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The abstract wave equation 4’/ = A% + f(¢, u) is considered
on a Banach or Hilbert space, where A generates a (C,) group.
Under suitable conditions on f, a representation of the solution
of the initial-value problem is used to establish bounds on
the growth of the emergy 1/2|| Au(t)||®*+ 1/2||w/(¥)||%. For
f =0 it is shown that neither the potential energy 1/2|| Au(t)||?
nor the kinetic energy 1/2||u/(t)||> tends to zero as ¢ — oo,
and necessary and sufficient conditions for the kinetic and
potential energies to be equal for large time are given.

Hille [8] has shown that the Cauchy problem for the abstract
wave equation u” = A*x@ on a Banach space % is well posed if and
only if A generates a strongly continuous group; hence we shall suppose
throughout that A is the generator of such a group. Hersh [7] has
given a representation theorem for solutions of abstract initial-value
problems in terms of distributional solutions of the Cauchy problem
for certain related partial differential equations in two variables—in
our case, in terms of solutions of U,, = U,,. Here we shall exploit
his simple, explicit formula for the solution of the Cauchy problem for
uw = A*u + f to establish rather easily some results concerning the
energy of the solution.

In the first part we establish estimates on the growth of the
energy of a solution to the nonhomogeneous problem. The results
here complement and extend some results in [5] and [6].

In part two we consider only the homogeneous linear problem,
and show first that neither the kinetic nor the potential energy can
tend to zero as time increases. We then specialize to Hilbert space,
where we establish a necessary and sufficient condition for the kinetic
and potential energies to be equal and constant for large ¢ and data
in some subspace; a similar result may be found in [4]. By utilizing
a consequence of an abstract formulation of Huyghens’ principle, we
are able to establish very easily a theorem of Duffin [2] on the equality
of kinetic and potential energies of solutions of the three-dimensional
wave equation with compactly supported data.

I. Energy bounds for abstract wave equations. We shall con-
sider first the energy 1/2|| Au(t)||* + 1/2||%'(t)||* for the abstract wave
equation

(1) w"=Au+ ft), u0) =uecD(A), u(0) = u cD4)

27
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on a Banach space X. We assume throughout that f(¢) is strongly
continuous from [0, «) to D(A) and that Af(¢) is strongly continuous;
instead, we cound assume that f is strongly continuously differentiable
[5, II. 2]. The first part of Theorems 1 and 2 is proved differently
in [5] for A invertible and f = 0.

THEOREM 1. Let A generate the (C,) group T(t) satisfying || T(t)|| =
M, and let S Nf@®dt < co. Then u has bounded energy; specifically,
0

Al A + ol = [VEH] @ lae ]}

= {I[Au@ (" + [lw'@) |}
< VFM{IIAuoHZ + lw,|® + [S:Hf(t) Hdt]z}uz .

Conversely, let A generate a (C) group T(t), and suppose that
for zero initial data the energy is bounded above by a nondecreasing func-

tion of S:H f@®|ldt. Then T(t) is uniformly bounded.

Proof. By substitution one checks that the solution of (1) is given
by

ult) = %{T(t) + T(— H]uy

( 2 ) ¢ t(t—t
+ 2 reuds + [ |7 T0s@dsde ;

this is the solution obtained in [7]. Since A is closed and d/dtT(t)v =
ATty = T(@t)Av for ve D(A), we obtain

Au(t) = ;mt) + T(— O] Au, + %—[T(t) — T(—)]u,

(3) .
+ 2|11 -9 - T ¢ - NIfEr

wi(t) = %{T(t) — T(— t)]Au, + %{T(t) + T(— t)]u,

(4) .
1 fire - o + (= @ — e

Taking norms yield the upper bound in the first part of the theorem.
For the lower bound, one obtains by adding and subtracting (3) and
(4) and appropriate applications of T(¢) and T(— ¢) that



ENERGY BOUNDS AND VIRIAL THEOREMS 29
Auy = _;-[T(t) 1 T(— 8] Au(t) — %[T(t) — T(— YD)
+ {11 - 1= Ir@ee
W= = 2T) — T(= OlAu(t) + 1T6) + T(~ )l

