. By 4.7.1 there exists a prime r such that a Sylow »-
subgroup R of L fixes only A and B, and J = IN,(R). N,(R) acts
on F(R) = {A,B); so N(R)< L. If K=1NL =1 then I is regular
on D — {4} by 4.7.2, so [11] implies G = Ly(q) or U(q). Thus K = 1.
Minimality of G implies H = (C,(K)} = SLyq) or Lyq).

LEMMA 4.9. Suppose x € L* with | Co(x)| = qo > 1. Then {Cph(x)) =
L.(q.), SLy(q,) or Uyq,) and |F(x)| = ¢, + 1 or ¢ + 1.

_ Proof. Minimality of G yields the desired form for (Cy(x)). If
C e F(x) then [2, C] = 1 where C = C(4), A e Cz(x). Thus |F(x)|=q,+
lorgqg + 1.

LEMMA 4.10. Set m = |D|. Then (n — 1, |K|) is a power of p.

Proof. Let r be a prime divisor of | K|, and R a Sylow r-subgroup
of K. By 4.9, F(R)=q + 1 or ¢* + 1, so if » # p then a Sylow »-
subgroup R, of N,(R) fixes a second point B of F(R); thatis R, = R.
So R is Sylow in I and » does not divide » — 1 = |I: K|.

LEMMA 4.11. |D| = n is even. If u 18 an involution then n =
|F(w)| mod 4. |L| is even.

Proof. Results of Bender on doubly transitive groups [5.6] imply
L has even order. By 3.1, G is simple, so any involution u must act
as an even permutation on D. Thus n = |F(u)| mod 4. If » is odd,
2-elements fix an odd number of points. So by 4.8 and 4.9, | K| and
|L/HK| are odd. And by 4.5.3, |HN L|++ Omod 4. As L has even
order, |[HNL|=|L| =2mod4. Thus p = ¢ =>5mod8. Letu be the
involution in HN L, and S a u-invariant Sylow 2-subgroup of I. As
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n is odd and J = IL, S(u) is Sylow in G. As G has no subgroup of
index two, S s 1. Let s be an involution in S, and (B, C) a cycle in
s. Then s normalizes X = (B, C) and as |F(s)| = 1, s acts fixed point
free on DN X. So as p=g¢q=>5mod8, (s, X) = PGL,(q) and there
exists y € (s, X> of order 4 inducing scalar multiplication on (B) and
fixing B and C. By 4.5.3, |F(y)| = 2, contradicting n odd.

LemMmA 4.12. If J = O(I)L then J = O (I)L, where © ts the set
of primes dividing n — 1. Also O(K) # 1, and O(I) is not nilpotent.

Proof. Set P= O (I). If P+ O(I) let R/P be minimal normal
in J/P, R < O(). R/P is an r-group for some prime # and by a
Frattini argument, J = PN,(R,) where R, is a Sylow r-subgroup of
R contained in K. By 4.9, N,(R) = LP, where |P,| = q or ¢, and
P, <A N,(R,). Thus PP,<1J, so P,< Pand J = PL. Results of Kantor
and Seitz on doubly transitive groups [11, 12] imply P is not nilpotent
or regular on D — {4}. Thus 1 # PN L= PN K = 0,K) by 4.10.

LEMMA 4.13. Let X S L fiz 3 or more points of D. Then Cy(X)™%
1s doubly transitive.

Proof. It suffices to show there exists a prime » such that a
Sylow r-subgroup of C,(X) fixes only A and B. Thus with 4.5 we
can assume ¢ = 5™ with m > 1 odd. Thus there is an r-element 1 #
yeHNL,r>2, and as m is odd v is not inverted in J/I by 4.8.
Thus arguing as in 4.5, F(y) = (A, B). [y, X] = 1 unless Cy(X) # 1,
in which case 4.9 implies C (X)) is doubly transitive.

LEMMA 4.14. Assume ¢q = — 1mod 4 and x is an involution in
L inverting @ with |F(x)| > 2. Then |F(x)| = q + 1.

