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The following characterization is obtained:

THEOREM. Let G be a finite group generated by a con-
jugacy class D of subgroups of prime order p ^ 5, such that
for any choice of distinct A and B in D, the subgroup generated
by A and B is isomorphic to Zp x Zp, L2(pm) or SL2(pm), where
m depends on A and B. Assume G has no nontrivial solvable
normal subgroup. Then G is isomorphic to Spn(q) or Un(q)
for some power q of p.

A much larger class of groups satisfies the analogous property
for p — 2 or 3, including many of the sporatic simple groups. The
classification for p = 2 appears in [3]. The classification for p = 3 is
incomplete, but a partial solution appears in [4]

For the most part the proof here mimics that in the papers
mentioned above. The exception comes in handling certain degenerate
cases. This is accomplished in § 4 by first showing a minimal counter
example possesses a doubly transitive permutation representation, and
then utilizing numerous results on doubly transitive groups.

1* Notation. In general G is a finite group and D a G invariant
collection of subgroups generating G. G acts on D by conjugation with
this representation denoted by GD. If a g D is a set of imprimitivity
for this action we define

Da = {βeaG:[ayβ] = 1, a Φ β}

a1 = {a} u Da

Aa = aG — a1

Va = {β e aG: a1 = β1}

D* = {B:BeβeDa} .

For Ω S aG, ££>{Ω) is the graph with point set Ω and edges (a9,
ah) where a9 e D^. &(Ω) is the geometry with point set Ω and block
set {βL Π Ω: β e Ω}. For a, β e Ω the line through a and β in &ψ) is

a*β = n (Ύ1 n Ω)

a*β is singular if β e Da and hyperbolic otherwise.
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A triangle is a triple (A, B, C) with AeD, CeDA, and B e AAΠ Ac.
If G is a permutation group on a set Ω, Δ £ .0 and I g G , then

Xj, X(zί) is the pointwise, global stabilizer of Δ in X respectively.
XΔ — X(Δ)jXΔ with induced permutation representation. F(X) is the
set of fixed points of X.

0oo(G) is the largest normal solvable subgroup of G.
All groups are finite.

2* Locally Z?-simple groups* Let G be a finite group and D a
collection of subgroups of G such that DG = D. Represent G as a
permutation group on G by conjugation. G is said to be D-sίmple if
G is generated by any G invariant subset of ΰ . G is locally D-simple
if D generates G and for any A and B in D either [A, B] — 1 or
<A, J3> is generated by A<Λ'B}. a is a seέ of imprίmίtίvity for GΛ if
α' n ocG = 0 for # G G - iVG(α'), and 0 =£ α = <α:> Γ) D Φ D.

LEMMA 2.1. Le£ G be locally D-simple and Δ a G invariant
subset of D. Then

(1) If H is a D-subgroup of G then H is locally (H Γi D)-simple.
( 2) If a is a homomorphism of G then Go: is locally Da-simple.
(3) Let Γ = (Δ) Γ) D. Then [Γ, D - Γ] = 1.
(4) If Gά is transitive then (Δ}d is transitive.
( 5 ) If D Γi Z{G) is empty and G ~ {Δ} for some orbit Δ of Gι\ then

G is D-simple.

Proof. (1) and (2) are straightforward. Let H = {Δ}. Then H^
G. Let A eΓ,BeD - Γ and assume [A, B] φ 1. Let X = (A, B).
Then X = <AΓ> ^ H so JSef, contradicting the choice of 5 . There-
fore, (3) holds.

Assume GΔ is transitive. Let K = (D - Γ). Then by (3) G is
the central product of H and JSΓ so for A e Δ, Δ = AG = AKH = AH.
Thus (4) holds.

Finally assume GΔ is transitive, G = (Δ) and Z(G) Π D is empty.
Suppose β is an orbit of GD with K= (Ω) Φ G. Then as G=(Δ},Δ f)K
is empty, so by (3), [Δ,Ω] = 1. Thus ί2 is centralized by G, a con-
tradiction. Thus (5) holds.

LEMMA 2.2. Let G be locally D-simple and a a set of imprimitivity
for GD. Then

(1) If A e a, B e aa Φ a and [A, B] = 1, then ]a, a9] = 1.
(2) <α;Gί) is locally (pί)G-simple.

Proof. (1) A = ABe a\ so α β = a. Thus 2.1.3 applied to <μ, B)
implies [a, B] = 1. But now the same argument shows [aa, C] — 1 for
each C in a. (2) Let JBΓ = (a) Φ K = <α^>, and X - <£Γ, K). Assume
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[H, K]Φl and let A e a, Be a9. Then by (1), [A, J S J ^ l s o ΰ e <A<̂ *>> ^
<ίF>. Thus X = (Hx).

LEMMA 2.3. Let G be locally D-simple with GD transitive, and
A abelian. Then

(1) Either VA or WA equals {A}.
(2) VA and WA are sets of imprimίtivity for GD.
(3) VVA = {VA

Proof. Straightforward.

LEMMA 2.4. Let G be locally D-simple with GD transitive and
connected. Let AeD. Then A is contained in a unique maximal

set of imprimitivity a of G and <D*> is D*-simple.

Proof. Let H = (DA}, π an orbit of H of maximal length on DA,
A = «π> - Z«π») n ΰ / = ND{A) and a = <Γ - J) Π D. As &{Ώ)
is connected, \τt\ > 1, so Δ is nonempty. We will show a has the
properties claimed in the conclusion of the lemma.

By 2.1.3, [a, A] = 1. By 2.1.4 (π) is transitive on π. Thus trans-
itivity of GD and maximality of \π\ imply π is an orbit of ζDB} on
DR, for Be a. Therefore BL g Γ.

Suppose BeaC\aβ Φ a. Then A S- BL S Γ9 = a9 \j A9. Now <π>
is transitive on π so either π g A9 or π g ασ. If TΓ g J* then J g
<π> g <z/g>, so A = A9 and therefore a = aa, a contradiction. Thus
π g 6*:% so z/ g <7Γ> g (α 9) and therefore J g ^ .

S o Γ g α u α * . Further zl f fgα, so α ' S C ^ Γ for C G zίff. ThusΓ =
« U ^ . From the last remark of the second paragraph it follows that
Γ is a component of £&(D), contradicting the hypothesis that &(D)
is connected.

It follows that a is a set of imprimitivity for GD. By 2.2.1, J9* =
j)A — a = A — a. By construction, iΓ«zί» Π ̂  is empty, so D* — Δ
and by 2.1.5, <J> is J-simple.

Finally let β be a set of imprimitivity for G containing A. A
centralizes A, so A normalizes β. If Be β Π Δ then as ίΓ = (A) is z/-
simple, J g (Bκ) ^ (/S )̂ = </9>. Thus J g /3. As NG(β) is transitive
on β, a g Dαg g /S for α5 e Dα. Thus A1 g /3, and transitivity of
NG(β)β implies /3 is a component of &(D), contradicting the hypothesis
that £2r{D) is connected.

So β Π Δ is empty and by 2.1.3, [β, Δ] = 1. Thus β g iV^J) -
Δ = a. Thus α is maximal as claimed.

Lemmas 2.6 and 2.7 are from §2 of [4]. 2.6 is a slight generaliza-
tion of its counterpart, but the same proof goes through.



8 MICHAEL ASCHBACHER

LEMMA 2.6. Let G be locally Ω-simple, let i g f l , and let H be
a Ω-subgroup of G. Assume

( i ) H takes the edge set of 3> (A) onto the edge set of &{Ω)
under conjugation.

(ii) There exists a partition A = IA{ of A such that if ah eAfor
some aeAi9heH, then there exists r e NH(Λt) with ah = ar.
Let G be a second group satisfying the hypothesis of G for which there
exists a permutation isomorphism T of HΩ HΩ and an isomorphism S
of &{A) and 2f(A) such that

(iii) T restricted to NH{A%) commutes with S and NH(ά) T = N^
for each aeA.
Then S extends to an isomorphism of 3f(D) and

A triangle in D is a triple {A, B, C) with AeD,CeDA, and Be
AA Π Ac. D is locally conjugate in G if for A, B e D, A is conjugate
to B in <A, B}, or [A, B] = _L.