1 t
- 2| 11@ - 1= 9lf@e

whence the lower bound follows by taking norms.
For the converse, observe from (3) and (4) and the postulated
energy bound that

(5) "¢ - 2 r@ac| = ¢ [Ir@1ae)

where C is a nondecreasing function of its argument. Let {d,(f)} be
a sequence of nonnegative Cy(— 1,1) functions converging as 7 — oo
to the Dirac é-function; let g € D(4). Then

St T(t — 0)6.(c — T)gds — T(t — T)g
as n— oo for t> % + 1. Also

;2.6 = Dllgllaz = 11l
so (5) implies that
1791l < Cllgl)

for s = 1 and ge D(A4). Since A generates the (C) group T(f), we

have that ||T(t)|| £ Me“" for some constants M > 0,0 = 0. Thus

H T gl <max (C(lgl]), Me”) = K(]|gl]) for t = 0; K is nondecreasing.
Let heX and te(— oo, ) be given. Let

¢ = min (|||, e K(2]||1|))/M) ,
and choose ge D(A)(D(4A) = %) such that ||g — k|| <& Then

TR = 1 TE(@ — W+ [| TH)g ]!
= eMe” + K(llg])) = 2K@2[R]]) , t=0.

A similar argument works for ¢ £ 0. Thus the family {T(f): — « <
t < =} is bounded on each heX, and hence SUP_..ci<. || T(t)|] < = by
the uniform boundedness theorem.

THEOREM 2. Let A generate a (Cy) group T(t) satisfying || T®)|| =
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Me“", w = 0, and suppose || f(B)|| < Me™ for v = 0,t> 0; then
(6)  [Au@® " + W@ 1" = Ce{I| Aol + [[u, I}
+ ¢ el @) l1de

e¢max (V,w), 0+

= Cs(’ll/o, Uy, f){(l + t)ewt R w ="

Sfor certain constants C,, C, independent of the data.

Conversely, let A generate the (C)) group T(t), and suppose that
for zero imitial data the energy inequality (6) 1is satisfied for all
bounded strongly continuous f € D(A) with Af strongly continuous;
then

NT@ | = Me"

for some constant M.

The proof is similar to that of Theorem 1 and will be omitted.

Small perturbations of the differential equation should cause small
changes in the rate of growth of the energy. This is the content
of the following theorem.

THEOREM 3. Let A generate the (C,) group T(t) satisfying || T(t)|| <
Me*(w = 0), and let f(t) satisfy || f(t)| < Me* (v = 0). Let g: R* x
¥ — X satisfy

(7) llo(t, w) || = K{||Aul] + [Ju]]}

for some constant K and we D(A), in addition to hypotheses which
guarantee the existence of solutions on [0, ) to the problem (see [5]
for such conditions)

(8) w’ = A + g(t, w) + f(t) w(0) = uoe D(A?), w(0) = u, € D(A) .

Then for any € > 0 there exists K, such that if the constant K in (7)
satisfies 0 < K < K,, the energy growth estimate

(9) @)l + [| Au(®) || = const. e!metrerre

1s valid. Conversely, given K > 0, (9) s satisfied by the solution u
of (8) for any ¢ > 4AMK max (1, ™).

REMARK. If Bis a closed operator with D(B) > D(A), then || Bu|| =
K{|| Au|| + ||u||} for some constant K and w e D(A4), and solutions of
u' = (A* + B)u + f exist [5], so our theorem covers this case of
linear perturbation. Also included is the case where g(t, w) satisfies
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a Lipschitz condition in % uniformly in £.

Proof. We shall treat only the case w > 0, w == 7; the other cases
are similar. The solution « of (8) satisfies the integral equation

w(t) = —;—[T(t) + T(— 8)]us + %—SitT(s)ulds

(10) + %g:s::_r)T(s) f(@)dsde

+ }—StSH T(s)g(z, u(z))dsdr ,
2 Jo)—(t—n)
whence we get the estimates

”u(t)H = Me“"[]luol[ + _].‘_Huln] + MM ptmex(r.0)
) oo — 7|

t
M o) Au) | + |lute) I)de
A, 1w (B)]] < Me[)] Au]| + J| ] + %em
+ ME| =0 4u@)]| + || u(e) e -
Set ¢ = max (v, w) + ¢ for convenience; then for the three quantities
above we have the bounds
(11) lu@1l, | Au@)], [[#'(@)]]
< Ce” + MK max (1, w“l)gte"‘““”{HAu(T)ll + (o) |pde

for a constant C depending on the data and v, w. We insist that
K < e/[AMmax (1, ™) and define

ooy n

max (1, a)‘l)]~1 .

