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If a =(ai, ---,a,) is a n-tuple of positive real numbers
let a* = (af, - -+, a}) denote the rearrangement of a in increas-
ing order and a— = (a7, ---,a;) the rearrangement of a in

decreasing order. In this note a characterization is given for
those functions f: B, — R such that

(1) $(55) =345 = 3(5E)

holds for all a,bc R"%. Here 7 is a fixed integer > 1.

iA

In [3] Mine proved that
1T (@ + 50 < 11 (@ + 5) < T1 (@i + 7).«

This inequality was generalized by London [1, Theorem 1], who (in
an equivalent form) proved that (1) holds if the function f(e* — 1), x = 0,
is convex and f(x) = f(0), = > 0.

London [1, Theorem 2] also proved (1) if f is convex and f(x) =
f(0), z > 0, which in fact is contained in the previous case.

The proofs in [1] are based on an interesting representation
theorem of Mirsky.

The purpose of this note is to characterize those functions f, for
which (1) holds.

The left inequality in (1) is in fact a special case of a theorem
of Lorentz [2, Theorem 1]. This theorem especially gives, that if
@ = O(u, v) belongs to C?(R, x R,) then

(2) S0, b)) < 3 0, by) all a,beR (n>1)
if and only if

o’'P
=0
(3) ouov

From this it is fairly easy to deduce that (2) and (3) are both
equivalent to

(4) S0, b)<> 0@, b;) all a,beR. (n>1).

We shall give an independent proof of these equivalences, which
differs from that given in [2].
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Let a, be R and choose ¢ € R, such that ¢ < min (min a,, min b,).
If A is a finite set, let |A| denote the number of distinct elements
in A.

By adding the identities

D(a, by) = O(¢, ) — O(ay, €) — D(e, b,) + Sakrk 82? dudv ,
E uov
k = 1, e, n y
we have
3 0@, b) = 10, o) — 3,0, &) — 3,0, by
(5) o o
+§ S \law = u, b, = o} |22 dudw .
e Je ouUov
Set
N(a, b; u, v) = |{k|a, = u, b, = v}] .
Then

N(a*, b~; u, v) < N(a, b; u, v) < N(a™, b*; u, v)

and so (2) and (4) follow from (3) and (5).
To prove, (4) implies (3), set

D(u, v) = N(a, b; u, v) — N(a*™, b~ u, v) .
In view of (5), (4) is then equivalent to

0*0
UV

(6) g:’g:D(u, v) dudv < 0 .

If (4) holds for some = > 1, then it also holds for n = 2. To
see this we only need to apply (4) to the n-tuples a = (a,, @, &, <+ -, €)
and b = (b, b,, 8, -+, ), where ¢ > max (a,, a,) and 0 < 6 < min (b,, b,).

Choose 0 < u, < u,, 0 < v, < v, and set a, = u,, @&, = u,, b, = v, and
b,=v. Then Du,v) =1 if u, <u =< u,, v, <v=7v and = 0 else-
where. Therefore (3) follows from (6).

Analogously we can prove that (2) implies (3).

In [2] there are also necessary and sufficient conditions on @ in
order for (2) ((4)) to hold, when @ is only continuous. It is easy to
see that (2) = (8) = (4) in this case too, if (3) is interpreted in the
distribution sense, that is the left-hand side is a negative measure.
A formal proof goes via regularization of @.

We now return to the inequality (1). This corresponds to
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o(u,v) = (L),

which gives

Z2 - ()2 )0

that is
ff@-z+ f'@) =0, =x>0.

41

This means that (1) holds if and only if the function f(e*),

—o0 < ¢ < + oo, IS convex.
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