Proof. As ¢ = — 1mod4, ¢ is an odd power of p, so no element
in HN L is inverted in J/I. Thus if ye HN L with |y|> 2 then
[F(y)| = 2. Therefore, with 4.9 and 4.13, C,(x)"“ is a Zaussenhaus
group. So Cy(x)"** has a normal subgroup isomorphic to L.(m), of
index at most two, with |F(z)| = m + 1. Now if m = 1mod4 then
by 4.9 and 4.11, K has odd order, and <{«x) is Sylow in L, so that
[CL(x)"*| is odd, contradicting m = 1 mod 4. So m = — 1 mod 4. Thus
C.(x)"* is cyclic and inverted by any te C,(x) with cycle (4, B). As
we can choose tc H, and [K, t] = 1, it follows that |Ci(x)| = ¢ < 2.
Further e(m — 1)/2 = |C ()" | = e|HN L| = &(q — 1)/2, so m = q.

LEMMA 4.15. Suppose w is an involution in Z*(L) fixing 3 or
more points. Then we Z*(J).
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Proof. weZ*(L)sou*NC(u)={u}. Now 4.13 implies u“N L = u*.
Further as |D| is even, if v is a conjugate of u in J centralizing w
then we can assume ve L, soveu®N Cy(u) = u* N Cy(u) = {u}. Thus
by the Z*-theorem, w e Z*(J).

LEMMA 4.16. If H = Ly(q) then HN D = F(X) forany 1 # X < K.

Proof. If F(X)+# HN D then by 4.9, H < {Cp(X)) = U,q), so
H = SL.\q).

LEMMA 4.17. Assume u is an involution tn L fixing m + 1 = 3
points, let ¢ = | L: C(u)| and let e be the number of conjugates of wu
with cycle (A, B). Then |D| — 1 = m(m + l)e/c + m.

Proof. Let 2 be the set of pairs (v, @) where veu® and « is a
cycle in v. Then |u®|(n —m —1)/2 = |2| = n(n — 1)¢/2 where n=|D|.
Further by 4.13, |u°| = n(n — L)e/m(m + 1).

LeEmMMA 4.18. (1) Let S be a 2-group such that Cy(S) = 1. Then
S has rank at most one.
(2) J=O0)L.

Proof. Suppose 1= <uy = HN L. Then by 4.15, uwe Z*(I), so
J = O(I)L. Define P= 0O,(I) as in 4.12, and assume S has 2-rank at
least two. Then P = [[s Cx(s), while by 4.9, C.(s) is a p-group for
seS% Thus P is a p-group, contradicting 4.12.

So HN L =1 and by 4.16, N,(H) = QK is strongly embedded in
I. As Q =<0) and [K, HN L] = 1, Bender’s classification of groups
with a strongly embedded subgroup [6] implies J = O(I)N,(H N L).
By 4.5, augmented by arguments such as in 4.13 for the case q¢ = 5™,
m odd, N,(H N L)= L. Now arguing as above, S has 2-rank at most
one.

Define P = O, (I) as in 4.12. Set P, = O,(K). P, 1Dby 4.12 and
4.18.

LEMMA 4.19. (1) F(X)=HND for 1 X< P,

(2) HNK=1.

(8) Assume u is an tnvolution in K and let veu® have cycle
(A, B). Let P, be a {u,v) invariant Sylow p-group of O(K). Then
[v, P] = P, and [u, P] + 1.

Proof. Assume 1# X < P, with F(X) # HND. Then Y =
{Cp(X)) = Uqg) by 4.9. So HN K = {u) # 1. Further as N (X)**®
is a p’-group, X = P,. Let (C, E) be a cycle in  and vecu® fix C and
E. Then [u,v] =1 so v acts on {C,(w)> = H and thus also on P,.
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v induces an automorphism on Y = U,(q) and therefore fixes points
A;e F(P). So Ce(A,, A <Y and therefore F(P,) = D, a contradic-
tion. This yields (1).