Since S > 2C, we see from (11) that
(12) lu(@) [l [| Au@) ], [lw' @) || < Se**

holds for positive ¢ near zero. Suppose t is the first positive time such
that one of the strict inequalities (12) fails. Thus (12) holds on [0, ?),
whence (11) yields for t€ [0, )

Hu@) ], [[Aw@) ], @) || = Ce* + %ZMK max (1, ™) Se” < —;—SE”’;

thus ||u(@)|], || Au(®)|], ||%'(F)]] < (1/2)Se’® by continuity. But then (12)
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holds at ¢. This contradiction proves that (12) must hold on [0, ),
establishing the theorem.

The following theorem sharpens a result of [6] in the case w > 0,
v > 0; it is, however, weaker if v =0 or w = 0.

THEOREM 4. Let A generate a (Cy) group T(t) satisfying || T(t)|] <
Me“'t, and let B be a closed limear operator on X such that D(B) D
D(A); let w be a strong solution of

w = (A ~+ Bu+ f, u0) =ucDA, %0 =wucDA4),

where f satisfies || f(t)|| < Met. Suppose the estimates
lu(t) ], || Au(t) || < const. et“tirebt
are satisfied on [0, ). Then for any € > 0
[|#'(t)|| = const. gletlr—e+er

holds for t = 0.

Outline of proof: Set C,= A — aI for a = |Y — w| + ¢; then u
satisfies
(13) w' = Cu + [20A + B — o’ T)u + f .

C, generates the (C,) group T.(t) = e **T(t), where || T.(t)|| £ Me“'*'e™.
Also B satisfies the estimate ||Bu|| = K{|| Au|| + |[|%]]} for some con-
stant K and we D(A). After converting (13) to the integral equation

u(t) = LT + T(— O + 3| Teuds

+ ST“’ T(s)[f(c) + 224 + B — acTju(c)]dsdr ,
0J—(t—r1)
standard estimates yield the result, as in the preceding proof.

II. Virial theorems for %” = A%. Studying the solutions of
#" = A*v on a Hilbert space where A generates a unitary group,
Shinbrot [9] and Goldstein [3] have established conditions under which
the potential energy 1/2|| Au(t)|[* and the kinetic energy 1/2||w'(%)||*
approach a common limit. This virial theorem fails for solutions of
the one-dimensional wave equation on [0, 1] with zero boundary data,
where the lim inf of both the kinetic and potential energy can be zero.
A weaker, related result is true, however; namely, that neither the
kinetic nor the potential energy can have limit zero as time increases.

THEOREM 5. Let A gemerate a morm-preserving group T(t) on the
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Banach space X. Let u be the solution of
(14) w' = Au, w0 =wu, %0 =u,

where u, € D(A?), u, € D(A), and ||u,]| + ||u. ]| > 0. Then ||uw'(t)]| -+ 0,
|| Au(t)]| - 0 as t — = unless u, = 0 and A®u, = 0.

Proof. Assume to the contrary that «/(t) — 0 for certain initial
data w,, 4, From (4) we have that

TO[Au, + w] — T(— )[Auy — w] — 0,
whence (3) implies that

T®) [Au, + u,]

(= Odu, —wl) 0"

Au(t) —

From (4) we also get

2lw@®)|| = 2]| T@Ow @ = || T@O)[Auy + u.] — [Au — w]||— 0,
2(lw @) = 2| T(— w' @) || = || T(— 28)[Au, — u,] — [Awu, + w]|| — 0;
from this it follows that T(t)[Au, + ] — [Au, — ], T(— )[Awu, —
u,] — [Au, + u,]. Thus Au(t) converges to both Au, + u, and Aw, —
u,, which is impossible unless u, = 0.