LEMMA 2.7. Let Ω be locally conjugate in G with GΩ primitive
and £&(Ω) connected. Assume

(*) // (a, β, 7) is a triangle and X = <α, β, 7>, then β1 f) I g
and βr S (/S1 Π X)α.
a1} is transitive on Aa and GΩ is rank 3.

3* p-transvections* Let G be a finite group, p a prime. A set
of p-transvections of G is a G invariant collection D of subgroups
generating G such that for any A, BeD,\A\ = p and <A, JS> is the
homomorphic image of a subgroup of SL2(pn), with n and the image
depending on A and I?.

If p = 2 then D is a set of odd transpositions. Groups generated
by odd transpositions have been classified [3]; they include the sporatic
simple groups discovered by Fischer plus many infinite classes of simple
groups. Conway's sporatic simple group 1 is generated by 3-transvec-
tions, as is the Hall-Janko group and Suzuki's sporatic simple group.

LEMMA 3.1. Let D be a set of p-transvections of G, p > 2, and
let M= O^G). Then

(1) G is locally D-simple
(2) If G is a p-group then G is abelian
(3) If G = M is not a p-group then p — 3 and G is a {2, 3} group
(4) If p>S then M/OP(G) = Z(G/OP(G)).

( 5 ) Let M — 1. Then G is a simple unless p = 3 and G =

PGUU2).

Proof. Let A,BeD, [A, B] Φ 1. Set X - (A, B). Then X is
isomorphic to SL2(pn) or L2(pn) unless p — 3 and X = SL2(5) or L2(5).
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This implies (1) and (2). If G — M then as L2(q) is simple for q > 3,
X must be isomorphic to SL2(3) or A^ Therefore, 4.1 of [4] yields (3),

Assume p > 3. To prove (4) we may assume OP(G) — 1. Let Q
be a minimal normal subgroup of G contained in M. Then Q is a g-sub-
group for some prime qφ p. If A centralizes Q then Q is in the center
of G = <Z>>, so we can assume [A, Q] Φ 1. But then (AQ) £ AQ is a
solvable .D-subgroup whose order is divisible by q, contradicting (3).

Finally assume M — 1 and let H be a minimal normal subgroup
of G. If A S H and xeH then <A, A*) has a normal subgroup of
index p, so either Ax e AL or (A, Ax) ~ SL2(S) or A4. If A* s A1

then [if, A] is a normal abelian subgroup of H, so [ff, A] = 1. Thus
H is centralized by G — (D}, a contradiction. Therefore, if A S H,
then [4] implies AH~ PGXJZJ$). PGUm(2) is normal in Aut£/"m(2) so
G = CG(H)HA. By induction on | G|, G/ίf s C^(iϊ)A s Z p or PG[7Sm(2).
But now [4] implies the latter case does not occur.

So we can take A ^ H. So G = <Z>> = £Γ is simple.
The proof of the following lemma is due to David Wales.

LEMMA 3.2. Let G = L2(q) or SL2(q), q = pm odd, with Sylow p-
subgroup P. Assume G acts irreducibly on a n-dimensional vector
space over GF(p), such that n = 2 dim CV{P) and P acts semiregularly
on V — CV{P). Then G = SL2(q), n = 2m, cmd G αcίs m ίίs natural
representation on V.

Proof. Let ΰ b e a basis of V, and GF(r) the splitting field for the
representation of G on V. Extend the action of G to a vector space
W over GF(r) with basis B. W is the sum of k absolutely irreducible
G-invariant subspaces Wi of W. By inspection of the irreducible repre-
sentations of SL2(q) (e.g. §30, [7]), dim CW.(P) = 1 for all i. Thus as
n = 2 dim CF(P) and P acts semiregularly on V — CV(P), dim CW.(P) =
2. Again by inspection of the representations of SLz(q), q — r,G ~
SL2(q), and G acts in its natural fashion on Wλ. Further Gw\ 1 ^
ί -^ k, are the m equivalent representations obtained from GWί by
Aut GF(q). Thus w = 2m and G acts in its natural fashion on V.

LEMMA 3.3. Let D be a class of p-transvections of G, p odd,
with GlOJβ) ~ L2(q). Let M = OP(G), AeD,m = \AM\ and Z = Z(G).
Assume O^/M = Z(G/M). Then for some BeD,G = MX w&ere X =
<A, £> ~ SLM, Z= [A\ M] n [B\ M],M= [A, M][£, M], \M/Z\ = m2

where m — \AM\,Z= CM{x) for any pr-element of X, and [M, β] is
transitive on AM.

Proof. As G/O^G) ~ L2(q) there exists BeD with X = (A, B) =
L2(q) or SL2(q). Let a = A1 Γ) X, and Ω = ax. Let K - I L W /5]
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By 3.1, [M, a] is elementary abelian, G= <[Af, α],X> normalizes K
and [A, M/K] = 1. So M = K. As X 9 is doubly transitive, ZQ =
[M, a] Π [M, β] = [M, 7] Π [M, δ] for all pairs (α, /9), (λ, δ) from β. So
as [M, a] is abelian, Zo ^ Z. Thus we can assume Zo — 1. Therefore,
M is elementary abelian. A is in m groups <A, C>, CeB3*, so there
are m2 total D-subgroups isomorphic to L2(q) or SL2(q). Set G = C?/ϋΓ.
^ - CM(X), so_m2 ^ |X^| = \M\ ^ | [iff, α][Λf, β] |. On the other hand
m = \AF\^\ [M, a] |, so m - | [M, αj |, M= [M, a][M, β], and Aw = MF^\
Lemma 3.2 implies X ~ SL2(q) and C (̂α ) = 1 for all p'-elements xe X.
So it suffices to show Z = 1. Let {u) = Z(X). Then Λf = Z[M,u],
s o ΰ g X[M, π] < G. Thus Z = 1.

LEMMA 3.4. Let D be a class of p-transvections of G, p odd, with
M - OP(G), X a D-subgroup with X/Z(X) ^ ί73(g), α^d G = MX. Lβί

Z ^ [A1, M ] αwd | M/Z\ = m\

Proof. Let X = (Ai7 1 £ i ^ 3>, A = Al9 let ^ = 4 | n l and Ω =
ax. Set ZQ = [α, M] Π [a2, M\. As X 9 is doubly transitive Zo = [/3,
M] Π [Ύ, ikί] for β, 7 6 fl. [α:, Λf] is abelian s o G = <X, AM) centralizes
Zo. Thus we can assume Zo = 1.

Set # = Π L i I M,*^]. By 3.3, [ilf, a^ ^ [Ma^M, ad], so N is
normalized by G = <μL, a2, α3, Λί>, A centralizes M/ΛΓ, so M = N.
As Zo = 1, M is abelian. Let u be the involution in (aL, a2} and v
the involution in (a2, a3). We may assume [u, v] = 1. Jlί" = CM(^) x
[ΛΓ, %] and by 3.3, CM(u) = CM(aλ) Π CM{a2) and [Λf, %] - [M, a^M, a2].

Therefore, CM(u) Π CM(v) — Z and as X has one class of involutions,
\CM(u)/Z\z = |Jlf/Z| - | C ^ ) / ^ | m 2 . So |Af/Z| = m3, and as
Z = 1. That is Z - Zo ^ [A, M].

4. Groups with &{D) disconnected* This section consists of a
proof of the following theorem:

THEOREM 4.1. Let D be a conjugacy class of p-transvections, p ;>
5, of the group G. Assume £&(D) is disconnected and 0oΰ(G) = 1.
Then G — L2(q) or U3(q) for some power q of p.

Throughout § 4, G is a counterexample of minimal order to
Theorem 4.1. For A eD let A be the component of ^ ( D ) containing
A. Let D be the set of components. Write A ~ B if A, B e D and
<A, B} is isomorphic to L2(p) or SL2(p). For A Φ B define

Λi5 = {C e A: A - # - C for some EeB} .