Assume 1 # {u) = HN K. Then in particular [u, P] = 1. Let
v € u® have cycle (4, B). v acts on P,and F(v) N F(x) = F(v) N F(u) =
@ for we P{. Thus C,(v) acts fixed point free on F(v) of order ¢ +
1, so Cp(v) = 1. Define e and ¢ as in 4.17. It follows that ¢ = 1 and
e=0 modp. So by 4.17, |D| — 1 = ¢[(q + L)e/c + 1] = ¢ mod pq. So
P,Q is Sylow in P and u centralizes P,Q, and inverts a Hall p’-group
P, of P. Thus P = P, x (P,Q) is nilpotent, contradicting 4.12. This
yields (2).

Assume the hypothesis of (3) and define ¢ and e as in 4.17. Arguing
as above, [v, P] = P,, so p divides e. By 4.18, L = O(K)C.(u), so if
[P, w] = 1, then p does not divide ¢. But then arguing as above we
have a contradiction.

LEMMA 4.20. ¢ =1 mod 4.

Proof. Assume ¢ = — 1 mod 4. By 4.9, 4.10, and 4.14, Cp(x) is
a p-group for any involution x € L, while by 4.12, P is not a p-group.
Thus L has 2-rank one. Suppose K has odd order. By 4.11, L has
even order so there exists an involution xz e L and {x) is Sylow in J.
If |F(x)| = 2, then by 4.11, n = |D| = 2 mod 4, and [2] implies G =
L,q). Thus by 4.14, |F(x)| = ¢ + 1. Let v be a conjugate of # with
cycle (A, B). We may choose v = ¢ or tx where t ¢ H. By 4.16, F(P,) =
HND, so |F(P)NF@)|=0or 2. Thus if Cp(v) =1 then 1=gq +
1=|F(z)| =0 or 2 mod p, so v inverts P,. Thus v = tx, and x inverts
P,. Define ¢ and ¢ as in 4.17. Then e = (¢ — 1)¢/2, so by 4.17, n —
1 = q(¢* + 1)/2. In particular QP, is Sylow in P and inverted by .
As |F(z)| = ¢ + 1, « inverts an z-invariant Sylow 7-subgroup of P
for r = P, with 4.10. Thus z inverts P, and P is abelian, contradicting
4.12.

So K contains an involution u. Let v € u° have eycle (4, B), with
[v,u] =1. As HN K =1 and v acts fixed point free on F(u) = HN
D,v=1t or ut where teH. By 4.19 [v,P] # 1, so v = ut. Thus
defining ¢ and ¢ as in 4.17, e = (¢ — 1)¢/2, so by 4.17, » — 1 = q[(q +
le/c + 1] = q(¢* + 1)/2. Let R be a <u)(HN L) invariant r-Sylow
group of P, where r # p. Then <u)(H N L) acts semiregularly on R,
|R| > q. As a p'-Hall group of P has order (¢* + 1)/2, (¢* + 1)/2 is a
prime power. Thus ¢ is a prime (e.g. Lemma 3.1, [1]). P, acts semi-
regularly on D — F(P,) of order q(¢* + 1)/2 — q¢ = q(¢* — 1)2, so | P)| =
g. Thus Q = Cp(u) £ Z(P), or [P,u] is a Hall p’-group of P. In
either event P is nilpotent, contradicting 4.12.
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LemMmaA 4.21. | K| is odd.

Proof. Assume K has even order and let w be an involution in
K and v a conjugate of u, centralizing u, with cycle (4, B). By
4.1, [v, P] = P, and [u, P]#1. 8o Cp(uv) =1, |F(uv)| = 0 mod p and
uvgu®. So by 4.11 and 4.18, uvex® or (ux)® where xc H. Now
[#, P] =1 so |F(x)| =2 mod p. Thus wve (ux)’ and as |F(uv)| =0
mod p and |F(Py) N F(ux)| = 2, Cp(ux) = Cp(u) = 1. So Q= Cp(u),
yielding a contradiction as in 4.20.

LEMMA 4.22. L has 2-rank one.