Suppose then that u, = 0. The argument above shows that
T(t) Au, — Au,, so we have that

|| T(h) Aw, — Au,l| = || T(¢ + k) Au, — T(t)Au,||
< || Tt + h)Au, — Augl| + || Auo — T() Atho]| — 0

as t— co. Thus T(h)Au, = Au, for all h, and so

T(h)Au, — Au, 0.
h

Ay, = lim
h—0
This proves the theorem, for a similar argument holds if Au(t) — 0.
In the case A a skew-adjoint operator on a Hilbert space, A*u, =
0 implies that Au, = 0, and hence the total energy vanishes.
Huyghens’ principle for the hyperbolic equation

Uy = L[u] ’

where L is an elliptic operator in » space variables, asserts that for
compactly supported data the solution will be zero at any fixed point
in space for all sufficiently large time [2]. This principle is known
to be valid for L = 4,, the n-dimensional Laplacian, for n = 2m + 3,
m=0,1,.--. We shall give an abstract Hilbert space formulation
of Huyghens’ principle in order to derive information about the group
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generated by a square root of the Laplacian.

Let 57 be a Hilbert space, and let {H,}7, be a sequence of linear
submanifolds of 5% such that H,c HLC H,---. We shall say that
Huyghens’ principle is valid for the abstract wave equation (14) rela-
tive to {H;} provided:

1. D(A)N H; is dense in H;,7 =0,1, ---, and A(D(4) N H;) C H;

2. for each j=0,1,..- there exists a T; such that [¢t| > T;
implies (wu(2), ;) = 0 for h; e H; if u,€ D(A* N H,, u, € D(4) N H,.

EXAMPLE. Let 57 = ¥R, A® = 4,, H; = <%B,), where B; is
the ball of radius C(5 + 1) for some constant C > 0. Define the Fourier
transform by

Fif)E) = ge-wf(x)dx ,

where x = (), @2y 25), & = (&, &, &) and (@, &) = @&, + .6 + @65 Then
we can define

Af = iF (& + & + &)'"F{f}},
D(4) = {f e ZXRY: f' exists and f' e F¥RY)};

it is easy to see that A% = 4,. A simple computation using the identity
SF{ flg = S fF{g} shows that A is skew-adjoint and thus generates a
(Cy) unitary group on 57 (Stone’s theorem). The validity of the
abstract formulation of Huyghens’ principle for the wave equation

u” = 4yu relative to {Hj} follows from the known classical result [1].
This example is readily generalized to A* = 4,,45, m = 0,1, «--.

THEOREM 6. Let A generate a (C,) wunitary group T(f) on the
Hilbert space 57, and let {H;}3., be an increasing sequence of linear
manifolds in S  Then (T(E)h,, h;) = 0 for |[t| > T; and all h,e H,,
h;€ H; if Huyghens’ principle is valid for (14) relative to {H;}.

Conversely, suppose D(A) N H; ts dense in H; for j=0,1,---,
and there exist T; such that |t| > T; implies (T(t)ho, h;) = 0 for each hy €
H, h;e H;. Then (u(t), h;) = C; for some constant C; (depending on
the data for u) and all h;e H; if u,€ D(A*) N H, and u, € D(A) N H,.

Proof. Let h; be an element of the dense set D(A) N H;; then

— 2(u(t), Ah;) = 2(Au(t), h;)
= (T)[Au, + w] + T(— )[Au, — u.], hy) = 0

for |t] > T; since A is skew-adjoint by Stone’s theorem. Taking u, =
0 yields
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(T@)us, by) = (T(— tyuy, k;) -

For |t| > T; we also have (d/dt)(u(t), h;) = (w'(t), h;) = 0, whence for
Uy = 0

(T(tyus, hy) = — (T(— Yuy, hy)

so we must have (T(¢t)w,, h;) = 0 for |¢t| > T; and all u, e D(A) N H,,
hje D(A)NH;. Since these sets are dense in H, and H, respectively, the
first part of the theorem follows by a simple approximation argument.