Now for A Φ B, A - S if and only if A\J BA = B U AB. Thus if A -
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B then X = <Γ^, FBΊ} acts on Γ = Au BAoί order p + 1, so Y =
<Γ^> - A 7 Γ a n d I - < 7 , ΰ ) - <A,_5>XΓ. By 3.1, XΓ = (L(X) and
Z is a p-group. Further for fixed S Φ A, the sets Z7^, CeA, parti-
tion A.

Let m = \ΓAB\, and let n be the number of classes ΓCB- in A. If
m > 1 then applying 3.3 to X we have that (A, B) contains a central
involution u = %(A, J3), and % centralizes only A in J Γ ^ .

Let C e A. <C, B} contains E e ΓAB- and v = u(E, B) is in the center
of <C, By. Indeed v = u(C, F) where C - f G δ n ^ S ) . As v cen-
tralizes a unique member of ΓA-B and 7 ^ , each member C1 of Z7^
determines a distinct member ϋ^ of ΓA~B Π <Ci, β ) . Thus m = \ΓC~B
for all CeA. Further u = u{CuFι) for some C.GFCB, F^Γpj. So
Cp(^) intersects each ΓCB in A in a unique member. Set iΓ = (CD{u)y
and £Γ = <if, A}. Minimality of G implies K — SL2(q) for some power
q oί p. So the set Δ of components of £Sf{D) containing an element
of CD{u) has order q + 1 and ζ> = <Ci(%)> acts regularly on Δ — {A}.

Now there are m2 involutions u(Al9 JBJ, AL G Z1^, B1 eFBA; and m2

pairs (Al9 CJ, CΊ e Γ^, with ^(A1? 5J centralizing at most one pair.
It follows there exists u with A,CeQ. So as Q is abelian, <A> is
abelian. Notice that if m — 1 then A = /\s ΓΊ <C, J5>, so again [A,
C] — 1, and <A) is abelian. Therefore:

LEMMA 4.2. <A> is abelian.
Let <c> = C G A. We have shown there is an <β> = E e CA{u) Π ΓCB>

and we can choose e such that Bc = Be. Thus as <A> is abelian, j??c —
JBe« = BeQ = 5 5 , so i ϊ acts o n J - I u 5 ? , and ί ί = KHΔ = ZOp(fl) by 3.1.

Summarizing:

LEMMA 4.3. (1) If m> 1 then <A, JB> contains a central involu-
tion u. (2) If <A, 5) contains a central involution u then <A, B} =
H — (CD(u))Op(H) with (CD(u)} ^ SL2(q) for some power q of p.

Let J = iSΓβ(A), / = Cσ(A). For I g G let ί\X) be the set of
points in D fixed by X.

LEMMA 4.4. Assume u is an involution in the center of <A, B}.
Then

(i) If v is an involution in the center of <A, C) with [u, v] = 1,
then u = v.

(ϋ) J = O(J)Cj(u).

Proof. Set if = (CD(u)y. Let v be as in (i). Then v acts on H
and fixes A. There are q + 1 members of 5 intersecting JT, and
q + 1 is even, by 4.3. Thus v fixes a second member E Φ A oί D
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with E Π H φ 0 . As£Γ= SL2(q), v centralizes an element E of E.
Thus (u) = Z((A, E)) = (v), yielding (i). (i) and Glauberman's Z*-
theorem imply (ii).

LEMMA 4.5. Assume m(A, B) = 1 with A ~ B. Let x e (A, B)
fix A and B. Then

(1) B — B(A) is the unique element of B with A~B.
(2) x acts as scalar multiplication in GF(p) on Q = <A>.
(3) Assume y eJ has scalar action on Q and fixes B. Then y

has the same action on <ϊ?) and if \xl/l\ > 2 then F(x) = {A, B}.
(4) // (A, C> ̂  L2(pn) or SL2(pn), n odd, for all CeB, then (A,

B) ~ L2(q) or SL2(q).
(5) Ifp = 5 and {A, C) = L2{pn) or SL2(pn), n even, for some

CeB then there exists y with \Iy/I\ = 4 inducing scalar action on Q
and <β>.

(6) m(A,C) - 1 for all C Φ A.

Proof. (1) is just a restatement of m(A, B) = 1. Let C e ϊ . <C,
By contains an element Ax of D centralizing C with Ax ~ B. Thus by
(1), A1 — A(B) = A. So x e {A, B} ^ <C, B} and thus has the same action
on C as on A. This yields (2). Notice that (2) implies J — ICj(x).

Assume yeJis as in the hypothesis of (3). Then for CeA,y
fixes C and therefore B(C). So y acts on <(C, ί?> with scalar action
on B Π <C, i?>. So 2/ acts on B as on A.

Assume y has order rn for some prime r, r dividing p — 1, and
C 6 2<X2/) - {A, B). Suppose first that m(A, C) > 1. Then by 4.3, K =
<A, C> = fΓΛf where H - <CD(u)), u = u(A, C), and M - Op(ίΓ). y
fixes 4 so |/ fixes ^ 7 for A ~ C. As | Γc-χ \ is a power of p and ^ =
1 mod r, # fixes a point C of Γ'^ As this holds for each AeA, we
can assume x normalizes H. Thus with 4.3, F{yu) = {A, C) and [y,
u] = 1. Now J - /CΛi/), so [Af, y\β Mpιl= [A,M] by 3.3. So if
y acts by scalar multiplication on C, then [M, y] ^ [A, M] Π [C, M] =
Z(^) by 3.3, so that y centralizes M/Z(K). But y does not even
centralize [A, M]/Z(K). So y does not have scalar action on C.

Set E = JB\ 2/ has scalar action on j? and B, so as above m ^ ,
B) = 1. <JE, B> = SL2(q) or I/2(^) so there exists an involution ί with
cycle (E, B) inverting y mod C(B). Thus 6̂ί e N(B) inverts y mod C(B),
while ΛΓ(B) = C(B)C(y). So |yC(S)/C(5)| =J*rJ/i/| ^ 2 .

Assume | yl/y \ > 2. Then as above m(E, F) = l for all E, F e F(y)
and CG(y) fixes i^/) pointwise. Now if z is an element centralizing
A, B, and y then F(z) = (CD(z)) Π 5 and minimality of G implies F(z) Π
F(y) = {A, 5}. Thus £ moves C, so 2; = 1. Now there exists an involu-
tion t with cycle (A, 5) inverting 1/ modulo C{A) Π C(5). Thus yt =
2/""1. Similarly there exists s with cycle (JB, C) inverting y. So is
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moves A to C and centralizes y, a contradiction. Thus we have shown
(3).

Assume the hypothesis of (4). Let EeA, and C = B(E). Then
for a e Q# Π <A, C>, <α> e l So A = {<α>: a e Q*}. Let Δ = A u £ ρ .
Clearly Q normalizes zί. Further for # = <e> € 1 , β e 5 _^ A U £(<* *>n«>,
so as A = {<α>: α e Q f } , S normalizes J . Thus X = <A, ΐ?> normalizes
Δ. Further XΔ is 2-transitive with Qά <3 Xj and regular o n i - {A}.
Therefore, a result [11] of Kantor and Seitz implies XJ~L2(q). This
yields (4).

Assume the hypothesis of (5). Then there exists ye {A, C) with
\yl/l\ = 4 inducing scalar action on Q Π <A, C) and <ί?> Π <A, C>. By
(2), a? = ?/2 inverts Q and <JB>, SO orbits of x on A have order at most
two. Suppose (Aly A2) is such an orbit. Let B2 = 5(A2) and set X —
<A:, J32>. Then 2/ normalizes X with a? inverting Q Π X, soί/ induces
scalar action on Q Π X and fixes Ai, a contradiction. Thus y fixes A
pointwise and induces scalar action on Q. This yields (5).