Proof. Assume not. Then as |K]| is odd by 4.21, there exists an
involution x € H N L and an involution % € L with |Cy(w)| = r,q = 77,
and @ = Cy(u) x Cy(uz). Notice P = Cp(x)Cpr(u)}Cr(ux) = Cp(x)Q. Set
m + 1= |F(x)|. As P, acts semi-regularly on F(x) — {4, B}, m=1
mod p. Let P, be a subgroup of C,(x) maximal with respect to being
normal in C,(x) and semiregular on F(x) — {A}. Let M/P, be a minimal
subgroup of C,(x)/P, contained in Cp(z). By 4.10, M/P, is a p-group
and as P, is semi-regular on F(x) — {4} of order m = 1 mod p, P, is
a p’-group. Thus M = P,(P,N M) = P,M, and C,(z) = P.(N(M,) N
C,(®) = PC,(x) as F)NF(M) =1{A,B}. So |P|=m and P, <
QCx(x) = P. Thus P,Q is regular on D — {A}. As u inverts P, P,Q
is nilpotent and thus contained in Fit (P), the Fitting subgroup of P.
So Fit (P) is transitive on D — {4} and nilpotent, contradicting 4.12.

LEMMA 4.23. |D| = 2 mod 4.

Proof. Assume not. Let x be the involution in H N L. By 4.11,
|F(x)| = 0 mod 4. As in 4.14, Cy(x)"™ is a Zassenhaus group and ¢
inverts L”® where tc H has cycle (4, B). But [t, P] =1 and P, =
Pr® g contradiction.

4.22 and 4.23 together with [2] imply G = L.(q) or U,q). Thus
the proof of Theorem 4.1 is complete.

5. Examples.

Hypothesis 5.1. Let V be a 2m dimensional space over GF(q),q
a power of the odd prime p, with nondegenerate skew symmetric
bilinear form (,). For we V* the transvection u* determined by u is
the map

u*: {ay — {& + (x, w)u)
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considered as a projective transformation of V. Let D = {{u*):ue V¥
and G = {D).

G is the 2m dimensional projective symplectic group SP,,(q) over
GF(q).

LEMMA 5.2. Assume hypothesis 5.1. Let A = {a*> and B = {(b*)
lie in D with [A,B] +1. Set L =<{D,N Dyy. Then

(1) D s a class of p-transvections of G.

(2) L/Z(L) = SP,,_.(q) for m > 1.

Proof. Let {c*> = CeD. Then [4, C] =1 if and only if (a, ¢) =
0. So (,) restricted to <a,b)> is a nondegenerate skew symmetric
bilinear form and therefore {4, B) is a homomorphic image of a sub-
group of SL,(g). This yields (1). Similarly L acts as a symplectic
group on {a, b)* yielding (2).

Hypothesis 5.3. Let V be a n-dimensional vector space over GF(g?%
with nondegenerate semibilinear form (). For nonsingular vector w
let u* be the tramsvection determined by u considered as a projective
transformation of V. Let D = {u*: (u,u) = 0}, and G = {D).

G is the n dimensional projective special unitary groups, U,(q).

LEMMA 5.4. Assume hypothesis 5.3. Let A = {a*) and B = {b*)
lie in D with [A, Bl + 1. Set L = (D, N D) then

(1) D is a class of p-transvections of G.

(2) L/Z(L) =U,_(q) for n = 4.

(8) G contains a unique class of D-subgroups K¢ with K/Z(K) =
Uai(@)-

Proof. The proofs of (1) and (2) are as in 5.2, Assume K is a
D-subgroup of G with K/Z(K) = U,_(q). As [a*,¢*] = 1 if and only
if (a,¢) = 0, {u: <u*)> e KN D) is a nonsingular hyperplane of V pre-
served by K. As G is transitive on such hyperplanes, (3) follows.

6. Proof of main theorem. For the remainder of this paper
G is a counter example of minimal order to the main theorem. Lemma
3.1 implies:

LemMMA 6.1. G is simple.