For the partial converse, observe that (T(t)h,, h;) = 0 for all h,e
H, h;e H;, and |t| > T; implies that (d/dt)(u(t), h;) = 0 for |¢t| > T;
and data in H,.

The converse cannot in general be strengthened to conclude that
(u(t), h;) = 0. To see this, let A = (d/dx) on F*(— o, ) and H; =
FLH—@GF+1),FH+1). A generates the group T(t)f(x) = f(z + t),
and Huyghens’ principle is not valid (readily seen from the classical
solution of d’Alembert). Nevertheless, for w e H,,

(T, 1) = |~ wia + oh@ds = 0

for |t| >4 + 2.

Duffin [2] has recently established a virial theorem for solutions
of the classical three-dimensional wave equation with compactly sup-
ported data; see also [4]. Using the Paley-Wiener theorem, Duffin
shows that for sufficiently large time the kinetic energy 1/2||w/'(¢)|]?
and the potential energy 1/2|| Au(t)||* are constant and equal. We
shall derive this result as a corollary to the following theorem for
abstract wave equations; the result itself is similar to one of [4].

THEOREM 7. Let A generate the unitary (C,) group T(t) on the
Hilbert space 57. Let H be a subspace of 57 such that D(A) N H 1s
dense in H and A(D(A) N H)C H. Then, for solution w of (14) with
arbitrary data u, € D(A% N H,u, € D(A) N H, the kinetic and potential
energies will be equal for t > S if and only if

Re(T@Oh, 1) = 0
for all h, W e H and t > S.

Proof. From (3), (4), and the parallelogram law we have

| Al = L) A, + [ + L 4wy —

+ %Re(T(t)[Auo 4w, T(— H[Au, — )
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=l AwF + [
+ %Re(T(t)[Auo +ul, T(— O[Aus — w]) ,
w1 = T Au* + Ll
_ %Re(T(t)[Auo +u], T(— O[Au — w) ;

thus the total energy 1/2]|w'(¢)||* + 1/2|| Aw(?)|[* is constant for all time.
Clearly, the kinetic and potential energies will be equal for ¢> S for
all allowable data in (14) if and only if Re(T(¢t)[Au, + w,], T(— t)[Au, —
%]) = 0 for all u,e D(A*>) N H and u, e D(A) N H. It is obvious that
Re(T(2t)h, k') = 0 for all h,h' € H and t > S implies that the kinetic
energy equals the potential energy for ¢ > S. Conversely, if the kinetic
and potential energies are equal for t > S, then setting u, = 0 yields
Re(T@2t)u,, w,) = 0 for ¢ > S and all , e D(A) N H. Since D(A)N H is
dense in H, an approximation argument guarantees that Re(T(2t)h,
h)=0 for ¢t > S and he H. The polarization identity for the sesqui-
linear form @(h, b') = (T(2t)h, h’) shows that this is equivalent to
Re(T(2t)h, B') = 0 for t > S and h, W € H.

EXAMPLE. Let 57 = &£*(— oo, ), H= ¥F*— C, (), A = d/dx,
T@) f(x) = f(x + t); then S = 2C.

COROLLARY (Duffin). Let 57 = LY R™+), H= <Z*B) for a ball
BCc R™*® A* = 4y, m=0,1,-+-. Then the kinetic and potential
energies for the wave equation w” = Ay, %, w(0) = u, € D(A®) N H, w'(0) =
u, € D(A) N H are equal for all sufficiently large time.

This follows from Theorem 6 and the example preceding it if we
take j = 0 in the theorem and C = radius of the ball B in the example.

The following theorem is similar to results of Shinbrot [9] and
Goldstein [3]; a proof can be given readily along the lines of the
proof of Theorem 7.

THEOREM 8. Let the skew-adjoint operator A on the Hilbert space
SZ generate the group T(t) and let u(t) be the solution of (14) with
U, € D(A%, w, € D(A). Then
lltg{lollz‘lu(lﬁ)ll2 = &Eﬂ @) = —;—(HAuon + [u 1)

if and only if
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lim Re(T(t)[Auy + w], T(= O Au, — w]) = 0.
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