It remains to show (6). Assume m(A, C) > 1 and let u — u(A, C).
By 4.4, J = 0(J)Cj(w). As J = 7Cj(i/), [tt, ?/] ^ 0(1). Thus some con-
jugate v of u centralizes y. Now if p > 5 or p = 5 and <A, 2?) = Ĵ 2(5%) or
SL2(5n), n even, for some E eB, then we can choose # with \Iy/I\ > 2.
So by (3), i*\?/) = {A, JB}. AS [V, y] = 1 and v fixes A, v fixes 5 . SO
v centralizes some BeB, and by 4.3, as m{Ay B) = 1, v el. But this
is impossible as u$I.

It follows from (4) that <A, 5> = L2(?) or SL2(q) with q — pn, n
odd. So A = {<α>: α e Q*}. But by 4.3, <A, C> = H = (CD(u))Op(H)
with OP(H) Φ Z{H). Thus there exists a e Q* Π Op(iϊ) with <α> ί A, a
contradiction.

LEMMA 4.6. m(A, B) = 1 /or αίi J5 ^ A.

Proo/. Assume not. Then by 4.5.6, m(A, B) > 1 for all 5 ^ A.
Let w = u(A, B), v — u(A, C). By 4.4, u is conjugate to v under J,
so J takes C to a point of F(u). But by_4.3 and 4.4, CG(u)F{u) is
2-transitive. Thus J is transitive on D — {A}. Let K — <A, B}, H =
(CD(u)} and M = 0^(1^). Let β = U#n J Q ( ^ ) Suppose w euJ inverts
iΦ xeΩ. Then wMfc inverts x while by 4.4, wuk has odd order. So
X=JQ, uJ\ ^<Q - Ωy^MΠQ by 3.3. But J Γ < / f / is transitive
on ΰ - {A} and JlίΠQ fixes B, so X fixes 5 pointwise, contradicting
3.1.5.

LEMMA 4.7. (1) There exists a prime r such that for all B Φ A,
J = INL(R) for some r-group with F(R) = {A, B}.

( 2 ) G^ is doubly transitive.
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Proof. (1) implies that there exists a prime r such that for any
B Φ A, a Sylow r-subgroup of G^B fixes only two points. This implies
G1' is doubly transitive. So it suffices to proof (1). But unless p — 5
there exists a prime r dividing p — 1 and an r-element y e {A, B}
fixing A and B with \Iy/I\ > 2. So 4.5 implies (1) unless p = 5 and
(A, B) ~^H = L2(5n) or SL2(5n), n odd. As 5n = | Q | = | (A) |, this holds
for all 5 ^ A.

Suppose u is an involution in / and let (C, E) be a cycle in u and
-X" = (C,E). As % does not centralize X, u acts fixed point free on
J n ΰ , so as % is odd, u induces an outer automorphism in PGL2(5n)
on X, and thus there exists a 2-element y e X inducing scalar action
in GF(5) on <C> and (E) with /̂2 not centralizing <C>, Thus by 4.5,
\F(y)\ — 2, so | S | = m is even.

Assume m is odd. Then / has odd order. Let x be the involution
in (A, B) Π J. By 4.5, J = ICj(x). But as m is odd J contains a
Sylow 2-subgroup of G, so the J£*-theorem contradicts O^(G) = 1.
Therefore, m is even.

If a Sylow 2-subgroup of G JB fiχ^s exactly two points for every
B Φ A, then GD is doubly transitive. So choose B such that a Sylow
group of GJB fixes more than two points. Then H — (A, B) ~ L2(5n),
Cj(H) has odd order and the involution x e HJB fixes three or more
points. Suppose y2 = x for some yeG. If (C, E) is a cycle of y in
F(x) then ?/ normalizes X — <C, -B> so as τ/2 = a; and n is odd, 7/ fixes
two points in X Γ) D, which must be C and E. This is a contradiction,
so x is not rooted in this manner.

Suppose / has odd order. Then by 4.5, J— ICj(y) for any involution
ye(Ά,C) and any C Φ A. So yexτ. Let u be an involution. We
may assume u has cycle (A, B). So u normalizes H, and as /has odd
order and x is not rooted in (u, H}, ue H. Thus u e xG. Thus G has one
class of involutions, so as x is not rooted, a Sylow 2-subgroup of G is
elementary abelian. Walter's classification of such groups [13] implies
G = L2(5n), a contradiction. So / has even order. Thus x centralizes
some involution uel; as \D\ is even, there exists R e F(x) Π F(u) —
{A}; minimality of G implies (Cn(u)) ~ L2(5n), SL2(5n) or Ϊ73(5

Λ), so
F(x) f]F(u) - {A, B}.

Consider CG(x)Fix). Arguments such as in 4.5.3 and in the last
paragraph show that nontrivial elements of C(x)F{x) fix at most two
points. Let (C, E) be a cycle of u in F(x). We have shown x is
rooted modulo C(C) Π C(E), while a? is not rooted. So C(C) Π C{E) has
even order and there exists an involution v e C(x)F{x), fixing C and E,
and centralizing u. v acts on F(x) Π F(u) = {A, R}. Let L = Cfif. 1/
acts semiregularly on F(x) — {A, R} and CL(v) acts on F{v) Π JP(O?) =
{C, E}, so <̂ > = CL(%). So a Sylow 2-subgroup S of <L, v> = I/* is
semidihedral or dihedral, and there are one or two classes of involu-
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tions in L* - L, respectively. But if TeF(x) - {A, R) let t be the
involution in C(x)Fix) fixing T and Tu and centralizing u. Then t e
Vi, i = 1 or 2, one of the (at most) two classes of involutions in L* —
L. So L takes F(t) f] F(x) = {?, T%} to ̂ (a?) Π W Thus L has one
orbit, or two orbits of equal length, on F(x) — {A, R), for S semidihedral
or dihedral, respectively. It now follows easily that C(x)Fix) is 2-
transitive. But J and therefore Cj(x) cannot take B to R as there
is no involution in / fixing B. This last contradiction completes the
proof of 4.7.

Set L = GJB, H = (A, B), K = CG{H), and Q = (A).

LEMMA 4.8. ( 1 ) J = IL and KΦ\.

( 2 ) H~L2(q) or SL2(g).

Proof. By 4.7.1 there exists a prime r such that a Sylow r-
subgroup R oί L fixes only A and JB, and J — INj(R). Nj(R) acts
on F(R) = {A, 5}; so iS (̂JB) ^ L . I f ί Γ ^ J Π L ^ l then / is regular
on D - {A} by 4.7.2, so [11] implies G ~ L2(q) or U3(q). Thus K Φ 1.
Minimality of G implies H — <CD(.K)> = SL2(q) or L2(g).

LEMMA 4.9. Suppose xeU with \ CQ(x)| = q0 > 1. Γλβw <CpO)> s
Z/2(g0), SL2(g0) or Z73(g0) α^d |F(α?)| = g0 + 1 or q* + 1.

Proof. Minimality of G yields the desired form for (CD(x)}. If
C e F(x) then [x, C] = 1 where C = C(A), A e CΊ(x). Thus | F(a?) | = q0 +
1 or g0

3 + 1.

LEMMA 4.10. Set n = | 5 | . 2%e% (^ — 1, |JBΓ|) is a power of p.

Proof. Let r be a prime divisor of | -ECU a n d R a Sylow r-subgroup
of K. By 4.9, -F(iζ) = q + 1 or <f + 1, so if r ^ p then a Sylow r-
subgroup i?L of iVz(J?) fixes a second point B of F(JR); that is Rι = JB.

So JB is Sylow in J and r does not divide % — 1 = | J: iΓ|.

LEMMA 4.11. \D\ — n is even. If u is an involution then n =
I F(u) I mod 4. | L | is even.