Theorem 4.1 implies:
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LEMMA 6.2. =2(D) is connected.

Let AeD. By 2.4, A is contained in a unique maximal set of
imprimitivity @ of G®. Set H = {D,), M = O.(H), and 2 = a’. By
2.4, H is D#-simple. Minimality of G implies H/M = Sp,(q) or U,(q),
for some power ¢ of p.

LEMMA 6.3. Let BeD,,veD;,NA,. Set I"=D,ND, and L =
. Then LM = H, M = Z(H) and a8 = {a} U B".

Proof. Let Beps. H/M = Sp,(q) or U,(q) has Vyy,yy as a set of
imprimitivity on D}M/M, so {B) is abelian. Set K = {D, NI, H =
{D;y, and M, = O.(H)).

Assume n = 4. Then by 5.2 and 5.4, KM,/ M, = U,_.(q) or Sp,_.(q).
Suppose L is not D-simple. Then by 2.1, L is the central product
of two D-subgroups L;. Let Be L,. K is D-simple, so K = L,. Thus
8= B*NL, so &(L;N D) is disconnected. Thus L/0..(L) = L,(g) X
L.(qg) or U(q) x Uylq). As Uy(g) contains no D-subgroup of the latter
type, that case is eliminated. As g=B*NL,B8=B'NDi Now
let Cev with X = (4, C)> = SL,(q), and 2 ¢ X fix a and v with |z| = 4.
x centralizes L and normalizes H. Suppose L # (Cp*(x)) =Y. Then
there exists 6 € A, N Y. Minimality of G implies (Y N D) is connected
so we can choose d € D, for some 0 & L. Let Z =\, 0). As 7,0¢
D,, Z/0,(Z) = SLy,(q). So as [z, ] = 1, we get [z, \] = 1, a contradic-
tion. So L =Y and as &« induces an automorphism on H/M = Sp,(q)
or Ulg) with Y/O.(Y) = L,q) x L,(q), this automorphism has order
two. As || > 2,1 # o centralizes H/M. As [¢*, B* N D} =1, [H, «*],
80 <x*» = Z(X) and X = SL,(5). But now C,(z? is a component of
2(D), contradicting 6.2.

So L is D-simple. Therefore, minimality of G implies L/O.(L) =
H/Mand O (K) = M\nK + Z(K). AsD,N(@*B) = {B}, a*B = {a} U g".

Thus we may assume n < 3. Suppose X = (4, E) = SL,(q) for
EeDjf. Then we may choose CevN X. Let <(u) = Z(X). Thenuce
(A, C), so [u,L} =1. wu acts on H/M and centralizes B, so J =
{Cpx(w)) contains a D-subgroup isomorphic to SL,(g)) for some g,
dividing ¢. Let {(v)> be the center of that subgroup. If J = L then
considering <{J, X), minimality of G yields a contradiction. SoJ = L
and [v, X] = 1. {Cpx(v)) = X, = SL,(g), so arguing on v in place of
u we get X, = Land ¢, = q. If H= LM then as D, = D,, M =+ Z(H),
and as above a*g8 = {a} U 8¥. So we may assume H/M = U,(g). Define
x as above with wed{x). [x,L] =1 and z acts on H/M = U,(qg), so
as 2 < |x| divides ¢ — 1, u € {x) centralizes H/M, contradicting LM -+ H.

So X does not exist. Thus H = L,q). Claim g = B*N D} =
a*B — {a}. Forif not g S {a*B — {a, B}) whereas a £ {a*g — {a, B}>-
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Choose 1 # e H, fixing @ and . z acts on H and centralizes g, so
[, Hl = 1. Let EcD} — L and Cev. The action of z on {C, E)
yields a contradiction.

LEMMA 6.4. Let (a, 7, B) be a triangle in 2. Then there exists
o with a, B, and v in D,.