Proof. Results of Bender on doubly transitive groups [5.6] imply
L has even order. By 3.1, G is simple, so any involution u must act
as an even permutation on D. Thus n == \F{u)\ mod 4. If n is odd,
2-elements fix an odd number of points. So by 4.8 and 4.9, \K\ and
\L/HK\ are odd. And by 4.5.3, \HΓ\L\Φ 0mod4. As L has even
order, |J3"Π L\ = \L\ Ξ 2mod4. Thus p = q = 5mod8. Let u be the
involution in H Π L, and S a u-invariant Sylow 2-subgroup of I. As



16 MICHAEL ASCHBACHER

n is odd and J = IL, S(u) is Sylow in G. As G has no subgroup of
index two, S Φ 1. Let s be an involution in S, and (B, C) a cycle in
s. Then s normalizes X = <2?, C) and as \F(s) | = 1, s acts fixed point
free on ΰ ίl I . So as p = q = 5 mod 8, (s, X) ~ PGL2(q) and there
exists y e <s, X> of order 4 inducing scalar multiplication on <J§> and
fixing B and C. By 4.5.3, \F(y)\ = 2, contradicting w odd.

LEMMA 4.12. If J — 0(1)L then J = Oπ(I)L, where π is the set
of primes dividing n — 1. Aiso OV(K) Φ 1, am? CUT) is wo£ nilpotent.

Proof. Set P - Oπ(I). lί P Φ 0(1) let 72/P be minimal normal
in J/P, R < 0(7). 72/P is an r-group for some prime r and by a
Frattini argument, J = PNj(Rx) where i^ is a Sylow r-subgroup of
R contained in K. By 4.9, Nj(Rλ) = LPi where |P X | = g or g3, and
Pλ < iVjίiJi). Thus PPX < J, so Pγ ̂  P and J = PL. Results of Kantor
and Seitz on doubly transitive groups [11, 12] imply P is not nilpotent
or regular on D - {A}. Thus \Φ PΠL = PnK = OP(K) by 4.10.

LEMMA 4.13. Let I g L fix 3 or more points of D. Then CG(X)F{X)

is doubly transitive.

Proof. It suffices to show there exists a prime r such that a
Sylow r-subgroup of CL(X) fixes only A and B. Thus with 4.5 we
can assume q = 5m with m > 1 odd. Thus there is an r-element 1 Φ
y eH Π L9r > 2, and as m is odd 7/ is not inverted in J/I by 4.8.
Thus arguing as in 4.5, F(y) = <A, B). [y, X] = 1 unless Cρ(X) ^ 1,
in which case 4.9 implies CG(X)F{X) is doubly transitive.

LEMMA 4.14. Assume q = — 1 mod 4 cmd x is an involution in
L inverting Q with \F(x)\ > 2. Then \F(x)\ = q + I.

Proof. As q = ~ 1 mod 4, g is an odd power of p, so no element
in HΠ L is inverted in J/I. Thus if yeHf] L with | # | > 2 then
|F(2/)| = 2. Therefore, with 4.9 and 4.13, CG(x)Fix) is a Zaussenhaus
group. So CG(x)F{x) has a normal subgroup isomorphic to L2(m), of
index at most two, with \F(x)\ = m + 1. Now if m = I m o d 4 then
by 4.9 and 4.11, K has odd order, and <x> is Sylow in L, so that
I CL(x)Fix) I is odd, contradicting m = 1 mod 4. So m = — 1 mod 4. Thus
CL(x)F(x) is cyclic and inverted by any t e CG(x) with cycle (A, B). As
we can choose t eH, and [K, t] = 1, it follows that |C*(&)| = ε ̂  2.
Further e(m - l)/2 - |C z(^)F ( a ; ) | = ε | fΓn L| = ε(g - l)/2, so m - q.

LEMMA 4.15. Suppose u is an involution in Z*(L) fixing 3 or
more points. Then ueZ*(J).
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Proof, u e Z*(L) so uL Π CL(u) = {u}. Now 4.13 implies uG Π L = uL.
Further as \D\ is even, if v is a conjugate of u in J centralizing u
then we can assume v e L, so v e w* Π CL(u) = uL Π CL(u) = {u}. Thus
by the Z*-theorem, ueZ*(J).

LEMMA 4.16. / / H = L2(g) then Hf]D = F(X) for any 1Φ

Proof. If F(X) Φ Hf]D then by 4.9, H ̂  <CD(X)} s 17.(9), so

LEMMA 4.17. Assume u is an involution in L fixing m + 1 ̂  3
points, let c = ] L: Cz,(u) | αwd £e£ e δe ίfee number of conjugates of u
with cycle (Ά, B). Then \D\ — 1 — m(m + l)e/c + m.

Proof. Let β be the set of pairs (v, a) where v e uG and a is a
cycle in v. Then |uG | (^ — m — l)/2 = |fl | = ^(^ — l)β/2 where ^ = |D\.
Further by 4.13, \uG\ = n(n - ΐ)c/m(m + 1).

LEMMA 4.18. (1) Let S be a 2-group such that CQ(S) Φ 1. Then
S has rank at most one.

( 2) J = O(I)L.

Proof. Suppose 1 Φ (U) = Hf] L. Then by 4.15, ueZ*(I), so
J = 0(1)L. Define P = Oπ(/) as in 4.12, and assume S has 2-rank at
least two. Then P = Πs# CP(s), while by 4.9, CP(s) is a p-group for
s e S#. Thus P is a p-group, contradicting 4.12.

So i ϊ n 1/ = 1 and by 4.16, Nj(H) = QK is strongly embedded in
/. As Q ̂  0(1) and [K, H Π L] = 1, Bender's classification of groups
with a strongly embedded subgroup [6] implies J— O(I)Nj(HΠ L).
By 4.5, augmented by arguments such as in 4.13 for the case q = 5m,
m odd, Nj(H Π -L) = ί/. Now arguing as above, S has 2-rank at most
one.

Define P = Oπ(I) as in 4.12. Set Po = OP(K). Po Φ 1 by 4.12 and
4.18.

LEMMA 4.19. (1) F(X) = H n D for 1 Φ X ^ Po.

(2) i ϊnJΓ=l.
(3) Assume u is an involution in K and let veuG have cycle

(A, B). Let P1 be a (u, v) invariant Sylow p-group of O(K). Then
[v, PJ = Pt and [u, PJ Φ 1.

Proof. Assume 1 Φ X g Po with F(X) Φ H f] D. Then T =
<CD(X)> s U3(q) by 4.9. So H Π_K = <u} Φ 1. Further as NK(X)F{X)

is a p'-group, X = Po. Let (C, £7) be a cycle in u and i? e uG fix C and
j ^ . Then [u9 v] = 1 so v acts on <CZ)(w)> = H and thus also on Po.
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v induces an automorphism on 7 = U3(q) and therefore fixes points
Ai e F(PQ). So C e (Al9 A2} ^ Y and therefore F(PQ) = D, a contradic-
tion. This yields (1).

Assume 1 Φ (u) = H Π K. Then in particular [u, Po] = 1. Let
t; G ^G have cycle (A, B). v acts on Po and FO) Π F(x) = i*7^) Π J^M) =
0 for α? e PI. Thus CPo(t;) acts fixed point free on F(v) of order q +
1, so CPQ(V) = 1. Define e and c as in 4.17. It follows that c = 1 and
β ΞΞ 0 mod p. So by 4.17, ] D\ — 1 = g[(g + l)e/c + 1 ] Ξ J mod pq. So
Poζ> is Sylow in P and ^ centralizes P0Q, and inverts a Hall p'-group
Px of P. Thus P = P, x (PoQ) is nilpotent, contradicting 4.12. This
yields (2).

Assume the hypothesis of (3) and define c and e as in 4.17. Arguing
as above, [v, PJ = Pί9 so p divides e. By 4.18, L = O(K)CL(u), so if
[Px, u] = 1, then p does not divide c. But then arguing as above we
have a contradiction.

LEMMA 4.20. q = 1 mod 4.

Proof. Assume g Ξ — 1 mod 4. By 4.9, 4.10, and 4.14, CP(x) is
a p-group for any involution x e L, while by 4.12, P is not a p-group.
Thus L has 2-rank one. Suppose K has odd order. By 4.11, L has
even order so there exists an involution x e L and <#> is Sylow in J .
If lî OOl = 2, then by 4.11, n = \D\ = 2 mod4, and [2] implies G =
L2(q). Thus by 4.14, |F(a;) | = q + 1. Let v be a conjugate of x with
cycle (A, B). We may choose v = t or tx where teH. By 4.16, -F(Po) =
HPίD, so |F(P0) Π F(v) \ = 0 or 2 Thus if CPo(i?) ^ 1 then l = g +
1 = I F(x) I == 0 or 2 mod 29, so v inverts P o. Thus i; = tx, and » inverts
Po. Define e and c as in 4.17. Then e - {q — l)c/2, so by 4.17, n —
1 = q(q2 + l)/2. In particular QP0 is Sylow in P and inverted by x.
As |,P(α?)| = q + 1, a? inverts an α -invariant Sylow r-subgroup of P
for r Φ P, with 4.10. Thus x inverts P, and P is abelian, contradicting
4.12.

So K contains an involution u. Let v e nG have cycle (A, B), with
[v, u] = 1. As £ΓΓΊ -K" = 1 and v acts fixed point free on F(u) = Hf]
D,v .= ί or uί where ί e i ϊ . By 4.19 [v, Po] Φ 1, so v = %t. Thus
defining β and c as in 4.17, e = (q — l)e/2, so by 4.17, ^ — 1 = q[(q +
l)e/c + 1] = q(q2 + l)/2. Let i ί be a <^>(£Γ Π L) invariant r-Sylow
group of P, where r Φ p. Then <u)(H Π L) acts semiregularly on i?,
\R\> q. As a p'-Hall group of P has order (g2 + l)/2, (q2 + l)/2 is a
prime power. Thus # is a prime (e.g. Lemma 3.1, [1]) Po acts semi-
regularly o n ΰ - F(Po) of order q(q2 + l)/2 - g = ^to2 - 1)2, so | P 0 | =
q. Thus Q = CP(w) S Z(P), or [P, w] is a Hall p'-group of P. In
either event P is nilpotent, contradicting 4.12.
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LEMMA 4.21 \K\ is odd.

Proof. Assume K has even order and let u be an involution in
K and v a conjugate of u9 centralizing u, with cycle (A, B). By
4.1, [v, PJ = Px and [u, PJ Φ 1. So CPι{uv) Φ 1, | F ( ^ ) | ΞΞ 0 mod p and
uv$uG. So by 4.11 and 4.18, uvexG or (WE)* where xeH. Now
[#, Po] = 1 so \F(x)\ = 2 mod p. Thus ίwefaαO* and as \F(uv)\ Ξ= 0
mod p and \F(P0) Π F(wα;) | = 2, CPo(wc) = CPo(w) = 1. So Q = CP(u),
yielding a contradiction as in 4.20.

LEMMA 4.22. L has 2-rank one.

Proof. Assume not. Then as \K\ is odd by 4.21, there exists an

involution xeHf) L and an involution ueL wi th |CQ(u)\ — r,q = r2,

and Q = CQ(u) x CQ(ux). Notice P = CP(x)CP(u)CP(ux) = CP(x)Q. Set
m + 1 = I Jf̂Xα?) I. As Po acts semi-regularly on F(x) — [A, B}, m = 1
mod p. Let P 2 be a subgroup of CP(x) maximal with respect to being
normal in Cj(x) and semiregular on F(x) — {A}. Let M/P2 be a minimal
subgroup of Cj(x)/P2 contained in CP(x). By 4.10, M/P2 is a p-group
and as P 2 is semi-regular on F(x) — {A} of order m = 1 mod p, P 2 is
a p'-group. Thus Λf = P2(P0 n AT) =_P2M0 and ^(0?) = P2(iV(M0) n
Cία?)) = P2CL(α?) as F(x) Π F(Af0) = {A ĴB}. _So | P 2 | - m and P 2 ^
QCp(x) = P. Thus P2Q is regular on D - {A}. As % inverts P2, P2Q
is nilpotent and thus contained in Fit(P), the Fitting subgroup of P.
So Fit (P) is transitive on D — {A} and nilpotent, contradicting 4.12.

LEMMA 4.23. \D\ = 2 mod4.

Proof. Assume not. Let x be the involution in H f] L. By 4.11,
\F(x)\ ΞΞ 0 mod 4. As in 4.14, CG{x)F{x) is a Zassenhaus group and t
inverts LF[X) where t eH has cycle (A, B). But [t, Po] = 1 and Po ~
Pζ{x\ a contradiction.

4.22 and 4.23 together with [2] imply G ~ L2(q) or J7s(gr). Thus
the proof of Theorem 4.1 is complete.

5* Examples*

Hypothesis 5.1. Let V be a 2m dimensional space over GF(q), q
a power of the odd prime p, with nondegenerate skew symmetric
bilinear form (,). For ue V* the transvection u* determined by u is
the map

u*: {x} > (x + (x, u)u)
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considered as a projective transformation of V. Let D = {ζu*}: u e F#}
and G ==

G is the 2m dimensional projective symplectic group SP2m(q) over
GF{q).

LEMMA 5.2. .Assume hypothesis 5.1. Lβ£ A = <α*> αwd 5 = <&*>
lie in D with [A, B] Φ 1. Sfeί L = <Z^ Π A*>

(1) D is a class of p-transvections of G.
(2) L/Z(L) ~ SPM(q) for m > 1.

Proof. Let <e*> = CeD. Then [A, C] = 1 if and only if (a, c) =
0. So (,) restricted to <α, 6> is a nondegenerate skew symmetric
bilinear form and therefore {A, B) is a homomorphic image of a sub-
group of SL2(q). This yields (1). Similarly L acts as a symplectic
group on <α, δ>x yielding (2).

Hypothesis 5.3. Lei V be a n-dimensional vector space over GF(q2)
with nondegenerate semibilinear form (,). For nonsingular vector n
let u* be the transvection determined by u considered as a projective
transformation of V. Let D — {u*: (u, u) — 0}, and G = <D>.

G is the w dimensional projective special unitary groups, Un(q).

LEMMA 5.4. Assume hypothesis 5.3. Let A = <α*> am? J5 = <δ*>
ίie m D with [A, B] Φ 1. Set L = (DA Π DB) then

( 1 ) D is a class of p-transvections of G.

( 2 ) L/Z(L) s UnM) for Λ ̂  4.
( 3 ) G contains a unique class of D-subgroups KG with K/Z(K) ~

Proof. The proofs of (1) and (2) are as in 5.2. Assume K is a
D-subgroup of G with K/Z(K) s U%-M A s [α*, c*] = 1 if and only
if (α, c) = 0, (u: <u*> e ίΓΠ D} is a nonsingular hyperplane of V pre-
served by K. As G is transitive on such hyperplanes, (3) follows.

6* Proof of main theorem* For the remainder of this paper
G is a counter example of minimal order to the main theorem. Lemma
3.1 implies:

LEMMA 6.1. G is simple.

Theorem 4.1 implies:
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LEMMA 6.2. &(D) is connected.

Let Ae D. By 2.4, A is contained in a unique maximal set of
imprimitivity a of GD. Set H= (Da),M= OJH), and Ω = α σ . By
2.4, H is JD*-simple. Minimality of G implies H/M ~ Spn(q) or Un(q),
for some power q oΐ p.

LEMMA 6.3. Let βeDa,7eDβΓ\ Aa. Set Γ = DanDr and L =
<Γ>. Then LM = H, M Φ Z(H) and a*β = {a} U βM.

Proof. Let Beβ. H/M ~ Spn(q) or Un{q) has VBMίM as a set of
imprimitivity on D^M/M, so </9> is abelian. Set K = <D̂ s Π <Γ>, J3Ί =
<Z),>, and M, = OJfld.