Proof. Claim < (2) has diameter two. For if not agvd be a
chain with d(a, 0) = 3. Let H, = {D,», M, = O,(H),I" = D, N D, and
L =<{y. Then by 6.3, H = LM, so oM, = oM, for some cel.
Thus o€ D, N D,, contradicting d(a, 6) = 3. Thus &(2) has diameter
two, so if («,v, B) is a triangle, by 6.3, LM = H. So again there
exists oe " with oM = BM. «, B, and 7 are in D,.

LEMMA 6.5. Let ve€ A,. Then {a, ) = SL.,(q) and |{a)]| = q.

Proof. Set X =<a,7). By 6.4, there exists ge D, N D,. Let
H, =Dy, M, = O,(H). Suppose A + Ecawith A = Emod M,. Then
A = {a), E = {e) with © = ae”'e M,. Thus x fixes every singular line
B*0 = {B} U 6" through 8. As H = C,(x) is transitive on D,, x fixes
all singular lines through any 8eD,. Let o€ 4,. By 6.3, there are
distinct singular lines B0, ¢ = 1, 2, with g;e€ D,. Then x fixes (8Fg) N
(BFo) = {o}. Thus « fixes 2 pointwise. But this contradicts 6.1.

So [Kay| = |{a)M/M| = q by 6.3. By 6.3, X/0,(X) = SL,(g), so
l<a>| =4, Op(X) = 1.

LEMMA 6.6. 2 s locally conjugate in G, {a‘) is transitive on A,,
and G? is rank 3.

Proof. By 6.5, 2 is locally conjugate in G. Therefore, to show
{a*+) is transitive on A, and thus that G? is rank 3, it suffices to
show (*) of 2.7. But if (a, 7, B) is a triangle in 2, set X = {a, v, B).
Then by 6.3, X/0,(X) = SL,(q) with a* N X = a’®. 8o 3.3 yields (*).

Following the notation of D. Higman let £ = |D,|,l = |4.|, N =
|D, N Dg| for e D,, and p=|D,ND,| for ve A,. Let m = |B"|.
[10] implies:

LemMmaA 6.7. I = k(k — » — 1)/¢t and either
(1) k=land =N+ 1)/2=Fk/2 or
(2) d*= (N — u)?+ 4k — 1) s a square and d divides 2k + (v —

Wk + ).

LEMMA 6.8. O.(L) = Z(L).
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Proof. Assume not. Then there exists €O, (L) = LN M with
B*# B. By 6.5, 8°# B8, so g°e(a*B8) N D, = {B}, a contradiction.

LEMMA 6.9. a*y = {a, 7> N2 has order q + 1. If H/M = U,(q)
then m = q°.

Proof. Assume n = 4. Then a hyperbolic line 86 in <& (I') is as
claimed. But g*6 & g0 while clearly <{g, 0> N 2 & B*0. Next assume
n = 2. Then by 6.3, D, N D, ={B, 6> N 2 for 8,0 €D, N D,, and D; N
D; = <{a, 7> N2, so a*y is as claimed. Finally assume H/M = Uy(q).
Let Z = Z({a*)). Z acts semiregularly on a*y — {a}. So if |a*v| =
g+ 1 then |Z| =gq. If |@*v|+# g + 1 then a*y = D; N D;, for B,d¢
D, N D,. Sola*y|= ¢ and Ny(a*7)*" acts as a subgroup of Aut (Us(g)).
But by 3.4, Z is elementary abelian, while an elementary subgroup
of Aut (U.(g)) acting semiregularly on ¢* letters has order at most q.
Further |a*7| — 1 = |Nyw(@*7)| = |Cuwu(L)| = |Z| = q by 3.4. So
la*r| = q + 1.

Finally = [I"'|=¢ 4+ 1,»=m — 1, and & = pm by 6.3 and 6.8.
Thus by 6.7, ¢*m* = [, while by 6.6, [ = |[{a‘): N.,(7)| = | Ma)| =
gm® by 3.4. Thus m = ¢~

LEMMA 6.10. If H/M = L,q) then m = q or ¢*. If H/M = Sp,(q)
or U,(q), n = 3, then m = q or q* respectively.