Assume n ^ 4. Then by 5.2 and 5.4, KMJMι ~ Un_2{q) or Spn_2(q).
Suppose L is not D-simple. Then by 2.1, L is the central product
of two D-subgroups L{. Let Be Lx. Kis 27-simple, so K — L2. Thus
β = Bι Π L1} so 3f{Jji Π i?) is disconnected. Thus L/O^L) ~ L2(q) x
L2(q) or Z7i(gr) x Uz(q). As Z75(̂ ) contains no Z)-subgroup of the latter
type, that case is eliminated. As β = B1 f] Ll9 β = BL Π D%. Now
let CeΎ with X = <A, C> s SL2to), and a e l f i x α a n d 7 with |aj| ^ 4.
a? centralizes L and normalizes H. Suppose L Φ (CD*(X)} — Y. Then
there exists δ e Aγ Π Y. Minimality of G implies &(YΠD) is connected
so we can choose δ e Dσ for some σ s L. Let Z = <λ, S>. As 7, δ e
Dσ, Z/OP(Z) ~ SL2(q). So as [&, δ] = 1, we get [#, λ] = 1, a contradic-
tion. So L = y and as α; induces an automorphism on iϊ/ikf ^ Sp4(q)
or [74(<?) with YIOJJΓ) = I/2(g) x I/2fe)5 this automorphism has order
two. As I®I > 2,1 =£ cc2 centralizes H/M. As [x2, S 1 Π D*a\ = 1, [Jϊ, x2],
so <α;2> — Z(X) and X = SL2(5). But now C^^2) is a component of
&(D), contradicting 6.2.

So L is .D-simple. Therefore, minimality of G implies L/O^L) ~
H/M and OJK) = M.ΠKΦ Z{K). As Dr n (α*/9) - {/3}, α*/9 - {α} U βM.

Thus we may assume n ^ 3. Suppose X — <A, J&> = SL2(q) for
EeDf. Then we may choose C e 7 Π X. Let <u> = ^(X). Then u e
<A, C>, so [u, L] — 1. % acts on ίf/ilf and centralizes β, so J =
<C^*(u)> contains a J5-subgroup isomorphic to SL2(q0) for some tf0

dividing q. Let <v> be the center of that subgroup. If J Φ L then
considering <J, X), minimality of G yields a contradiction. So J — L
and [v, X] = 1. <Cz,*(v)> = Xo = SL2(q), so arguing on v in place of
u we get Xo = L and\ 0 = ^. If fl" = LM then as D« ΦDUMΦ Z(H),
and as above α*/3 = {a} U /SM. So we may assume H/M = £73(tf). Define
a? as above with ue(x). [x, L] — 1 and x acts on H/M ~Uz(q), so
as 2 < I x I divides g — 1, u e (x} centralizes H/M, contradicting LM Φ H.

So X does not exist. Thus H^ L2(q). Claim β = B1 f) D* =
a*β — {a}. For if not β £ <α*/9 — {a, β}} whereas a £ <α*/3 — {a, β}}.
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Choose 1 Φ x e Hγ fixing a and λ. x acts on H and centralizes β, so
[x, H] = 1. Let # e Z>ί - L and C e 7. The action of a? on <C, E)
yields a contradiction.

LEMMA 6.4. Let (a, 7, /5) be a triangle in Ω. Then there exists
σ with a, β, and 7 in Dσ.

Proof. Claim £gr{Ω) has diameter two. For if not aβΊδ be a
chain with d(a, 8) = 3. Let H, = <Z>r>, Mx = 0^(5;), Γ = DaΠDr and
L = <Γ>. Then by 6.3, i ^ = LM19 so δikί; = σMx for some σ e Γ .
Thus σeDaΓ\ Dδ, contradicting d(a, §) = 3. Thus ^( i3) has diameter
two, so if (ay7,β) is a triangle, by 6.3, LM = i ϊ . So again there
exists ( j e Γ with σΛf = /3M. α, /3, and 7 are in Z?σ.

LEMMA 6.5. Let 7 G Aα. Then <a, 7> = SL2(g) and \(a}\ = q.

Proof. Set X = (a, 7>. By 6.4, there exists βeDaΠDr. Let
i ^ = <#£>, ϋ ^ = O^ίJΪ). Suppose A Φ E e a with A = E mod M,. Then
A = <α), E = <e> with x = ae~ι e Mx. Thus x fixes every singular line
β*S = {β} u 3̂ 1 through /3. As i ϊ ^ C^^) is transitive on Da, x fixes
all singular lines through any β e Da. Let σ e Λα. By 6.3, there are
distinct singular lines β*σ, i = 1,2, with βt e Z?α. Then x fixes (/9fo ) Π
{βfσ) = {σ}. Thus α? fixes i3 pointwise. But this contradicts 6.1.

So |<α>| = \(a}M/M\ = q by 6.3. By 6.3, X/0p(X) = SL2{q), so

LEMMA 6.6. i? ΐs locally conjugate in G, {a1} is transitive on Aa9

and GΩ is rank 3.

Proof. By 6.5, Ω is locally conjugate in G. Therefore, to show
( α 1 ) is transitive on Aa and thus that GΩ is rank 3, it suffices to
show (*) of 2.7. But if (a, 7, β) is a triangle in J2, set X — <<£, 7, /3>.
Then by 6.3, X/0p(X) ~ SL2(q) with α 1 n X - ^O ί ? ( X ). So 3.3 yields (*).

Following the notation of D. Higman let k = \Da\, I = \Aa\, λ =
IDβΠDfl for /S6Dα, and μ= \DaΓιDr\ for 7 β A α . Let ra= |/3 3 f | .
[10] implies:

LEMMA 6.7. I = k(k — \ — 1)1 μ and either
( 1 ) k = I and μ = (λ + l)/2 = fe/2 or
( 2 ) d2 = (X — μ)2 + i(k ~ μ) is a square and d divides 2k + (λ —

μ)(k + I).

LEMMA 6.8. O^L) = Z(L).
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Proof. Assume not- Then there exists x e O^L) = L Π M with
Bx Φ B. By 6.5, β* Φ β, so βx e (a*β) Π Dr = {/3}, a contradiction.

LEMMA 6.9. <x*7 = <α, τ ) n δ tos order g + 1. If H/M ~ U3(q)
then m = q2.

Proof. Assume n ^ 4. Then a hyperbolic line βd in &{Γ) is as
claimed. But /3*<5 S βS while clearly </9, δ> Π Ω S /3*<5. Next assume
n = 2. Then by 6.3, Z>α Π # r = </3, δ> Π β for /3, δ e Da Π A> and Dβ Π
Z)δ = (pc, 7> ίlfl, so <x*Ύ is as claimed. Finally assume H/M ~U3(q).
Let Z = Z « α x » . Z acts semiregularly on α*7 — {a}. So if | α * τ | =
q + 1 then | Z | = ?. If | α * τ | Φ q + 1 then α:*7 = ^ Π A , for β,δe
Da Π J5r. So \a*Ύ\ = g3 and NG(a*7)a*r acts as a subgroup of Aut (U3(q)).
But by 3.4, ^ is elementary abelian, while an elementary subgroup
of Aut (U3(q)) acting semiregularly on q* letters has order at most q.
Further | α * 7 | - 1 - \NM<a>(a*7)\ - \CM<a>(L)\ = \Z\ = q by 3.4. So
|α*7 | = q + l .

Finally μ = | Γ | = g3 + 1, λ = m - 1, and Jfc = μm by 6.3 and 6.8.
Thus by 6.7, g3m2 - I, while by 6.6, Z = \(a1}: iSΓ<βi>(7)| =

by 3.4. Thus m = g2.

LEMMA 6.10. // iϊ/Λf = L2(g) ίfcβw m = q or q\ If H/M ~ Spn(q)
or Un(q), n ^ 3, ί/te^ m — q or q2 respectively.

Proof. Assume H/M ~ L2(q). Then μ = q + 1, k = μm and λ =
m — 1. So by 6.7, I — m2q and μ + X — m + q divides 2k + (λ —
μ)(fc + ϊ) ΞΞ — 2(g2 — l)g mod (m + g). By 3.3, an element of order
q — 1 in L acts semiregularly on ([A, M\/Z)% of order m — 1, so # —
1 divides m — 1. Thus # divides m = <f+1. So qr + 1 divides 2(<f — 1)
and therefore r fg 1. That is m = g or g2.