Proof. Assume H/M = L,(¢). Then p=q+ 1, k= tm and » =
m — 1. So by 6.7, l=m’q and g+ = m + ¢q divides 2k + (» —
Wk + 1) = — 2(@¢* — 1)g mod (m + ¢). By 3.3, an element of order
q — 1 in L acts semiregularly on ([A, M]/Z)* of order m — 1, so q —
1 divides m — 1. Thus ¢ divides m = ¢"*'. So ¢ + 1 divides 2(¢* — 1)
and therefore » < 1. That is m = ¢ or ¢

So with 6.9 we can assume 7 = 4. Therefore, singular lines in
L have order ¢ or ¢% respectively. Thus as a*g = {a} U 8" these lines
are also lines in G.

LemMA 6.11. HM=U,(q) and m = q¢*

Proof. If not pt = » + 2, so <Z(Q) is a symmetric block design.
Further all lines have order ¢ + 1. Thus a result of Dembowski and
Wager [8] implies <Z () is (n + 1)-dimensional projective space over
GF(q). As G is generated by the set of elations of <7 (2) commuting
with the symplectic polarity a « a', G = Sp,..(q).

The case » = 2 must be treated differently since in this case the
existence of D-subgroups isomorphic to U,(¢) are not assured. The
following lemma treats this special case.
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LEMMA 6.12. n = 3.

Proof. Assume n = 2. Let g,6€l’, and set X = L,,. We first
determine the fixed point sets of elements of L.

If xe{B)* then F(x) = g*. If ve X — Z(L), then F(z) = {B, o} U
a*y. For if o € F() is not as claimed, then by 3.3, 0 € A,. @ normalizes
{0, ) = SL,(q) and centralizes «, so « centralizes o. Thus a similar
argument on <o, 8> and {g,0) shows ceD,ND; =a*. If ()=
Z(L) then F(x) = I" U (a*v). For arguing as above F(x) = C,(x), and
minimality of G implies {C,(2)>/Z({C(x)>) = L,(q) X L.(q); that is Cy(x) =
I"U (@*v). Finally let xe€ L act fixed point free on I". As above
F(2) = Cy(x) and as D, N Cy(x) is empty, <{Co(x)) = Y., = SLyq) or
Ui(g). And if Y = U(q) then Y is doubly transitive so xe<{(D,n D,)
for e F(x) — {a}. Thus x is in ¢* distinct conjugate of L in H.
However, with 3.3, C,(x) = {a), so there are m*q(¢ — 1)/2 conjugates
of (&> in H. On the other hand there are m? conjugates of L, each
containing ¢(q¢ — 1)/2 conjugates of {(x), so {x) is in a unique conjugate
of L. So F(x) = a*v.

Let G = U,(q), let D be the class of subgroups generated by trans-
vections in G, let @ consists of the members of D whose center is a
given singular point of the associated projective space, and let Q2 =
@. Let ¥eA; and L = (D:N D;>. The discussion above implies L“
is permutation isomorphic to L°.

Lemma 6.3 implies that every ¢ in 2 — {(«a*p) appears in a unique
Dy, Bea*p. Set K = L, and let t € L have cycle (8, 6). Let X177 5F
be a partition of a*g with 8, = a@and B, = 8. Set 4, = (B — (@*B))U
{8}, and 4 = UA;. Then L maps the edge set of (1) onto the edge
set of < (Q), except for edges in < (a*p).

Let T be permutation isomorphism of L and L, and let 3 = gT.
Let BX” be orbits of KT on @*B and define ./ as above with respect to
these ;. There exists an isomorphism S of <7 (4) and <7 (1) such that S
restricted to = (4;) commutes with T restricted to N, (4;) and Nz(0S) =
(N (0))T for 0 € A. For o ¢ A, there exists ¢ ¢ 4; with Nz(¢) = (N (6))T
from the discussion above, so S can be defined in the obvious manner.
So we can apply 2.6 to show <(Q) = < (?) and thus G = G, if we
show condition (ii) of 2.6 is satisfied.

Clearly (ii) holds on 4,. Suppose ¢, 0 € 4,,x€ L. Claim ¢° = ¢* for
yeK. As L = KU KtK we can assume ¢ = t. Thus "€ D, N D, =
a*y, so o= o' is fixed by ¢. But K = N, 4), so (ii) holds here.
Suppose g, 6" e 4;, 1 = 2. We consider the case |6%] = ¢* — 1; the case
lo"] = q(¢* — 1) is analogous. Now ¢8> = N (4,) and ¢* = |4; N U Do |
in g orbits of length ¢ under {(8). These are the points in orbits of
length ¢* — 1 under L. Let # be the set of edges (8¢, w) with ye L
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and |0*| = ¢* — 1. Let N be the number of orbits of L on §. Then
9@ — YN = |[(B;, 0)*|N = |0]| = |Bi|¢* = (¢ — 1)¢*, so N =gq. Thus
(8, 0°) = (B;, ®*) for some we 4;,ye{B)>. That is condition (ii) holds
on A;.
This completes the proof of 6.12.
A unitary (o, 8,7) in 2 is a triple with Se A, and
vye N 4;.

dea*s

LemmA 6.13. If (a, B,7) ts a unitary triple then {a, B, V)| Z(a,
B, 7)) = Us(q).

Proof. We can choose a unitary triple (8, B, 8;) in H. Set X =
{Bi, Bey Bey- As HIM = U,(q), X/Z(X) = Uy(q). If n=3 we can count
the number of unitary triples and the number of such triples central-
izing some e 2. These two numbers are equal. So assume =7 = 4,
and let (o, 0, 0;) be a unitary triple. Choose geD, ND,. If o,¢e
D, set B = a. If not let a*p be a singular line in D, N D,. By 6.3,
we can assume a €D,. Thus as above we are through.

Let (a, v, 0) be a unitary triple in D;,. Set J = {D, N I.

LemMA 6.14. J/Z(J) = U,_.(q).

Proof. If n =38, {a,7,0) = D;N D, for suitable 6 4; and J =
{B*c>. If m =4, J has width one and a counting argument shows
|JNR|= ¢+ 1. Thus by minimality of G,J/Z(J) = U\(q). Finally
if n > 4, then arguing as in 6.3, J is transitive on J N D and {D; N
J>/0.(Ds») = U,_s(q), so minimality of G implies the desired result.

LEMMA 6.15. Let 6 = I"U 6% and K = <0>. Then K = SU,..(q)
and 2 = 6 U a¥.

Proof. Claim ¢’ = 4. Clearly L normalizes 6, so it suffices to
show ¢ normalizes §. Let ce "N A,. Then {a,06) = SLy(q), so o’ =
0°< #. Thus I = 6. TUsing the fact that 6.15 is true in U,..(q), one
can check that

L = J( (o)

where &© is the set of lines in L — J. Thus it suffices to show X N
Q2 < 6 when X = {0,,0,,0). But if (s, 0,, ) is unitary, 6.13 implies
XN =o0*0,U " < 0 and if (g, 0, 0,) is a triangle then X/0,(X) =
SL,(q) and 3.3 yields the same equality.

So ¢ =6. ag¢l, so K+ G. Y=LKD;,N0y =<LD;NTI,0d), so
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Y0 (Y)=U, (9. [L,al]=1 and 6€d,, so I'"=D,N6H. Arguing
as above 6 U a¥ is self normalizing, so 2 = dUa*.

Let Z = Z(K). Z fixes 6 pointwise and K < C,(Z) is transitive on
2 — 0, so Z does not fix a. |SU,..(9)|/|SU.(9)| = |a¥| = | K: Nx(a)]
and LZ/Z = SU,(g), so |Z]|=(n+ 1,qg). Considering the covering
group of U,..(q) we get K = SU,.,(g).

Put K and D; in the roles of H and 4 in 2.6. Then 6.15 and
5.4 together with 2.6 imply G = U.,,.(9).

This completes the proof of the main theorem.
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