So with 6.9 we can assume n ^ 4. Therefore, singular lines in
L have order q or g2, respectively. Thus as a*β = {a} U βM these lines
are also lines in G.

LEMMA 6.11. H/M ~Un(q) and m — g2.

Proof. If not μ — λ + 2, so ^(42) is a symmetric block design.
Further all lines have order q + 1. Thus a result of Dembowski and
Wager [8] implies ^?{Ω) is (n + l)-dimensional protective space over
GF(q). As G is generated by the set of elations of &{Ω) commuting
with the symplectic polarity <x+->aλ, G = Spn+2{q).

The case w = 2 must be treated differently since in this case the
existence of D-subgroups isomorphic to Uz{q) are not assured. The
following lemma treats this special case.
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LEMMA 6.12. n ^ 3.

Proof. Assume n = 2. Let β,δeΓ, and set X = 1^ . We first
determine the fixed point sets of elements of L.

If x e </2>* then F(x) = /3L. If α? e X - £(L), then F{x) = {/S, δ} (j
α*7. For if # e i*\α;) is not as claimed, then by 3.3, σ e Aa. x normalizes
<§, a} ~ SL2(q) and centralizes a, so x centralizes σ. Thus a similar
argument on <6r, /5> and <σ, <5> shows σ eDβ Pi Dδ = α*7. If <£> =
ίΓ(L) then F(x) = Γ (J (α*7). For arguing as above F{x) — CΩ{x), and
minimality of G implies (CΩ(x)}/Z((CΩ(x)}) ~ L2(q) x L2(q); that is CQ(x) =
Γ\j(a*y). Finally let xeL act fixed point free on Γ. As above
F(x) = CΩ{x) and as D« Π CΩ(x) is empty, <Cβ(x)> = YF(X) = SL2(g) or
Σ73fe) And if F=J73(g) then Y is doubly transitive so xe(Daf]Dσ}
for σGjP(α ) — {α:}. Thus x is in g2 distinct conjugate of L in H.
However, with 3.3, CM(x) — <α>, so there are m2q(q — l)/2 conjugates
of <#> in ϋ". On the other hand there are m2 conjugates of L, each
containing q(q — l)/2 conjugates of <x), so <cc> is in a unique conjugate
of L. So F(x) = α*7.

Let G = C/4(g), let 5 be the class of subgroups generated by trans-
vections in G, let a consists of the members of D whose center is a
given singular point of the associated projective space, and let Ω —
aG. Let Ύ e A« and L = <J5- Π D-r}. The discussion above implies LiJ

is permutation isomorphic to LQ\

Lemma 6.3 implies that every σ in Ω — (a*β) appears in a unique
Dβi, β1 e a*β. Set K - Lβ, and let t e L have cycle (/9, o). Let Σ S /Sf
be a partition of α*/3 with βQ = α and /9i = /3. Set ^ 4 = (/3<L — (a*β)) U
{/Sj, and /ί = Kί i β Then L maps the edge set of &(Λ) onto the edge
set of &(Ω), except for edges in &(a*β).

Let T be permutation isomorphism of L and L, and let β — βT.
Let /3fΓ be orbits of KT on α*/3 and define Λ as above with respect to
these βi. There exists an isomorphism S of £&{Λ) and ^ ( Z ) such that S
restricted to &r(A>) commutes with T restricted to NL(Λ{) and Nι(σS) =
(NL(σ)) TfovσeΛ. For σ e A, there exists σ e A, with Nτ{σ) = (NL(σ)) T
from the discussion above, so S can be defined in the obvious manner.
So we can apply 2.6 to show &{Ω) ~ £&φ) and thus G ~ G, if we
show condition (ii) of 2.6 is satisfied.

Clearly (ii) holds on ΛQ. Suppose σ9 σx e A19 x e L. Claim σx = σy for
y e K. As L = K (J KtK we can assume x = t. Thus σx e Dβ Π Dδ =
α*7, so σ — σt is fixed by t. But if = NL{Λ^, so (ii) holds here.
Suppose σ, σx eA{,i^ 2. We consider the case | σL \ = g2 — 1; the case
10"LI = Q(Q2 - 1) is analogous. Now </S> = JVzί̂ i) and q2 = 1^ n U«*r A»
in g orbits of length g under </3>. These are the points in orbits of
length g2 — 1 under L. Let θ be the set of edges (/S|, ω) with y e L



CHARACTERIZATION OF THE UNITARY AND SYMPLECTIC GROUPS 25

and \ωL\ — g2 — 1. Let N be the number of orbits of L on θ. Then
q{q* - 1)N = I ( # , σ)L | iSΓ = | θ | = | # | g2 - (g2 - l)g2, so TV = g. Thus
(0 i f #*) = (/Si, ω27) for some ω eΛi9ye </S>. That is condition (ii) holds
on Ai

This completes the proof of 6.12
A unitary (a, β, 7) in Ω is a triple with β e Aa and

7 G n Aδ.
δea*β

LEMMA 6.13. If (a, β, 7) is a unitary triple then {a, β, y}/Z({a,

Proof. We can choose a unitary triple (βl9 β2, /93) in H. Set X =
</S1, β%9 &>. As ίf/M s £/;(g), X/Z(X) s Z73to) If n = 3 we can count
the number of unitary triples and the number of such triples central-
izing some a e Ω. These two numbers are equal. So assume n ^ 4,
and let (σ19 σ2, σ3) be a unitary triple. Choose β e Dσi D Dσ2. If σ3 e
Dσ set /3 = a. If not let α*/3 be a singular line in Dσι Π l?σ2. By 6.3,
we can assume a e D^. Thus as above we are through.

Let (a, 7, δ) be a unitary triple in Dβ. Set / = (Dδ Π Γ1).

LEMMA 6.14. J/Z(J) ^ C^.^g).

Proof. If w = 3, <α, 7, δ> = Z)̂  Π i5σ for suitable σ e Aβ and J =
<(/5*σ>. If w = 4, J has width one and a counting argument shows
\JΠΩ\ = g3 + 1. Thus by minimality of G,J/Z(J) = ί/3(g). Finally
if % > 4, then arguing as in 6.3, J is transitive on J Γ i ΰ and (Dβ Π

) ~Un_s(q), so minimality of G implies the desired result.

LEMMA 6.15. Let θ = Γ U δL and K = <#>. Γ/^e^ if ^ SUn+1(q)
and Ω = θ{Jaκ.

Proof. Claim 0' = θ. Clearly L normalizes 0, so it suffices to
show δ normalizes θ. Let σeΓ Γ\ Ad. Then <σ, S> = SL2(q), so σδ =
<5σ s 0. Thus Γδ S ^. Using the fact that 6.15 is true in Ϊ7n+1(g), one
can check that

L = J(U «σ2})

where £f is the set of lines in L — J. Thus it suffices to show X D
Ω g θ when X = <σ1? σ2, δ>. But if (σu σ2, δ) is unitary, 6.13 implies
X n Ω = (7̂ (72 U δ<σi*σ2> s 0 and if (σx, δ, <τ2) is a triangle then X/OP{X) ~
SL2(q) and 3.3 yields the same equality.

So θθ = θ. a <£ θ, so K Φ G. Y = <Z^ Π 0} = < ^ Π Γ, δ>, so
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Y/O^Y) = Un_M). [L, a] = 1 and δ e Aa, so Γ = DaΠΘ. Arguing
as above θ (j aκ is self normalizing, so Ω — θ\jaκ.

Let Z = UΓ(iΓ). Z fixes 0 pointwise and K ^ Ĉ CZ) is transitive on
Ω - 0, so Z does not fix α. \SUn+1(q)\/\SUn(q)\ = \*κ\ = \K:Nκ(a)\
and LZ/Z ~ SUn(q), so | Z | = (w + 1, q). Considering the covering
group of Un+1(q) we get K^ SUn+ί(q).

Put K and Dδ in the roles of H and Λ in 2.6. Then 6.15 and
5.4 together with 2.6 imply G ~ Un+2(q).

This completes the proof of the main theorem.
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